123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716 |
- /*
- * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <openssl/err.h>
- #include <openssl/symhacks.h>
- #include "ec_local.h"
- const EC_METHOD *EC_GFp_simple_method(void)
- {
- static const EC_METHOD ret = {
- EC_FLAGS_DEFAULT_OCT,
- NID_X9_62_prime_field,
- ec_GFp_simple_group_init,
- ec_GFp_simple_group_finish,
- ec_GFp_simple_group_clear_finish,
- ec_GFp_simple_group_copy,
- ec_GFp_simple_group_set_curve,
- ec_GFp_simple_group_get_curve,
- ec_GFp_simple_group_get_degree,
- ec_group_simple_order_bits,
- ec_GFp_simple_group_check_discriminant,
- ec_GFp_simple_point_init,
- ec_GFp_simple_point_finish,
- ec_GFp_simple_point_clear_finish,
- ec_GFp_simple_point_copy,
- ec_GFp_simple_point_set_to_infinity,
- ec_GFp_simple_set_Jprojective_coordinates_GFp,
- ec_GFp_simple_get_Jprojective_coordinates_GFp,
- ec_GFp_simple_point_set_affine_coordinates,
- ec_GFp_simple_point_get_affine_coordinates,
- 0, 0, 0,
- ec_GFp_simple_add,
- ec_GFp_simple_dbl,
- ec_GFp_simple_invert,
- ec_GFp_simple_is_at_infinity,
- ec_GFp_simple_is_on_curve,
- ec_GFp_simple_cmp,
- ec_GFp_simple_make_affine,
- ec_GFp_simple_points_make_affine,
- 0 /* mul */ ,
- 0 /* precompute_mult */ ,
- 0 /* have_precompute_mult */ ,
- ec_GFp_simple_field_mul,
- ec_GFp_simple_field_sqr,
- 0 /* field_div */ ,
- ec_GFp_simple_field_inv,
- 0 /* field_encode */ ,
- 0 /* field_decode */ ,
- 0, /* field_set_to_one */
- ec_key_simple_priv2oct,
- ec_key_simple_oct2priv,
- 0, /* set private */
- ec_key_simple_generate_key,
- ec_key_simple_check_key,
- ec_key_simple_generate_public_key,
- 0, /* keycopy */
- 0, /* keyfinish */
- ecdh_simple_compute_key,
- 0, /* field_inverse_mod_ord */
- ec_GFp_simple_blind_coordinates,
- ec_GFp_simple_ladder_pre,
- ec_GFp_simple_ladder_step,
- ec_GFp_simple_ladder_post
- };
- return &ret;
- }
- /*
- * Most method functions in this file are designed to work with
- * non-trivial representations of field elements if necessary
- * (see ecp_mont.c): while standard modular addition and subtraction
- * are used, the field_mul and field_sqr methods will be used for
- * multiplication, and field_encode and field_decode (if defined)
- * will be used for converting between representations.
- *
- * Functions ec_GFp_simple_points_make_affine() and
- * ec_GFp_simple_point_get_affine_coordinates() specifically assume
- * that if a non-trivial representation is used, it is a Montgomery
- * representation (i.e. 'encoding' means multiplying by some factor R).
- */
- int ec_GFp_simple_group_init(EC_GROUP *group)
- {
- group->field = BN_new();
- group->a = BN_new();
- group->b = BN_new();
- if (group->field == NULL || group->a == NULL || group->b == NULL) {
- BN_free(group->field);
- BN_free(group->a);
- BN_free(group->b);
- return 0;
- }
- group->a_is_minus3 = 0;
- return 1;
- }
- void ec_GFp_simple_group_finish(EC_GROUP *group)
- {
- BN_free(group->field);
- BN_free(group->a);
- BN_free(group->b);
- }
- void ec_GFp_simple_group_clear_finish(EC_GROUP *group)
- {
- BN_clear_free(group->field);
- BN_clear_free(group->a);
- BN_clear_free(group->b);
- }
- int ec_GFp_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src)
- {
- if (!BN_copy(dest->field, src->field))
- return 0;
- if (!BN_copy(dest->a, src->a))
- return 0;
- if (!BN_copy(dest->b, src->b))
- return 0;
- dest->a_is_minus3 = src->a_is_minus3;
- return 1;
- }
- int ec_GFp_simple_group_set_curve(EC_GROUP *group,
- const BIGNUM *p, const BIGNUM *a,
- const BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp_a;
- /* p must be a prime > 3 */
- if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) {
- ECerr(EC_F_EC_GFP_SIMPLE_GROUP_SET_CURVE, EC_R_INVALID_FIELD);
- return 0;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- tmp_a = BN_CTX_get(ctx);
- if (tmp_a == NULL)
- goto err;
- /* group->field */
- if (!BN_copy(group->field, p))
- goto err;
- BN_set_negative(group->field, 0);
- /* group->a */
- if (!BN_nnmod(tmp_a, a, p, ctx))
- goto err;
- if (group->meth->field_encode) {
- if (!group->meth->field_encode(group, group->a, tmp_a, ctx))
- goto err;
- } else if (!BN_copy(group->a, tmp_a))
- goto err;
- /* group->b */
- if (!BN_nnmod(group->b, b, p, ctx))
- goto err;
- if (group->meth->field_encode)
