pycore_object.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. #ifndef Py_INTERNAL_OBJECT_H
  2. #define Py_INTERNAL_OBJECT_H
  3. #ifdef __cplusplus
  4. extern "C" {
  5. #endif
  6. #ifndef Py_BUILD_CORE
  7. # error "this header requires Py_BUILD_CORE define"
  8. #endif
  9. #include <stdbool.h>
  10. #include "pycore_gc.h" // _PyObject_GC_IS_TRACKED()
  11. #include "pycore_interp.h" // PyInterpreterState.gc
  12. #include "pycore_pystate.h" // _PyInterpreterState_GET()
  13. #include "pycore_runtime.h" // _PyRuntime
  14. /* We need to maintain an internal copy of Py{Var}Object_HEAD_INIT to avoid
  15. designated initializer conflicts in C++20. If we use the deinition in
  16. object.h, we will be mixing designated and non-designated initializers in
  17. pycore objects which is forbiddent in C++20. However, if we then use
  18. designated initializers in object.h then Extensions without designated break.
  19. Furthermore, we can't use designated initializers in Extensions since these
  20. are not supported pre-C++20. Thus, keeping an internal copy here is the most
  21. backwards compatible solution */
  22. #define _PyObject_HEAD_INIT(type) \
  23. { \
  24. _PyObject_EXTRA_INIT \
  25. .ob_refcnt = _Py_IMMORTAL_REFCNT, \
  26. .ob_type = (type) \
  27. },
  28. #define _PyVarObject_HEAD_INIT(type, size) \
  29. { \
  30. .ob_base = _PyObject_HEAD_INIT(type) \
  31. .ob_size = size \
  32. },
  33. PyAPI_FUNC(void) _Py_NO_RETURN _Py_FatalRefcountErrorFunc(
  34. const char *func,
  35. const char *message);
  36. #define _Py_FatalRefcountError(message) \
  37. _Py_FatalRefcountErrorFunc(__func__, (message))
  38. #ifdef Py_REF_DEBUG
  39. /* The symbol is only exposed in the API for the sake of extensions
  40. built against the pre-3.12 stable ABI. */
  41. PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
  42. extern void _Py_AddRefTotal(PyInterpreterState *, Py_ssize_t);
  43. extern void _Py_IncRefTotal(PyInterpreterState *);
  44. extern void _Py_DecRefTotal(PyInterpreterState *);
  45. # define _Py_DEC_REFTOTAL(interp) \
  46. interp->object_state.reftotal--
  47. #endif
  48. // Increment reference count by n
  49. static inline void _Py_RefcntAdd(PyObject* op, Py_ssize_t n)
  50. {
  51. if (_Py_IsImmortal(op)) {
  52. return;
  53. }
  54. #ifdef Py_REF_DEBUG
  55. _Py_AddRefTotal(_PyInterpreterState_GET(), n);
  56. #endif
  57. op->ob_refcnt += n;
  58. // Although the ref count was increased by `n` (which may be greater than 1)
  59. // it is only a single increment (i.e. addition) operation, so only 1 refcnt
  60. // increment operation is counted.
  61. _Py_INCREF_STAT_INC();
  62. }
  63. #define _Py_RefcntAdd(op, n) _Py_RefcntAdd(_PyObject_CAST(op), n)
  64. static inline void _Py_SetImmortal(PyObject *op)
  65. {
  66. #ifdef Py_DEBUG
  67. // For strings, use _PyUnicode_InternImmortal instead.
