12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049 |
- /*
- * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <assert.h>
- #include <openssl/crypto.h>
- #include "internal/cryptlib.h"
- #include "bn_local.h"
- #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
- BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
- BN_ULONG w)
- {
- BN_ULONG c1 = 0;
- assert(num >= 0);
- if (num <= 0)
- return c1;
- # ifndef OPENSSL_SMALL_FOOTPRINT
- while (num & ~3) {
- mul_add(rp[0], ap[0], w, c1);
- mul_add(rp[1], ap[1], w, c1);
- mul_add(rp[2], ap[2], w, c1);
- mul_add(rp[3], ap[3], w, c1);
- ap += 4;
- rp += 4;
- num -= 4;
- }
- # endif
- while (num) {
- mul_add(rp[0], ap[0], w, c1);
- ap++;
- rp++;
- num--;
- }
- return c1;
- }
- BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
- {
- BN_ULONG c1 = 0;
- assert(num >= 0);
- if (num <= 0)
- return c1;
- # ifndef OPENSSL_SMALL_FOOTPRINT
- while (num & ~3) {
- mul(rp[0], ap[0], w, c1);
- mul(rp[1], ap[1], w, c1);
- mul(rp[2], ap[2], w, c1);
- mul(rp[3], ap[3], w, c1);
- ap += 4;
- rp += 4;
- num -= 4;
- }
- # endif
- while (num) {
- mul(rp[0], ap[0], w, c1);
- ap++;
- rp++;
- num--;
- }
- return c1;
- }
- void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
- {
- assert(n >= 0);
- if (n <= 0)
- return;
- # ifndef OPENSSL_SMALL_FOOTPRINT
- while (n & ~3) {
- sqr(r[0], r[1], a[0]);
- sqr(r[2], r[3], a[1]);
- sqr(r[4], r[5], a[2]);
- sqr(r[6], r[7], a[3]);
- a += 4;
- r += 8;
- n -= 4;
- }
- # endif
- while (n) {
- sqr(r[0], r[1], a[0]);
- a++;
- r += 2;
- n--;
- }
- }
- #else /* !(defined(BN_LLONG) ||
- * defined(BN_UMULT_HIGH)) */
- BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
- BN_ULONG w)
- {
- BN_ULONG c = 0;
- BN_ULONG bl, bh;
- assert(num >= 0);
- if (num <= 0)
- return (BN_ULONG)0;
- bl = LBITS(w);
- bh = HBITS(w);
- # ifndef OPENSSL_SMALL_FOOTPRINT
- while (num & ~3) {
- mul_add(rp[0], ap[0], bl, bh, c);
- mul_add(rp[1], ap[1], bl, bh, c);
- mul_add(rp[2], ap[2], bl, bh, c);
- mul_add(rp[3], ap[3], bl, bh, c);
- ap += 4;
- rp += 4;
- num -= 4;
- }
- # endif
- while (num) {
- mul_add(rp[0], ap[0], bl, bh, c);
- ap++;
- rp++;
- num--;
- }
- return c;
- }
- BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
- {
- BN_ULONG carry = 0;
- BN_ULONG bl, bh;
- assert(num >= 0);
- if (num <= 0)
- return (BN_ULONG)0;
- bl = LBITS(w);
- bh = HBITS(w);
- # ifndef OPENSSL_SMALL_FOOTPRINT
- while (num & ~3) {
- mul(rp[0], ap[0], bl, bh, carry);
- mul(rp[1], ap[1], bl, bh, carry);
- mul(rp[2], ap[2], bl, bh, carry);
- mul(rp[3], ap[3], bl, bh, carry);
- ap += 4;
- rp += 4;
- num -= 4;
- }
- # endif
- while (num) {
- mul(rp[0], ap[0], bl, bh, carry);
- ap++;
- rp++;
- num--;
- }
- return carry;
- }
- void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
- {
- assert(n >= 0);
- if (n <= 0)
- return;
- # ifndef OPENSSL_SMALL_FOOTPRINT
- while (n & ~3) {
- sqr64(r[0], r[1], a[0]);
- sqr64(r[2], r[3], a[1]);
- sqr64(r[4], r[5], a[2]);
- sqr64(r[6], r[7], a[3]);