- if (!group->meth->field_encode(group, group->b, group->b, ctx))
- goto err;
- /* group->a_is_minus3 */
- if (!BN_add_word(tmp_a, 3))
- goto err;
- group->a_is_minus3 = (0 == BN_cmp(tmp_a, group->field));
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a,
- BIGNUM *b, BN_CTX *ctx)
- {
- int ret = 0;
- BN_CTX *new_ctx = NULL;
- if (p != NULL) {
- if (!BN_copy(p, group->field))
- return 0;
- }
- if (a != NULL || b != NULL) {
- if (group->meth->field_decode) {
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- if (a != NULL) {
- if (!group->meth->field_decode(group, a, group->a, ctx))
- goto err;
- }
- if (b != NULL) {
- if (!group->meth->field_decode(group, b, group->b, ctx))
- goto err;
- }
- } else {
- if (a != NULL) {
- if (!BN_copy(a, group->a))
- goto err;
- }
- if (b != NULL) {
- if (!BN_copy(b, group->b))
- goto err;
- }
- }
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_group_get_degree(const EC_GROUP *group)
- {
- return BN_num_bits(group->field);
- }
- int ec_GFp_simple_group_check_discriminant(const EC_GROUP *group, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *a, *b, *order, *tmp_1, *tmp_2;
- const BIGNUM *p = group->field;
- BN_CTX *new_ctx = NULL;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL) {
- ECerr(EC_F_EC_GFP_SIMPLE_GROUP_CHECK_DISCRIMINANT,
- ERR_R_MALLOC_FAILURE);
- goto err;
- }
- }
- BN_CTX_start(ctx);
- a = BN_CTX_get(ctx);
- b = BN_CTX_get(ctx);
- tmp_1 = BN_CTX_get(ctx);
- tmp_2 = BN_CTX_get(ctx);
- order = BN_CTX_get(ctx);
- if (order == NULL)
- goto err;
- if (group->meth->field_decode) {
- if (!group->meth->field_decode(group, a, group->a, ctx))
- goto err;
- if (!group->meth->field_decode(group, b, group->b, ctx))
- goto err;
- } else {
- if (!BN_copy(a, group->a))
- goto err;
- if (!BN_copy(b, group->b))
- goto err;
- }
- /*-
- * check the discriminant:
- * y^2 = x^3 + a*x + b is an elliptic curve <=> 4*a^3 + 27*b^2 != 0 (mod p)
- * 0 =< a, b < p
- */
- if (BN_is_zero(a)) {
- if (BN_is_zero(b))
- goto err;
- } else if (!BN_is_zero(b)) {
- if (!BN_mod_sqr(tmp_1, a, p, ctx))
- goto err;
- if (!BN_mod_mul(tmp_2, tmp_1, a, p, ctx))
- goto err;
- if (!BN_lshift(tmp_1, tmp_2, 2))
- goto err;
- /* tmp_1 = 4*a^3 */
- if (!BN_mod_sqr(tmp_2, b, p, ctx))
- goto err;
- if (!BN_mul_word(tmp_2, 27))
- goto err;
- /* tmp_2 = 27*b^2 */
- if (!BN_mod_add(a, tmp_1, tmp_2, p, ctx))
- goto err;
- if (BN_is_zero(a))
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_point_init(EC_POINT *point)
- {
- point->X = BN_new();
- point->Y = BN_new();
- point->Z = BN_new();
- point->Z_is_one = 0;
- if (point->X == NULL || point->Y == NULL || point->Z == NULL) {
- BN_free(point->X);
- BN_free(point->Y);
- BN_free(point->Z);
- return 0;
- }
- return 1;
- }
- void ec_GFp_simple_point_finish(EC_POINT *point)
- {
- BN_free(point->X);
- BN_free(point->Y);
- BN_free(point->Z);
- }
- void ec_GFp_simple_point_clear_finish(EC_POINT *point)
- {
- BN_clear_free(point->X);
- BN_clear_free(point->Y);
- BN_clear_free(point->Z);
- point->Z_is_one = 0;
- }
- int ec_GFp_simple_point_copy(EC_POINT *dest, const EC_POINT *src)
- {
- if (!BN_copy(dest->X, src->X))
- return 0;
- if (!BN_copy(dest->Y, src->Y))
- return 0;
- if (!BN_copy(dest->Z, src->Z))
- return 0;
- dest->Z_is_one = src->Z_is_one;
- dest->curve_name = src->curve_name;
- return 1;
- }
- int ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group,
- EC_POINT *point)
- {
- point->Z_is_one = 0;
- BN_zero(point->Z);
- return 1;
- }
- int ec_GFp_simple_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
- EC_POINT *point,
- const BIGNUM *x,
- const BIGNUM *y,
- const BIGNUM *z,
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- if (x != NULL) {
- if (!BN_nnmod(point->X, x, group->field, ctx))
- goto err;
- if (group->meth->field_encode) {
- if (!group->meth->field_encode(group, point->X, point->X, ctx))
- goto err;
- }
- }
- if (y != NULL) {
- if (!BN_nnmod(point->Y, y, group->field, ctx))
- goto err;
- if (group->meth->field_encode) {
- if (!group->meth->field_encode(group, point->Y, point->Y, ctx))
- goto err;
- }
- }
- if (z != NULL) {
- int Z_is_one;
- if (!BN_nnmod(point->Z, z, group->field, ctx))
- goto err;
- Z_is_one = BN_is_one(point->Z);
- if (group->meth->field_encode) {
- if (Z_is_one && (group->meth->field_set_to_one != 0)) {