  68. if (PyUnicode_CheckExact(op)) {
  69. assert(PyUnicode_CHECK_INTERNED(op) == SSTATE_INTERNED_IMMORTAL
  70. || PyUnicode_CHECK_INTERNED(op) == SSTATE_INTERNED_IMMORTAL_STATIC);
  71. }
  72. #endif
  73. if (op) {
  74. op->ob_refcnt = _Py_IMMORTAL_REFCNT;
  75. }
  76. }
  77. #define _Py_SetImmortal(op) _Py_SetImmortal(_PyObject_CAST(op))
  78. /* _Py_ClearImmortal() should only be used during runtime finalization. */
  79. static inline void _Py_ClearImmortal(PyObject *op)
  80. {
  81. if (op) {
  82. assert(_Py_IsImmortal(op));
  83. op->ob_refcnt = 1;
  84. Py_DECREF(op);
  85. }
  86. }
  87. #define _Py_ClearImmortal(op) \
  88. do { \
  89. _Py_ClearImmortal(_PyObject_CAST(op)); \
  90. op = NULL; \
  91. } while (0)
  92. static inline void
  93. _Py_DECREF_SPECIALIZED(PyObject *op, const destructor destruct)
  94. {
  95. if (_Py_IsImmortal(op)) {
  96. return;
  97. }
  98. _Py_DECREF_STAT_INC();
  99. #ifdef Py_REF_DEBUG
  100. _Py_DEC_REFTOTAL(_PyInterpreterState_GET());
  101. #endif
  102. if (--op->ob_refcnt != 0) {
  103. assert(op->ob_refcnt > 0);
  104. }
  105. else {
  106. #ifdef Py_TRACE_REFS
  107. _Py_ForgetReference(op);
  108. #endif
  109. destruct(op);
  110. }
  111. }
  112. static inline void
  113. _Py_DECREF_NO_DEALLOC(PyObject *op)
  114. {
  115. if (_Py_IsImmortal(op)) {
  116. return;
  117. }
  118. _Py_DECREF_STAT_INC();
  119. #ifdef Py_REF_DEBUG
  120. _Py_DEC_REFTOTAL(_PyInterpreterState_GET());
  121. #endif
  122. op->ob_refcnt--;
  123. #ifdef Py_DEBUG
  124. if (op->ob_refcnt <= 0) {
  125. _Py_FatalRefcountError("Expected a positive remaining refcount");
  126. }
  127. #endif
  128. }
  129. #ifdef Py_REF_DEBUG
  130. # undef _Py_DEC_REFTOTAL
  131. #endif
  132. PyAPI_FUNC(int) _PyType_CheckConsistency(PyTypeObject *type);
  133. PyAPI_FUNC(int) _PyDict_CheckConsistency(PyObject *mp, int check_content);
  134. /* Update the Python traceback of an object. This function must be called
  135. when a memory block is reused from a free list.
  136. Internal function called by _Py_NewReference(). */
  137. extern int _PyTraceMalloc_NewReference(PyObject *op);
  138. // Fast inlined version of PyType_HasFeature()
  139. static inline int
  140. _PyType_HasFeature(PyTypeObject *type, unsigned long feature) {
  141. return ((type->tp_flags & feature) != 0);
  142. }
  143. extern void _PyType_InitCache(PyInterpreterState *interp);
  144. extern void _PyObject_InitState(PyInterpreterState *interp);
  145. /* Inline functions trading binary compatibility for speed:
  146. _PyObject_Init() is the fast version of PyObject_Init(), and
  147. _PyObject_InitVar() is the fast version of PyObject_InitVar().
  148. These inline functions must not be called with op=NULL. */
  149. static inline void
  150. _PyObject_Init(PyObject *op, PyTypeObject *typeobj)
  151. {
  152. assert(op != NULL);
  153. Py_SET_TYPE(op, typeobj);
  154. if (_PyType_HasFeature(typeobj, Py_TPFLAGS_HEAPTYPE)) {
  155. Py_INCREF(typeobj);
  156. }
  157. _Py_NewReference(op);
  158. }
  159. static inline void
  160. _PyObject_InitVar(PyVarObject *op, PyTypeObject *typeobj, Py_ssize_t size)
  161. {
  162. assert(op != NULL);
  163. assert(typeobj != &PyLong_Type);
  164. _PyObject_Init((PyObject *)op, typeobj);
  165. Py_SET_SIZE(op, size);
  166. }
  167. /* Tell the GC to track this object.
  168. *
  169. * The object must not be tracked by the GC.