- a += 4;
- r += 8;
- n -= 4;
- }
- # endif
- while (n) {
- sqr64(r[0], r[1], a[0]);
- a++;
- r += 2;
- n--;
- }
- }
- #endif /* !(defined(BN_LLONG) ||
- * defined(BN_UMULT_HIGH)) */
- #if defined(BN_LLONG) && defined(BN_DIV2W)
- BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
- {
- return ((BN_ULONG)(((((BN_ULLONG) h) << BN_BITS2) | l) / (BN_ULLONG) d));
- }
- #else
- /* Divide h,l by d and return the result. */
- /* I need to test this some more :-( */
- BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
- {
- BN_ULONG dh, dl, q, ret = 0, th, tl, t;
- int i, count = 2;
- if (d == 0)
- return BN_MASK2;
- i = BN_num_bits_word(d);
- assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
- i = BN_BITS2 - i;
- if (h >= d)
- h -= d;
- if (i) {
- d <<= i;
- h = (h << i) | (l >> (BN_BITS2 - i));
- l <<= i;
- }
- dh = (d & BN_MASK2h) >> BN_BITS4;
- dl = (d & BN_MASK2l);
- for (;;) {
- if ((h >> BN_BITS4) == dh)
- q = BN_MASK2l;
- else
- q = h / dh;
- th = q * dh;
- tl = dl * q;
- for (;;) {
- t = h - th;
- if ((t & BN_MASK2h) ||
- ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4))))
- break;
- q--;
- th -= dh;
- tl -= dl;
- }
- t = (tl >> BN_BITS4);
- tl = (tl << BN_BITS4) & BN_MASK2h;
- th += t;
- if (l < tl)
- th++;
- l -= tl;
- if (h < th) {
- h += d;
- q--;
- }
- h -= th;
- if (--count == 0)
- break;
- ret = q << BN_BITS4;
- h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
- l = (l & BN_MASK2l) << BN_BITS4;
- }
- ret |= q;
- return ret;
- }
- #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
- #ifdef BN_LLONG
- BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
- int n)
- {
- BN_ULLONG ll = 0;
- assert(n >= 0);
- if (n <= 0)
- return (BN_ULONG)0;
- # ifndef OPENSSL_SMALL_FOOTPRINT
- while (n & ~3) {
- ll += (BN_ULLONG) a[0] + b[0];
- r[0] = (BN_ULONG)ll & BN_MASK2;
- ll >>= BN_BITS2;
- ll += (BN_ULLONG) a[1] + b[1];
- r[1] = (BN_ULONG)ll & BN_MASK2;
- ll >>= BN_BITS2;
- ll += (BN_ULLONG) a[2] + b[2];
- r[2] = (BN_ULONG)ll & BN_MASK2;
- ll >>= BN_BITS2;
- ll += (BN_ULLONG) a[3] + b[3];
- r[3] = (BN_ULONG)ll & BN_MASK2;
- ll >>= BN_BITS2;
- a += 4;
- b += 4;
- r += 4;
- n -= 4;
- }
- # endif
- while (n) {
- ll += (BN_ULLONG) a[0] + b[0];
- r[0] = (BN_ULONG)ll & BN_MASK2;
- ll >>= BN_BITS2;
- a++;
- b++;
- r++;
- n--;
- }
- return (BN_ULONG)ll;
- }
- #else /* !BN_LLONG */
- BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
- int n)
- {
- BN_ULONG c, l, t;
- assert(n >= 0);
- if (n <= 0)
- return (BN_ULONG)0;
- c = 0;
- # ifndef OPENSSL_SMALL_FOOTPRINT
- while (n & ~3) {
- t = a[0];
- t = (t + c) & BN_MASK2;
- c = (t < c);
- l = (t + b[0]) & BN_MASK2;
- c += (l < t);
- r[0] = l;
- t = a[1];
- t = (t + c) & BN_MASK2;
- c = (t < c);
- l = (t + b[1]) & BN_MASK2;
- c += (l < t);
- r[1] = l;
- t = a[2];
- t = (t + c) & BN_MASK2;
- c = (t < c);
- l = (t + b[2]) & BN_MASK2;
- c += (l < t);
- r[2] = l;
- t = a[3];
- t = (t + c) & BN_MASK2;
- c = (t < c);
- l = (t + b[3]) & BN_MASK2;
- c += (l < t);
- r[3] = l;