- if (!group->meth->field_set_to_one(group, point->Z, ctx))
- goto err;
- } else {
- if (!group->
- meth->field_encode(group, point->Z, point->Z, ctx))
- goto err;
- }
- }
- point->Z_is_one = Z_is_one;
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BIGNUM *z, BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (group->meth->field_decode != 0) {
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- if (x != NULL) {
- if (!group->meth->field_decode(group, x, point->X, ctx))
- goto err;
- }
- if (y != NULL) {
- if (!group->meth->field_decode(group, y, point->Y, ctx))
- goto err;
- }
- if (z != NULL) {
- if (!group->meth->field_decode(group, z, point->Z, ctx))
- goto err;
- }
- } else {
- if (x != NULL) {
- if (!BN_copy(x, point->X))
- goto err;
- }
- if (y != NULL) {
- if (!BN_copy(y, point->Y))
- goto err;
- }
- if (z != NULL) {
- if (!BN_copy(z, point->Z))
- goto err;
- }
- }
- ret = 1;
- err:
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group,
- EC_POINT *point,
- const BIGNUM *x,
- const BIGNUM *y, BN_CTX *ctx)
- {
- if (x == NULL || y == NULL) {
- /*
- * unlike for projective coordinates, we do not tolerate this
- */
- ECerr(EC_F_EC_GFP_SIMPLE_POINT_SET_AFFINE_COORDINATES,
- ERR_R_PASSED_NULL_PARAMETER);
- return 0;
- }
- return EC_POINT_set_Jprojective_coordinates_GFp(group, point, x, y,
- BN_value_one(), ctx);
- }
- int ec_GFp_simple_point_get_affine_coordinates(const EC_GROUP *group,
- const EC_POINT *point,
- BIGNUM *x, BIGNUM *y,
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *Z, *Z_1, *Z_2, *Z_3;
- const BIGNUM *Z_;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, point)) {
- ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
- EC_R_POINT_AT_INFINITY);
- return 0;
- }
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- Z = BN_CTX_get(ctx);
- Z_1 = BN_CTX_get(ctx);
- Z_2 = BN_CTX_get(ctx);
- Z_3 = BN_CTX_get(ctx);
- if (Z_3 == NULL)
- goto err;
- /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
- if (group->meth->field_decode) {
- if (!group->meth->field_decode(group, Z, point->Z, ctx))
- goto err;
- Z_ = Z;
- } else {
- Z_ = point->Z;
- }
- if (BN_is_one(Z_)) {
- if (group->meth->field_decode) {
- if (x != NULL) {
- if (!group->meth->field_decode(group, x, point->X, ctx))
- goto err;
- }
- if (y != NULL) {
- if (!group->meth->field_decode(group, y, point->Y, ctx))
- goto err;
- }
- } else {
- if (x != NULL) {
- if (!BN_copy(x, point->X))
- goto err;
- }
- if (y != NULL) {
- if (!BN_copy(y, point->Y))
- goto err;
- }
- }
- } else {
- if (!group->meth->field_inv(group, Z_1, Z_, ctx)) {
- ECerr(EC_F_EC_GFP_SIMPLE_POINT_GET_AFFINE_COORDINATES,
- ERR_R_BN_LIB);
- goto err;
- }
- if (group->meth->field_encode == 0) {
- /* field_sqr works on standard representation */
- if (!group->meth->field_sqr(group, Z_2, Z_1, ctx))
- goto err;
- } else {
- if (!BN_mod_sqr(Z_2, Z_1, group->field, ctx))
- goto err;
- }
- if (x != NULL) {
- /*
- * in the Montgomery case, field_mul will cancel out Montgomery
- * factor in X:
- */
- if (!group->meth->field_mul(group, x, point->X, Z_2, ctx))
- goto err;
- }
- if (y != NULL) {
- if (group->meth->field_encode == 0) {
- /*
- * field_mul works on standard representation
- */
- if (!group->meth->field_mul(group, Z_3, Z_2, Z_1, ctx))
- goto err;
- } else {
- if (!BN_mod_mul(Z_3, Z_2, Z_1, group->field, ctx))
- goto err;
- }
- /*
- * in the Montgomery case, field_mul will cancel out Montgomery
- * factor in Y:
- */
- if (!group->meth->field_mul(group, y, point->Y, Z_3, ctx))
- goto err;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx)
- {
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
- int ret = 0;
- if (a == b)
- return EC_POINT_dbl(group, r, a, ctx);
- if (EC_POINT_is_at_infinity(group, a))
- return EC_POINT_copy(r, b);
- if (EC_POINT_is_at_infinity(group, b))
- return EC_POINT_copy(r, a);
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- n0 = BN_CTX_get(ctx);
- n1 = BN_CTX_get(ctx);
- n2 = BN_CTX_get(ctx);
- n3 = BN_CTX_get(ctx);
- n4 = BN_CTX_get(ctx);
- n5 = BN_CTX_get(ctx);
- n6 = BN_CTX_get(ctx);
- if (n6 == NULL)
- goto end;
- /*
- * Note that in this function we must not read components of 'a' or 'b'
- * once we have written the corresponding components of 'r'. ('r' might
- * be one of 'a' or 'b'.)