  170. *
  171. * NB: While the object is tracked by the collector, it must be safe to call the
  172. * ob_traverse method.
  173. *
  174. * Internal note: interp->gc.generation0->_gc_prev doesn't have any bit flags
  175. * because it's not object header. So we don't use _PyGCHead_PREV() and
  176. * _PyGCHead_SET_PREV() for it to avoid unnecessary bitwise operations.
  177. *
  178. * See also the public PyObject_GC_Track() function.
  179. */
  180. static inline void _PyObject_GC_TRACK(
  181. // The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined
  182. #ifndef NDEBUG
  183. const char *filename, int lineno,
  184. #endif
  185. PyObject *op)
  186. {
  187. _PyObject_ASSERT_FROM(op, !_PyObject_GC_IS_TRACKED(op),
  188. "object already tracked by the garbage collector",
  189. filename, lineno, __func__);
  190. PyGC_Head *gc = _Py_AS_GC(op);
  191. _PyObject_ASSERT_FROM(op,
  192. (gc->_gc_prev & _PyGC_PREV_MASK_COLLECTING) == 0,
  193. "object is in generation which is garbage collected",
  194. filename, lineno, __func__);
  195. PyInterpreterState *interp = _PyInterpreterState_GET();
  196. PyGC_Head *generation0 = interp->gc.generation0;
  197. PyGC_Head *last = (PyGC_Head*)(generation0->_gc_prev);
  198. _PyGCHead_SET_NEXT(last, gc);
  199. _PyGCHead_SET_PREV(gc, last);
  200. _PyGCHead_SET_NEXT(gc, generation0);
  201. generation0->_gc_prev = (uintptr_t)gc;
  202. }
  203. /* Tell the GC to stop tracking this object.
  204. *
  205. * Internal note: This may be called while GC. So _PyGC_PREV_MASK_COLLECTING
  206. * must be cleared. But _PyGC_PREV_MASK_FINALIZED bit is kept.
  207. *
  208. * The object must be tracked by the GC.
  209. *
  210. * See also the public PyObject_GC_UnTrack() which accept an object which is
  211. * not tracked.
  212. */
  213. static inline void _PyObject_GC_UNTRACK(
  214. // The preprocessor removes _PyObject_ASSERT_FROM() calls if NDEBUG is defined
  215. #ifndef NDEBUG
  216. const char *filename, int lineno,
  217. #endif
  218. PyObject *op)
  219. {
  220. _PyObject_ASSERT_FROM(op, _PyObject_GC_IS_TRACKED(op),
  221. "object not tracked by the garbage collector",
  222. filename, lineno, __func__);
  223. PyGC_Head *gc = _Py_AS_GC(op);
  224. PyGC_Head *prev = _PyGCHead_PREV(gc);
  225. PyGC_Head *next = _PyGCHead_NEXT(gc);
  226. _PyGCHead_SET_NEXT(prev, next);
  227. _PyGCHead_SET_PREV(next, prev);
  228. gc->_gc_next = 0;
  229. gc->_gc_prev &= _PyGC_PREV_MASK_FINALIZED;
  230. }
  231. // Macros to accept any type for the parameter, and to automatically pass
  232. // the filename and the filename (if NDEBUG is not defined) where the macro
  233. // is called.
