METADATA 2.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. Metadata-Version: 2.1
  2. Name: numpy
  3. Version: 1.16.6
  4. Summary: NumPy is the fundamental package for array computing with Python.
  5. Home-page: https://www.numpy.org
  6. Author: Travis E. Oliphant et al.
  7. Maintainer: NumPy Developers
  8. Maintainer-email: numpy-discussion@python.org
  9. License: BSD
  10. Download-URL: https://pypi.python.org/pypi/numpy
  11. Project-URL: Bug Tracker, https://github.com/numpy/numpy/issues
  12. Project-URL: Source Code, https://github.com/numpy/numpy
  13. Platform: Windows
  14. Platform: Linux
  15. Platform: Solaris
  16. Platform: Mac OS-X
  17. Platform: Unix
  18. Classifier: Development Status :: 5 - Production/Stable
  19. Classifier: Intended Audience :: Science/Research
  20. Classifier: Intended Audience :: Developers
  21. Classifier: License :: OSI Approved
  22. Classifier: Programming Language :: C
  23. Classifier: Programming Language :: Python
  24. Classifier: Programming Language :: Python :: 2
  25. Classifier: Programming Language :: Python :: 2.7
  26. Classifier: Programming Language :: Python :: 3
  27. Classifier: Programming Language :: Python :: 3.4
  28. Classifier: Programming Language :: Python :: 3.5
  29. Classifier: Programming Language :: Python :: 3.6
  30. Classifier: Programming Language :: Python :: 3.7
  31. Classifier: Programming Language :: Python :: Implementation :: CPython
  32. Classifier: Topic :: Software Development
  33. Classifier: Topic :: Scientific/Engineering
  34. Classifier: Operating System :: Microsoft :: Windows
  35. Classifier: Operating System :: POSIX
  36. Classifier: Operating System :: Unix
  37. Classifier: Operating System :: MacOS
  38. Requires-Python: >=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*
  39. It provides:
  40. - a powerful N-dimensional array object
  41. - sophisticated (broadcasting) functions
  42. - tools for integrating C/C++ and Fortran code
  43. - useful linear algebra, Fourier transform, and random number capabilities
  44. - and much more
  45. Besides its obvious scientific uses, NumPy can also be used as an efficient
  46. multi-dimensional container of generic data. Arbitrary data-types can be
  47. defined. This allows NumPy to seamlessly and speedily integrate with a wide
  48. variety of databases.
  49. All NumPy wheels distributed on PyPI are BSD licensed.