- */
- /* n1, n2 */
- if (b->Z_is_one) {
- if (!BN_copy(n1, a->X))
- goto end;
- if (!BN_copy(n2, a->Y))
- goto end;
- /* n1 = X_a */
- /* n2 = Y_a */
- } else {
- if (!field_sqr(group, n0, b->Z, ctx))
- goto end;
- if (!field_mul(group, n1, a->X, n0, ctx))
- goto end;
- /* n1 = X_a * Z_b^2 */
- if (!field_mul(group, n0, n0, b->Z, ctx))
- goto end;
- if (!field_mul(group, n2, a->Y, n0, ctx))
- goto end;
- /* n2 = Y_a * Z_b^3 */
- }
- /* n3, n4 */
- if (a->Z_is_one) {
- if (!BN_copy(n3, b->X))
- goto end;
- if (!BN_copy(n4, b->Y))
- goto end;
- /* n3 = X_b */
- /* n4 = Y_b */
- } else {
- if (!field_sqr(group, n0, a->Z, ctx))
- goto end;
- if (!field_mul(group, n3, b->X, n0, ctx))
- goto end;
- /* n3 = X_b * Z_a^2 */
- if (!field_mul(group, n0, n0, a->Z, ctx))
- goto end;
- if (!field_mul(group, n4, b->Y, n0, ctx))
- goto end;
- /* n4 = Y_b * Z_a^3 */
- }
- /* n5, n6 */
- if (!BN_mod_sub_quick(n5, n1, n3, p))
- goto end;
- if (!BN_mod_sub_quick(n6, n2, n4, p))
- goto end;
- /* n5 = n1 - n3 */
- /* n6 = n2 - n4 */
- if (BN_is_zero(n5)) {
- if (BN_is_zero(n6)) {
- /* a is the same point as b */
- BN_CTX_end(ctx);
- ret = EC_POINT_dbl(group, r, a, ctx);
- ctx = NULL;
- goto end;
- } else {
- /* a is the inverse of b */
- BN_zero(r->Z);
- r->Z_is_one = 0;
- ret = 1;
- goto end;
- }
- }
- /* 'n7', 'n8' */
- if (!BN_mod_add_quick(n1, n1, n3, p))
- goto end;
- if (!BN_mod_add_quick(n2, n2, n4, p))
- goto end;
- /* 'n7' = n1 + n3 */
- /* 'n8' = n2 + n4 */
- /* Z_r */
- if (a->Z_is_one && b->Z_is_one) {
- if (!BN_copy(r->Z, n5))
- goto end;
- } else {
- if (a->Z_is_one) {
- if (!BN_copy(n0, b->Z))
- goto end;
- } else if (b->Z_is_one) {
- if (!BN_copy(n0, a->Z))
- goto end;
- } else {
- if (!field_mul(group, n0, a->Z, b->Z, ctx))
- goto end;
- }
- if (!field_mul(group, r->Z, n0, n5, ctx))
- goto end;
- }
- r->Z_is_one = 0;
- /* Z_r = Z_a * Z_b * n5 */
- /* X_r */
- if (!field_sqr(group, n0, n6, ctx))
- goto end;
- if (!field_sqr(group, n4, n5, ctx))
- goto end;
- if (!field_mul(group, n3, n1, n4, ctx))
- goto end;
- if (!BN_mod_sub_quick(r->X, n0, n3, p))
- goto end;
- /* X_r = n6^2 - n5^2 * 'n7' */
- /* 'n9' */
- if (!BN_mod_lshift1_quick(n0, r->X, p))
- goto end;
- if (!BN_mod_sub_quick(n0, n3, n0, p))
- goto end;
- /* n9 = n5^2 * 'n7' - 2 * X_r */
- /* Y_r */
- if (!field_mul(group, n0, n0, n6, ctx))
- goto end;
- if (!field_mul(group, n5, n4, n5, ctx))
- goto end; /* now n5 is n5^3 */
- if (!field_mul(group, n1, n2, n5, ctx))
- goto end;
- if (!BN_mod_sub_quick(n0, n0, n1, p))
- goto end;
- if (BN_is_odd(n0))
- if (!BN_add(n0, n0, p))
- goto end;
- /* now 0 <= n0 < 2*p, and n0 is even */
- if (!BN_rshift1(r->Y, n0))
- goto end;
- /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */
- ret = 1;
- end:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
- BN_CTX *ctx)
- {
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *n0, *n1, *n2, *n3;
- int ret = 0;
- if (EC_POINT_is_at_infinity(group, a)) {
- BN_zero(r->Z);
- r->Z_is_one = 0;
- return 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- n0 = BN_CTX_get(ctx);
- n1 = BN_CTX_get(ctx);
- n2 = BN_CTX_get(ctx);
- n3 = BN_CTX_get(ctx);
- if (n3 == NULL)
- goto err;
- /*
- * Note that in this function we must not read components of 'a' once we
- * have written the corresponding components of 'r'. ('r' might the same
- * as 'a'.)
- */
- /* n1 */
- if (a->Z_is_one) {
- if (!field_sqr(group, n0, a->X, ctx))
- goto err;
- if (!BN_mod_lshift1_quick(n1, n0, p))
- goto err;
- if (!BN_mod_add_quick(n0, n0, n1, p))
- goto err;
- if (!BN_mod_add_quick(n1, n0, group->a, p))
- goto err;
- /* n1 = 3 * X_a^2 + a_curve */
- } else if (group->a_is_minus3) {
- if (!field_sqr(group, n1, a->Z, ctx))
- goto err;
- if (!BN_mod_add_quick(n0, a->X, n1, p))
- goto err;
- if (!BN_mod_sub_quick(n2, a->X, n1, p))
- goto err;
- if (!field_mul(group, n1, n0, n2, ctx))
- goto err;
- if (!BN_mod_lshift1_quick(n0, n1, p))
- goto err;
- if (!BN_mod_add_quick(n1, n0, n1, p))
- goto err;
- /*-
- * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
- * = 3 * X_a^2 - 3 * Z_a^4
- */
- } else {
- if (!field_sqr(group, n0, a->X, ctx))
- goto err;
- if (!BN_mod_lshift1_quick(n1, n0, p))
- goto err;
- if (!BN_mod_add_quick(n0, n0, n1, p))
- goto err;
- if (!field_sqr(group, n1, a->Z, ctx))
- goto err;
- if (!field_sqr(group, n1, n1, ctx))
- goto err;
- if (!field_mul(group, n1, n1, group->a, ctx))
- goto err;
- if (!BN_mod_add_quick(n1, n1, n0, p))
- goto err;
- /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
- }
- /* Z_r */
- if (a->Z_is_one) {
- if (!BN_copy(n0, a->Y))
- goto err;
- } else {