  234. #ifdef NDEBUG
  235. # define _PyObject_GC_TRACK(op) \
  236. _PyObject_GC_TRACK(_PyObject_CAST(op))
  237. # define _PyObject_GC_UNTRACK(op) \
  238. _PyObject_GC_UNTRACK(_PyObject_CAST(op))
  239. #else
  240. # define _PyObject_GC_TRACK(op) \
  241. _PyObject_GC_TRACK(__FILE__, __LINE__, _PyObject_CAST(op))
  242. # define _PyObject_GC_UNTRACK(op) \
  243. _PyObject_GC_UNTRACK(__FILE__, __LINE__, _PyObject_CAST(op))
  244. #endif
  245. #ifdef Py_REF_DEBUG
  246. extern void _PyInterpreterState_FinalizeRefTotal(PyInterpreterState *);
  247. extern void _Py_FinalizeRefTotal(_PyRuntimeState *);
  248. extern void _PyDebug_PrintTotalRefs(void);
  249. #endif
  250. #ifdef Py_TRACE_REFS
  251. extern void _Py_AddToAllObjects(PyObject *op, int force);
  252. extern void _Py_PrintReferences(PyInterpreterState *, FILE *);
  253. extern void _Py_PrintReferenceAddresses(PyInterpreterState *, FILE *);
  254. #endif
  255. /* Return the *address* of the object's weaklist. The address may be
  256. * dereferenced to get the current head of the weaklist. This is useful
  257. * for iterating over the linked list of weakrefs, especially when the
  258. * list is being modified externally (e.g. refs getting removed).
  259. *
  260. * The returned pointer should not be used to change the head of the list
  261. * nor should it be used to add, remove, or swap any refs in the list.
  262. * That is the sole responsibility of the code in weakrefobject.c.
  263. */
  264. static inline PyObject **
  265. _PyObject_GET_WEAKREFS_LISTPTR(PyObject *op)
  266. {
  267. if (PyType_Check(op) &&
  268. ((PyTypeObject *)op)->tp_flags & _Py_TPFLAGS_STATIC_BUILTIN) {
  269. PyInterpreterState *interp = _PyInterpreterState_GET();
  270. static_builtin_state *state = _PyStaticType_GetState(
  271. interp, (PyTypeObject *)op);
  272. return _PyStaticType_GET_WEAKREFS_LISTPTR(state);
  273. }
  274. // Essentially _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET():
  275. Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset;
  276. return (PyObject **)((char *)op + offset);
  277. }
  278. /* This is a special case of _PyObject_GET_WEAKREFS_LISTPTR().
  279. * Only the most fundamental lookup path is used.
  280. * Consequently, static types should not be used.
  281. *
  282. * For static builtin types the returned pointer will always point
  283. * to a NULL tp_weaklist. This is fine for any deallocation cases,
  284. * since static types are never deallocated and static builtin types
  285. * are only finalized at the end of runtime finalization.
  286. *
  287. * If the weaklist for static types is actually needed then use
  288. * _PyObject_GET_WEAKREFS_LISTPTR().
  289. */
  290. static inline PyWeakReference **
  291. _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(PyObject *op)
  292. {
  293. assert(!PyType_Check(op) ||
  294. ((PyTypeObject *)op)->tp_flags & Py_TPFLAGS_HEAPTYPE);
  295. Py_ssize_t offset = Py_TYPE(op)->tp_weaklistoffset;
  296. return (PyWeakReference **)((char *)op + offset);
  297. }
  298. // Fast inlined version of PyObject_IS_GC()
  299. static inline int
  300. _PyObject_IS_GC(PyObject *obj)
  301. {
  302. return (PyType_IS_GC(Py_TYPE(obj))
  303. && (Py_TYPE(obj)->tp_is_gc == NULL
  304. || Py_TYPE(obj)->tp_is_gc(obj)));
  305. }
  306. // Fast inlined version of PyType_IS_GC()
  307. #define _PyType_IS_GC(t) _PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
  308. static inline size_t
  309. _PyType_PreHeaderSize(PyTypeObject *tp)
  310. {
  311. return _PyType_IS_GC(tp) * sizeof(PyGC_Head) +
  312. _PyType_HasFeature(tp, Py_TPFLAGS_PREHEADER) * 2 * sizeof(PyObject *);
  313. }