- a += 4;
- b += 4;
- r += 4;
- n -= 4;
- }
- # endif
- while (n) {
- t = a[0];
- t = (t + c) & BN_MASK2;
- c = (t < c);
- l = (t + b[0]) & BN_MASK2;
- c += (l < t);
- r[0] = l;
- a++;
- b++;
- r++;
- n--;
- }
- return (BN_ULONG)c;
- }
- #endif /* !BN_LLONG */
- BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
- int n)
- {
- BN_ULONG t1, t2;
- int c = 0;
- assert(n >= 0);
- if (n <= 0)
- return (BN_ULONG)0;
- #ifndef OPENSSL_SMALL_FOOTPRINT
- while (n & ~3) {
- t1 = a[0];
- t2 = (t1 - c) & BN_MASK2;
- c = (t2 > t1);
- t1 = b[0];
- t1 = (t2 - t1) & BN_MASK2;
- r[0] = t1;
- c += (t1 > t2);
- t1 = a[1];
- t2 = (t1 - c) & BN_MASK2;
- c = (t2 > t1);
- t1 = b[1];
- t1 = (t2 - t1) & BN_MASK2;
- r[1] = t1;
- c += (t1 > t2);
- t1 = a[2];
- t2 = (t1 - c) & BN_MASK2;
- c = (t2 > t1);
- t1 = b[2];
- t1 = (t2 - t1) & BN_MASK2;
- r[2] = t1;
- c += (t1 > t2);
- t1 = a[3];
- t2 = (t1 - c) & BN_MASK2;
- c = (t2 > t1);
- t1 = b[3];
- t1 = (t2 - t1) & BN_MASK2;
- r[3] = t1;
- c += (t1 > t2);
- a += 4;
- b += 4;
- r += 4;
- n -= 4;
- }
- #endif
- while (n) {
- t1 = a[0];
- t2 = (t1 - c) & BN_MASK2;
- c = (t2 > t1);
- t1 = b[0];
- t1 = (t2 - t1) & BN_MASK2;
- r[0] = t1;
- c += (t1 > t2);
- a++;
- b++;
- r++;
- n--;
- }
- return c;
- }
- #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
- # undef bn_mul_comba8
- # undef bn_mul_comba4
- # undef bn_sqr_comba8
- # undef bn_sqr_comba4
- /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */
- /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
- /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
- /*
- * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number
- * c=(c2,c1,c0)
- */
- # ifdef BN_LLONG
- /*
- * Keep in mind that additions to multiplication result can not
- * overflow, because its high half cannot be all-ones.
- */
- # define mul_add_c(a,b,c0,c1,c2) do { \
- BN_ULONG hi; \
- BN_ULLONG t = (BN_ULLONG)(a)*(b); \
- t += c0; /* no carry */ \
- c0 = (BN_ULONG)Lw(t); \
- hi = (BN_ULONG)Hw(t); \
- c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi); \
- } while(0)
- # define mul_add_c2(a,b,c0,c1,c2) do { \
- BN_ULONG hi; \
- BN_ULLONG t = (BN_ULLONG)(a)*(b); \
- BN_ULLONG tt = t+c0; /* no carry */ \
- c0 = (BN_ULONG)Lw(tt); \
- hi = (BN_ULONG)Hw(tt); \
- c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi); \
- t += c0; /* no carry */ \
- c0 = (BN_ULONG)Lw(t); \
- hi = (BN_ULONG)Hw(t); \
- c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi); \
- } while(0)
- # define sqr_add_c(a,i,c0,c1,c2) do { \
- BN_ULONG hi; \
- BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \
- t += c0; /* no carry */ \
- c0 = (BN_ULONG)Lw(t); \
- hi = (BN_ULONG)Hw(t); \
- c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi); \
- } while(0)
- # define sqr_add_c2(a,i,j,c0,c1,c2) \
- mul_add_c2((a)[i],(a)[j],c0,c1,c2)
- # elif defined(BN_UMULT_LOHI)
- /*
- * Keep in mind that additions to hi can not overflow, because
- * the high word of a multiplication result cannot be all-ones.