- if (!field_mul(group, n0, a->Y, a->Z, ctx))
- goto err;
- }
- if (!BN_mod_lshift1_quick(r->Z, n0, p))
- goto err;
- r->Z_is_one = 0;
- /* Z_r = 2 * Y_a * Z_a */
- /* n2 */
- if (!field_sqr(group, n3, a->Y, ctx))
- goto err;
- if (!field_mul(group, n2, a->X, n3, ctx))
- goto err;
- if (!BN_mod_lshift_quick(n2, n2, 2, p))
- goto err;
- /* n2 = 4 * X_a * Y_a^2 */
- /* X_r */
- if (!BN_mod_lshift1_quick(n0, n2, p))
- goto err;
- if (!field_sqr(group, r->X, n1, ctx))
- goto err;
- if (!BN_mod_sub_quick(r->X, r->X, n0, p))
- goto err;
- /* X_r = n1^2 - 2 * n2 */
- /* n3 */
- if (!field_sqr(group, n0, n3, ctx))
- goto err;
- if (!BN_mod_lshift_quick(n3, n0, 3, p))
- goto err;
- /* n3 = 8 * Y_a^4 */
- /* Y_r */
- if (!BN_mod_sub_quick(n0, n2, r->X, p))
- goto err;
- if (!field_mul(group, n0, n1, n0, ctx))
- goto err;
- if (!BN_mod_sub_quick(r->Y, n0, n3, p))
- goto err;
- /* Y_r = n1 * (n2 - X_r) - n3 */
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx)
- {
- if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y))
- /* point is its own inverse */
- return 1;
- return BN_usub(point->Y, group->field, point->Y);
- }
- int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, const EC_POINT *point)
- {
- return BN_is_zero(point->Z);
- }
- int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
- BN_CTX *ctx)
- {
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- const BIGNUM *p;
- BN_CTX *new_ctx = NULL;
- BIGNUM *rh, *tmp, *Z4, *Z6;
- int ret = -1;
- if (EC_POINT_is_at_infinity(group, point))
- return 1;
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- p = group->field;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
- BN_CTX_start(ctx);
- rh = BN_CTX_get(ctx);
- tmp = BN_CTX_get(ctx);
- Z4 = BN_CTX_get(ctx);
- Z6 = BN_CTX_get(ctx);
- if (Z6 == NULL)
- goto err;
- /*-
- * We have a curve defined by a Weierstrass equation
- * y^2 = x^3 + a*x + b.
- * The point to consider is given in Jacobian projective coordinates
- * where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3).
- * Substituting this and multiplying by Z^6 transforms the above equation into
- * Y^2 = X^3 + a*X*Z^4 + b*Z^6.
- * To test this, we add up the right-hand side in 'rh'.
- */
- /* rh := X^2 */
- if (!field_sqr(group, rh, point->X, ctx))
- goto err;
- if (!point->Z_is_one) {
- if (!field_sqr(group, tmp, point->Z, ctx))
- goto err;
- if (!field_sqr(group, Z4, tmp, ctx))
- goto err;
- if (!field_mul(group, Z6, Z4, tmp, ctx))
- goto err;
- /* rh := (rh + a*Z^4)*X */
- if (group->a_is_minus3) {
- if (!BN_mod_lshift1_quick(tmp, Z4, p))
- goto err;
- if (!BN_mod_add_quick(tmp, tmp, Z4, p))
- goto err;
- if (!BN_mod_sub_quick(rh, rh, tmp, p))
- goto err;
- if (!field_mul(group, rh, rh, point->X, ctx))
- goto err;
- } else {
- if (!field_mul(group, tmp, Z4, group->a, ctx))
- goto err;
- if (!BN_mod_add_quick(rh, rh, tmp, p))
- goto err;
- if (!field_mul(group, rh, rh, point->X, ctx))
- goto err;
- }
- /* rh := rh + b*Z^6 */
- if (!field_mul(group, tmp, group->b, Z6, ctx))
- goto err;
- if (!BN_mod_add_quick(rh, rh, tmp, p))
- goto err;
- } else {
- /* point->Z_is_one */
- /* rh := (rh + a)*X */
- if (!BN_mod_add_quick(rh, rh, group->a, p))
- goto err;
- if (!field_mul(group, rh, rh, point->X, ctx))
- goto err;
- /* rh := rh + b */
- if (!BN_mod_add_quick(rh, rh, group->b, p))
- goto err;
- }
- /* 'lh' := Y^2 */
- if (!field_sqr(group, tmp, point->Y, ctx))
- goto err;
- ret = (0 == BN_ucmp(tmp, rh));
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_POINT *a,
- const EC_POINT *b, BN_CTX *ctx)
- {
- /*-
- * return values:
- * -1 error
- * 0 equal (in affine coordinates)
- * 1 not equal
- */
- int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
- const BIGNUM *, BN_CTX *);
- int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp1, *tmp2, *Za23, *Zb23;
- const BIGNUM *tmp1_, *tmp2_;
- int ret = -1;
- if (EC_POINT_is_at_infinity(group, a)) {
- return EC_POINT_is_at_infinity(group, b) ? 0 : 1;
- }
- if (EC_POINT_is_at_infinity(group, b))
- return 1;
- if (a->Z_is_one && b->Z_is_one) {
- return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1;
- }
- field_mul = group->meth->field_mul;
- field_sqr = group->meth->field_sqr;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return -1;
- }
- BN_CTX_start(ctx);
- tmp1 = BN_CTX_get(ctx);
- tmp2 = BN_CTX_get(ctx);
- Za23 = BN_CTX_get(ctx);
- Zb23 = BN_CTX_get(ctx);
- if (Zb23 == NULL)
- goto end;
- /*-
- * We have to decide whether
- * (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3),
- * or equivalently, whether
- * (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3).