  314. void _PyObject_GC_Link(PyObject *op);
  315. // Usage: assert(_Py_CheckSlotResult(obj, "__getitem__", result != NULL));
  316. extern int _Py_CheckSlotResult(
  317. PyObject *obj,
  318. const char *slot_name,
  319. int success);
  320. // Test if a type supports weak references
  321. static inline int _PyType_SUPPORTS_WEAKREFS(PyTypeObject *type) {
  322. return (type->tp_weaklistoffset != 0);
  323. }
  324. extern PyObject* _PyType_AllocNoTrack(PyTypeObject *type, Py_ssize_t nitems);
  325. extern int _PyObject_InitializeDict(PyObject *obj);
  326. extern int _PyObject_StoreInstanceAttribute(PyObject *obj, PyDictValues *values,
  327. PyObject *name, PyObject *value);
  328. PyObject * _PyObject_GetInstanceAttribute(PyObject *obj, PyDictValues *values,
  329. PyObject *name);
  330. typedef union {
  331. PyObject *dict;
  332. /* Use a char* to generate a warning if directly assigning a PyDictValues */
  333. char *values;
  334. } PyDictOrValues;
  335. static inline PyDictOrValues *
  336. _PyObject_DictOrValuesPointer(PyObject *obj)
  337. {
  338. assert(Py_TYPE(obj)->tp_flags & Py_TPFLAGS_MANAGED_DICT);
  339. return ((PyDictOrValues *)obj)-3;
  340. }
  341. static inline int
  342. _PyDictOrValues_IsValues(PyDictOrValues dorv)
  343. {
  344. return ((uintptr_t)dorv.values) & 1;
  345. }
  346. static inline PyDictValues *
  347. _PyDictOrValues_GetValues(PyDictOrValues dorv)
  348. {
  349. assert(_PyDictOrValues_IsValues(dorv));
  350. return (PyDictValues *)(dorv.values + 1);
  351. }
  352. static inline PyObject *
  353. _PyDictOrValues_GetDict(PyDictOrValues dorv)
  354. {
  355. assert(!_PyDictOrValues_IsValues(dorv));
  356. return dorv.dict;
  357. }
  358. static inline void
  359. _PyDictOrValues_SetValues(PyDictOrValues *ptr, PyDictValues *values)
  360. {
  361. ptr->values = ((char *)values) - 1;
  362. }
  363. #define MANAGED_WEAKREF_OFFSET (((Py_ssize_t)sizeof(PyObject *))*-4)
  364. extern PyObject ** _PyObject_ComputedDictPointer(PyObject *);
  365. extern void _PyObject_FreeInstanceAttributes(PyObject *obj);
  366. extern int _PyObject_IsInstanceDictEmpty(PyObject *);
  367. PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, PyObject *);
  368. /* C function call trampolines to mitigate bad function pointer casts.
  369. *
  370. * Typical native ABIs ignore additional arguments or fill in missing
  371. * values with 0/NULL in function pointer cast. Compilers do not show
  372. * warnings when a function pointer is explicitly casted to an
  373. * incompatible type.
  374. *
  375. * Bad fpcasts are an issue in WebAssembly. WASM's indirect_call has strict
  376. * function signature checks. Argument count, types, and return type must
  377. * match.
  378. *
  379. * Third party code unintentionally rely on problematic fpcasts. The call
  380. * trampoline mitigates common occurrences of bad fpcasts on Emscripten.
  381. */
  382. #if defined(__EMSCRIPTEN__) && defined(PY_CALL_TRAMPOLINE)
  383. #define _PyCFunction_TrampolineCall(meth, self, args) \
  384. _PyCFunctionWithKeywords_TrampolineCall( \
  385. (*(PyCFunctionWithKeywords)(void(*)(void))(meth)), (self), (args), NULL)
  386. extern PyObject* _PyCFunctionWithKeywords_TrampolineCall(
  387. PyCFunctionWithKeywords meth, PyObject *, PyObject *, PyObject *);
  388. #else
  389. #define _PyCFunction_TrampolineCall(meth, self, args) \
  390. (meth)((self), (args))
  391. #define _PyCFunctionWithKeywords_TrampolineCall(meth, self, args, kw) \
  392. (meth)((self), (args), (kw))
  393. #endif // __EMSCRIPTEN__ && PY_CALL_TRAMPOLINE
  394. #ifdef __cplusplus
  395. }
  396. #endif
  397. #endif /* !Py_INTERNAL_OBJECT_H */