- */
- # define mul_add_c(a,b,c0,c1,c2) do { \
- BN_ULONG ta = (a), tb = (b); \
- BN_ULONG lo, hi; \
- BN_UMULT_LOHI(lo,hi,ta,tb); \
- c0 += lo; hi += (c0<lo); \
- c1 += hi; c2 += (c1<hi); \
- } while(0)
- # define mul_add_c2(a,b,c0,c1,c2) do { \
- BN_ULONG ta = (a), tb = (b); \
- BN_ULONG lo, hi, tt; \
- BN_UMULT_LOHI(lo,hi,ta,tb); \
- c0 += lo; tt = hi + (c0<lo); \
- c1 += tt; c2 += (c1<tt); \
- c0 += lo; hi += (c0<lo); \
- c1 += hi; c2 += (c1<hi); \
- } while(0)
- # define sqr_add_c(a,i,c0,c1,c2) do { \
- BN_ULONG ta = (a)[i]; \
- BN_ULONG lo, hi; \
- BN_UMULT_LOHI(lo,hi,ta,ta); \
- c0 += lo; hi += (c0<lo); \
- c1 += hi; c2 += (c1<hi); \
- } while(0)
- # define sqr_add_c2(a,i,j,c0,c1,c2) \
- mul_add_c2((a)[i],(a)[j],c0,c1,c2)
- # elif defined(BN_UMULT_HIGH)
- /*
- * Keep in mind that additions to hi can not overflow, because
- * the high word of a multiplication result cannot be all-ones.
- */
- # define mul_add_c(a,b,c0,c1,c2) do { \
- BN_ULONG ta = (a), tb = (b); \
- BN_ULONG lo = ta * tb; \
- BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
- c0 += lo; hi += (c0<lo); \
- c1 += hi; c2 += (c1<hi); \
- } while(0)
- # define mul_add_c2(a,b,c0,c1,c2) do { \
- BN_ULONG ta = (a), tb = (b), tt; \
- BN_ULONG lo = ta * tb; \
- BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \
- c0 += lo; tt = hi + (c0<lo); \
- c1 += tt; c2 += (c1<tt); \
- c0 += lo; hi += (c0<lo); \
- c1 += hi; c2 += (c1<hi); \
- } while(0)
- # define sqr_add_c(a,i,c0,c1,c2) do { \
- BN_ULONG ta = (a)[i]; \
- BN_ULONG lo = ta * ta; \
- BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \
- c0 += lo; hi += (c0<lo); \
- c1 += hi; c2 += (c1<hi); \
- } while(0)
- # define sqr_add_c2(a,i,j,c0,c1,c2) \
- mul_add_c2((a)[i],(a)[j],c0,c1,c2)
- # else /* !BN_LLONG */
- /*
- * Keep in mind that additions to hi can not overflow, because
- * the high word of a multiplication result cannot be all-ones.