- */
- if (!b->Z_is_one) {
- if (!field_sqr(group, Zb23, b->Z, ctx))
- goto end;
- if (!field_mul(group, tmp1, a->X, Zb23, ctx))
- goto end;
- tmp1_ = tmp1;
- } else
- tmp1_ = a->X;
- if (!a->Z_is_one) {
- if (!field_sqr(group, Za23, a->Z, ctx))
- goto end;
- if (!field_mul(group, tmp2, b->X, Za23, ctx))
- goto end;
- tmp2_ = tmp2;
- } else
- tmp2_ = b->X;
- /* compare X_a*Z_b^2 with X_b*Z_a^2 */
- if (BN_cmp(tmp1_, tmp2_) != 0) {
- ret = 1; /* points differ */
- goto end;
- }
- if (!b->Z_is_one) {
- if (!field_mul(group, Zb23, Zb23, b->Z, ctx))
- goto end;
- if (!field_mul(group, tmp1, a->Y, Zb23, ctx))
- goto end;
- /* tmp1_ = tmp1 */
- } else
- tmp1_ = a->Y;
- if (!a->Z_is_one) {
- if (!field_mul(group, Za23, Za23, a->Z, ctx))
- goto end;
- if (!field_mul(group, tmp2, b->Y, Za23, ctx))
- goto end;
- /* tmp2_ = tmp2 */
- } else
- tmp2_ = b->Y;
- /* compare Y_a*Z_b^3 with Y_b*Z_a^3 */
- if (BN_cmp(tmp1_, tmp2_) != 0) {
- ret = 1; /* points differ */
- goto end;
- }
- /* points are equal */
- ret = 0;
- end:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point,
- BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *x, *y;
- int ret = 0;
- if (point->Z_is_one || EC_POINT_is_at_infinity(group, point))
- return 1;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- x = BN_CTX_get(ctx);
- y = BN_CTX_get(ctx);
- if (y == NULL)
- goto err;
- if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx))
- goto err;
- if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx))
- goto err;
- if (!point->Z_is_one) {
- ECerr(EC_F_EC_GFP_SIMPLE_MAKE_AFFINE, ERR_R_INTERNAL_ERROR);
- goto err;
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
- EC_POINT *points[], BN_CTX *ctx)
- {
- BN_CTX *new_ctx = NULL;
- BIGNUM *tmp, *tmp_Z;
- BIGNUM **prod_Z = NULL;
- size_t i;
- int ret = 0;
- if (num == 0)
- return 1;
- if (ctx == NULL) {
- ctx = new_ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- }
- BN_CTX_start(ctx);
- tmp = BN_CTX_get(ctx);
- tmp_Z = BN_CTX_get(ctx);
- if (tmp_Z == NULL)
- goto err;
- prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
- if (prod_Z == NULL)
- goto err;
- for (i = 0; i < num; i++) {
- prod_Z[i] = BN_new();
- if (prod_Z[i] == NULL)
- goto err;
- }
- /*
- * Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
- * skipping any zero-valued inputs (pretend that they're 1).
- */
- if (!BN_is_zero(points[0]->Z)) {
- if (!BN_copy(prod_Z[0], points[0]->Z))
- goto err;
- } else {
- if (group->meth->field_set_to_one != 0) {
- if (!group->meth->field_set_to_one(group, prod_Z[0], ctx))
- goto err;
- } else {
- if (!BN_one(prod_Z[0]))
- goto err;
- }
- }
- for (i = 1; i < num; i++) {
- if (!BN_is_zero(points[i]->Z)) {
- if (!group->
- meth->field_mul(group, prod_Z[i], prod_Z[i - 1], points[i]->Z,
- ctx))
- goto err;
- } else {
- if (!BN_copy(prod_Z[i], prod_Z[i - 1]))
- goto err;
- }
- }
- /*
- * Now use a single explicit inversion to replace every non-zero
- * points[i]->Z by its inverse.
- */
- if (!group->meth->field_inv(group, tmp, prod_Z[num - 1], ctx)) {
- ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
- goto err;
- }
- if (group->meth->field_encode != 0) {
- /*
- * In the Montgomery case, we just turned R*H (representing H) into
- * 1/(R*H), but we need R*(1/H) (representing 1/H); i.e. we need to
- * multiply by the Montgomery factor twice.
- */
- if (!group->meth->field_encode(group, tmp, tmp, ctx))
- goto err;
- if (!group->meth->field_encode(group, tmp, tmp, ctx))
- goto err;
- }
- for (i = num - 1; i > 0; --i) {
- /*
- * Loop invariant: tmp is the product of the inverses of points[0]->Z
- * .. points[i]->Z (zero-valued inputs skipped).
- */
- if (!BN_is_zero(points[i]->Z)) {
- /*
- * Set tmp_Z to the inverse of points[i]->Z (as product of Z
- * inverses 0 .. i, Z values 0 .. i - 1).
- */
- if (!group->
- meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx))
- goto err;
- /*
- * Update tmp to satisfy the loop invariant for i - 1.
- */
- if (!group->meth->field_mul(group, tmp, tmp, points[i]->Z, ctx))
- goto err;
- /* Replace points[i]->Z by its inverse. */
- if (!BN_copy(points[i]->Z, tmp_Z))
- goto err;
- }
- }
- if (!BN_is_zero(points[0]->Z)) {
- /* Replace points[0]->Z by its inverse. */
- if (!BN_copy(points[0]->Z, tmp))
- goto err;
- }
- /* Finally, fix up the X and Y coordinates for all points. */
- for (i = 0; i < num; i++) {
- EC_POINT *p = points[i];
- if (!BN_is_zero(p->Z)) {
- /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
- if (!group->meth->field_sqr(group, tmp, p->Z, ctx))
- goto err;
- if (!group->meth->field_mul(group, p->X, p->X, tmp, ctx))
- goto err;
- if (!group->meth->field_mul(group, tmp, tmp, p->Z, ctx))
- goto err;
- if (!group->meth->field_mul(group, p->Y, p->Y, tmp, ctx))
- goto err;
- if (group->meth->field_set_to_one != 0) {
- if (!group->meth->field_set_to_one(group, p->Z, ctx))
- goto err;
- } else {
- if (!BN_one(p->Z))
- goto err;
- }
- p->Z_is_one = 1;
- }
- }
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- if (prod_Z != NULL) {
- for (i = 0; i < num; i++) {
- if (prod_Z[i] == NULL)
- break;
- BN_clear_free(prod_Z[i]);
- }
- OPENSSL_free(prod_Z);
- }
- return ret;
- }
- int ec_GFp_simple_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- const BIGNUM *b, BN_CTX *ctx)
- {
- return BN_mod_mul(r, a, b, group->field, ctx);
- }
- int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- BN_CTX *ctx)
- {
- return BN_mod_sqr(r, a, group->field, ctx);
- }
- /*-
- * Computes the multiplicative inverse of a in GF(p), storing the result in r.
- * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
- * Since we don't have a Mont structure here, SCA hardening is with blinding.
- * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
- */
- int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
- BN_CTX *ctx)
- {
- BIGNUM *e = NULL;
- BN_CTX *new_ctx = NULL;
- int ret = 0;
- if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
- return 0;
- BN_CTX_start(ctx);
- if ((e = BN_CTX_get(ctx)) == NULL)
- goto err;
- do {
- if (!BN_priv_rand_range(e, group->field))
- goto err;
- } while (BN_is_zero(e));
- /* r := a * e */
- if (!group->meth->field_mul(group, r, a, e, ctx))
- goto err;
- /* r := 1/(a * e) */
- if (!BN_mod_inverse(r, r, group->field, ctx)) {
- ECerr(EC_F_EC_GFP_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT);
- goto err;
- }
- /* r := e/(a * e) = 1/a */
- if (!group->meth->field_mul(group, r, r, e, ctx))
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- BN_CTX_free(new_ctx);
- return ret;
- }
- /*-
- * Apply randomization of EC point projective coordinates:
- *
- * (X, Y ,Z ) = (lambda^2*X, lambda^3*Y, lambda*Z)
- * lambda = [1,group->field)
- *
- */
- int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
- BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *lambda = NULL;
- BIGNUM *temp = NULL;
- BN_CTX_start(ctx);
- lambda = BN_CTX_get(ctx);
- temp = BN_CTX_get(ctx);
- if (temp == NULL) {
- ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE);
- goto end;
- }
- /*-
- * Make sure lambda is not zero.
- * If the RNG fails, we cannot blind but nevertheless want
- * code to continue smoothly and not clobber the error stack.
- */
- do {
- ERR_set_mark();
- ret = BN_priv_rand_range(lambda, group->field);
- ERR_pop_to_mark();
- if (ret == 0) {
- ret = 1;
- goto end;
- }
- } while (BN_is_zero(lambda));
- /* if field_encode defined convert between representations */
- if ((group->meth->field_encode != NULL
- && !group->meth->field_encode(group, lambda, lambda, ctx))
- || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
- || !group->meth->field_sqr(group, temp, lambda, ctx)
- || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
- || !group->meth->field_mul(group, temp, temp, lambda, ctx)
- || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
- goto end;
- p->Z_is_one = 0;
- ret = 1;
- end:
- BN_CTX_end(ctx);
- return ret;
- }
- /*-
- * Input:
- * - p: affine coordinates
- *
- * Output:
- * - s := p, r := 2p: blinded projective (homogeneous) coordinates
- *
- * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
- * multiplication resistant against side channel attacks" appendix, described at
- * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
- * simplified for Z1=1.
- *
- * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
- * for any non-zero \lambda that holds for projective (homogeneous) coords.
- */
- int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
- EC_POINT *r, EC_POINT *s,
- EC_POINT *p, BN_CTX *ctx)
- {
- BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
- t1 = s->Z;
- t2 = r->Z;
- t3 = s->X;
- t4 = r->X;
- t5 = s->Y;
- if (!p->Z_is_one /* r := 2p */
- || !group->meth->field_sqr(group, t3, p->X, ctx)
- || !BN_mod_sub_quick(t4, t3, group->a, group->field)
- || !group->meth->field_sqr(group, t4, t4, ctx)
- || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
- || !BN_mod_lshift_quick(t5, t5, 3, group->field)
- /* r->X coord output */
- || !BN_mod_sub_quick(r->X, t4, t5, group->field)
- || !BN_mod_add_quick(t1, t3, group->a, group->field)
- || !group->meth->field_mul(group, t2, p->X, t1, ctx)
- || !BN_mod_add_quick(t2, group->b, t2, group->field)
- /* r->Z coord output */
- || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
- return 0;
- /* make sure lambda (r->Y here for storage) is not zero */
- do {
- if (!BN_priv_rand_range(r->Y, group->field))
- return 0;
- } while (BN_is_zero(r->Y));
- /* make sure lambda (s->Z here for storage) is not zero */
- do {
- if (!BN_priv_rand_range(s->Z, group->field))
- return 0;
- } while (BN_is_zero(s->Z));
- /* if field_encode defined convert between representations */
- if (group->meth->field_encode != NULL
- && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
- || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
- return 0;
- /* blind r and s independently */
- if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
- || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
- || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
- return 0;
- r->Z_is_one = 0;
- s->Z_is_one = 0;
- return 1;
- }
- /*-
- * Input:
- * - s, r: projective (homogeneous) coordinates
- * - p: affine coordinates
- *
- * Output:
- * - s := r + s, r := 2r: projective (homogeneous) coordinates
- *
- * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
- * "A fast parallel elliptic curve multiplication resistant against side channel
- * attacks", as described at
- * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
- */
- int ec_GFp_simple_ladder_step(const EC_GROUP *group,
- EC_POINT *r, EC_POINT *s,
- EC_POINT *p, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
- BN_CTX_start(ctx);
- t0 = BN_CTX_get(ctx);
- t1 = BN_CTX_get(ctx);