- */
- # define mul_add_c(a,b,c0,c1,c2) do { \
- BN_ULONG lo = LBITS(a), hi = HBITS(a); \
- BN_ULONG bl = LBITS(b), bh = HBITS(b); \
- mul64(lo,hi,bl,bh); \
- c0 = (c0+lo)&BN_MASK2; hi += (c0<lo); \
- c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi); \
- } while(0)
- # define mul_add_c2(a,b,c0,c1,c2) do { \
- BN_ULONG tt; \
- BN_ULONG lo = LBITS(a), hi = HBITS(a); \
- BN_ULONG bl = LBITS(b), bh = HBITS(b); \
- mul64(lo,hi,bl,bh); \
- tt = hi; \
- c0 = (c0+lo)&BN_MASK2; tt += (c0<lo); \
- c1 = (c1+tt)&BN_MASK2; c2 += (c1<tt); \
- c0 = (c0+lo)&BN_MASK2; hi += (c0<lo); \
- c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi); \
- } while(0)
- # define sqr_add_c(a,i,c0,c1,c2) do { \
- BN_ULONG lo, hi; \
- sqr64(lo,hi,(a)[i]); \
- c0 = (c0+lo)&BN_MASK2; hi += (c0<lo); \
- c1 = (c1+hi)&BN_MASK2; c2 += (c1<hi); \
- } while(0)
- # define sqr_add_c2(a,i,j,c0,c1,c2) \
- mul_add_c2((a)[i],(a)[j],c0,c1,c2)
- # endif /* !BN_LLONG */
- void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
- {
- BN_ULONG c1, c2, c3;
- c1 = 0;
- c2 = 0;
- c3 = 0;
- mul_add_c(a[0], b[0], c1, c2, c3);
- r[0] = c1;
- c1 = 0;
- mul_add_c(a[0], b[1], c2, c3, c1);
- mul_add_c(a[1], b[0], c2, c3, c1);
- r[1] = c2;
- c2 = 0;
- mul_add_c(a[2], b[0], c3, c1, c2);
- mul_add_c(a[1], b[1], c3, c1, c2);
- mul_add_c(a[0], b[2], c3, c1, c2);
- r[2] = c3;
- c3 = 0;
- mul_add_c(a[0], b[3], c1, c2, c3);
- mul_add_c(a[1], b[2], c1, c2, c3);
- mul_add_c(a[2], b[1], c1, c2, c3);
- mul_add_c(a[3], b[0], c1, c2, c3);
- r[3] = c1;
- c1 = 0;
- mul_add_c(a[4], b[0], c2, c3, c1);
- mul_add_c(a[3], b[1], c2, c3, c1);
- mul_add_c(a[2], b[2], c2, c3, c1);
- mul_add_c(a[1], b[3], c2, c3, c1);
- mul_add_c(a[0], b[4], c2, c3, c1);
- r[4] = c2;
- c2 = 0;
- mul_add_c(a[0], b[5], c3, c1, c2);
- mul_add_c(a[1], b[4], c3, c1, c2);
- mul_add_c(a[2], b[3], c3, c1, c2);
- mul_add_c(a[3], b[2], c3, c1, c2);
- mul_add_c(a[4], b[1], c3, c1, c2);
- mul_add_c(a[5], b[0], c3, c1, c2);
- r[5] = c3;
- c3 = 0;
- mul_add_c(a[6], b[0], c1, c2, c3);
- mul_add_c(a[5], b[1], c1, c2, c3);
- mul_add_c(a[4], b[2], c1, c2, c3);
- mul_add_c(a[3], b[3], c1, c2, c3);
- mul_add_c(a[2], b[4], c1, c2, c3);
- mul_add_c(a[1], b[5], c1, c2, c3);
- mul_add_c(a[0], b[6], c1, c2, c3);
- r[6] = c1;
- c1 = 0;
- mul_add_c(a[0], b[7], c2, c3, c1);
- mul_add_c(a[1], b[6], c2, c3, c1);
- mul_add_c(a[2], b[5], c2, c3, c1);
- mul_add_c(a[3], b[4], c2, c3, c1);
- mul_add_c(a[4], b[3], c2, c3, c1);
- mul_add_c(a[5], b[2], c2, c3, c1);