- t2 = BN_CTX_get(ctx);
- t3 = BN_CTX_get(ctx);
- t4 = BN_CTX_get(ctx);
- t5 = BN_CTX_get(ctx);
- t6 = BN_CTX_get(ctx);
- if (t6 == NULL
- || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
- || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
- || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
- || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
- || !group->meth->field_mul(group, t5, group->a, t0, ctx)
- || !BN_mod_add_quick(t5, t6, t5, group->field)
- || !BN_mod_add_quick(t6, t3, t4, group->field)
- || !group->meth->field_mul(group, t5, t6, t5, ctx)
- || !group->meth->field_sqr(group, t0, t0, ctx)
- || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
- || !group->meth->field_mul(group, t0, t2, t0, ctx)
- || !BN_mod_lshift1_quick(t5, t5, group->field)
- || !BN_mod_sub_quick(t3, t4, t3, group->field)
- /* s->Z coord output */
- || !group->meth->field_sqr(group, s->Z, t3, ctx)
- || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
- || !BN_mod_add_quick(t0, t0, t5, group->field)
- /* s->X coord output */
- || !BN_mod_sub_quick(s->X, t0, t4, group->field)
- || !group->meth->field_sqr(group, t4, r->X, ctx)
- || !group->meth->field_sqr(group, t5, r->Z, ctx)
- || !group->meth->field_mul(group, t6, t5, group->a, ctx)
- || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
- || !group->meth->field_sqr(group, t1, t1, ctx)
- || !BN_mod_sub_quick(t1, t1, t4, group->field)
- || !BN_mod_sub_quick(t1, t1, t5, group->field)
- || !BN_mod_sub_quick(t3, t4, t6, group->field)
- || !group->meth->field_sqr(group, t3, t3, ctx)
- || !group->meth->field_mul(group, t0, t5, t1, ctx)
- || !group->meth->field_mul(group, t0, t2, t0, ctx)
- /* r->X coord output */
- || !BN_mod_sub_quick(r->X, t3, t0, group->field)
- || !BN_mod_add_quick(t3, t4, t6, group->field)
- || !group->meth->field_sqr(group, t4, t5, ctx)
- || !group->meth->field_mul(group, t4, t4, t2, ctx)
- || !group->meth->field_mul(group, t1, t1, t3, ctx)
- || !BN_mod_lshift1_quick(t1, t1, group->field)
- /* r->Z coord output */
- || !BN_mod_add_quick(r->Z, t4, t1, group->field))
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*-
- * Input:
- * - s, r: projective (homogeneous) coordinates
- * - p: affine coordinates
- *
- * Output:
- * - r := (x,y): affine coordinates
- *
- * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
- * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
- * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
- * coords, and return r in affine coordinates.
- *
- * X4 = two*Y1*X2*Z3*Z2;
- * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
- * Z4 = two*Y1*Z3*SQR(Z2);
- *
- * Z4 != 0 because:
- * - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
- * - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
- * - Y1==0 implies p has order 2, so either r or s are infinity and handled by
- * one of the BN_is_zero(...) branches.
- */
- int ec_GFp_simple_ladder_post(const EC_GROUP *group,
- EC_POINT *r, EC_POINT *s,
- EC_POINT *p, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
- if (BN_is_zero(r->Z))
- return EC_POINT_set_to_infinity(group, r);
- if (BN_is_zero(s->Z)) {
- if (!EC_POINT_copy(r, p)
- || !EC_POINT_invert(group, r, ctx))
- return 0;
- return 1;
- }
- BN_CTX_start(ctx);
- t0 = BN_CTX_get(ctx);
- t1 = BN_CTX_get(ctx);
- t2 = BN_CTX_get(ctx);
- t3 = BN_CTX_get(ctx);
- t4 = BN_CTX_get(ctx);
- t5 = BN_CTX_get(ctx);
- t6 = BN_CTX_get(ctx);
- if (t6 == NULL
- || !BN_mod_lshift1_quick(t4, p->Y, group->field)
- || !group->meth->field_mul(group, t6, r->X, t4, ctx)
- || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
- || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
- || !BN_mod_lshift1_quick(t1, group->b, group->field)
- || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
- || !group->meth->field_sqr(group, t3, r->Z, ctx)
- || !group->meth->field_mul(group, t2, t3, t1, ctx)
- || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
- || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
- || !BN_mod_add_quick(t1, t1, t6, group->field)
- || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
- || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
- || !BN_mod_add_quick(t6, r->X, t0, group->field)
- || !group->meth->field_mul(group, t6, t6, t1, ctx)
- || !BN_mod_add_quick(t6, t6, t2, group->field)
- || !BN_mod_sub_quick(t0, t0, r->X, group->field)
- || !group->meth->field_sqr(group, t0, t0, ctx)
- || !group->meth->field_mul(group, t0, t0, s->X, ctx)
- || !BN_mod_sub_quick(t0, t6, t0, group->field)
- || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
- || !group->meth->field_mul(group, t1, t3, t1, ctx)
- || (group->meth->field_decode != NULL
- && !group->meth->field_decode(group, t1, t1, ctx))
- || !group->meth->field_inv(group, t1, t1, ctx)
- || (group->meth->field_encode != NULL
- && !group->meth->field_encode(group, t1, t1, ctx))
- || !group->meth->field_mul(group, r->X, t5, t1, ctx)
- || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
- goto err;
- if (group->meth->field_set_to_one != NULL) {
- if (!group->meth->field_set_to_one(group, r->Z, ctx))
- goto err;
- } else {
- if (!BN_one(r->Z))
- goto err;
- }
- r->Z_is_one = 1;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
|