- mul_add_c(a[6], b[1], c2, c3, c1);
- mul_add_c(a[7], b[0], c2, c3, c1);
- r[7] = c2;
- c2 = 0;
- mul_add_c(a[7], b[1], c3, c1, c2);
- mul_add_c(a[6], b[2], c3, c1, c2);
- mul_add_c(a[5], b[3], c3, c1, c2);
- mul_add_c(a[4], b[4], c3, c1, c2);
- mul_add_c(a[3], b[5], c3, c1, c2);
- mul_add_c(a[2], b[6], c3, c1, c2);
- mul_add_c(a[1], b[7], c3, c1, c2);
- r[8] = c3;
- c3 = 0;
- mul_add_c(a[2], b[7], c1, c2, c3);
- mul_add_c(a[3], b[6], c1, c2, c3);
- mul_add_c(a[4], b[5], c1, c2, c3);
- mul_add_c(a[5], b[4], c1, c2, c3);
- mul_add_c(a[6], b[3], c1, c2, c3);
- mul_add_c(a[7], b[2], c1, c2, c3);
- r[9] = c1;
- c1 = 0;
- mul_add_c(a[7], b[3], c2, c3, c1);
- mul_add_c(a[6], b[4], c2, c3, c1);
- mul_add_c(a[5], b[5], c2, c3, c1);
- mul_add_c(a[4], b[6], c2, c3, c1);
- mul_add_c(a[3], b[7], c2, c3, c1);
- r[10] = c2;
- c2 = 0;
- mul_add_c(a[4], b[7], c3, c1, c2);
- mul_add_c(a[5], b[6], c3, c1, c2);
- mul_add_c(a[6], b[5], c3, c1, c2);
- mul_add_c(a[7], b[4], c3, c1, c2);
- r[11] = c3;
- c3 = 0;
- mul_add_c(a[7], b[5], c1, c2, c3);
- mul_add_c(a[6], b[6], c1, c2, c3);
- mul_add_c(a[5], b[7], c1, c2, c3);
- r[12] = c1;
- c1 = 0;
- mul_add_c(a[6], b[7], c2, c3, c1);
- mul_add_c(a[7], b[6], c2, c3, c1);
- r[13] = c2;
- c2 = 0;
- mul_add_c(a[7], b[7], c3, c1, c2);
- r[14] = c3;
- r[15] = c1;
- }
- void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
- {
- BN_ULONG c1, c2, c3;
- c1 = 0;
- c2 = 0;
- c3 = 0;
- mul_add_c(a[0], b[0], c1, c2, c3);
- r[0] = c1;
- c1 = 0;
- mul_add_c(a[0], b[1], c2, c3, c1);
- mul_add_c(a[1], b[0], c2, c3, c1);
- r[1] = c2;
- c2 = 0;
- mul_add_c(a[2], b[0], c3, c1, c2);
- mul_add_c(a[1], b[1], c3, c1, c2);
- mul_add_c(a[0], b[2], c3, c1, c2);
- r[2] = c3;
- c3 = 0;
- mul_add_c(a[0], b[3], c1, c2, c3);
- mul_add_c(a[1], b[2], c1, c2, c3);
- mul_add_c(a[2], b[1], c1, c2, c3);
- mul_add_c(a[3], b[0], c1, c2, c3);
- r[3] = c1;
- c1 = 0;
- mul_add_c(a[3], b[1], c2, c3, c1);
- mul_add_c(a[2], b[2], c2, c3, c1);
- mul_add_c(a[1], b[3], c2, c3, c1);
- r[4] = c2;
- c2 = 0;
- mul_add_c(a[2], b[3], c3, c1, c2);
- mul_add_c(a[3], b[2], c3, c1, c2);
- r[5] = c3;
- c3 = 0;
- mul_add_c(a[3], b[3], c1, c2, c3);
- r[6] = c1;
- r[7] = c2;
- }
- void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
- {
- BN_ULONG c1, c2, c3;
- c1 = 0;
- c2 = 0;
- c3 = 0;
- sqr_add_c(a, 0, c1, c2, c3);
- r[0] = c1;
- c1 = 0;
- sqr_add_c2(a, 1, 0, c2, c3, c1);
- r[1] = c2;
- c2 = 0;
- sqr_add_c(a, 1, c3, c1, c2);
- sqr_add_c2(a, 2, 0, c3, c1, c2);
- r[2] = c3;
- c3 = 0;
- sqr_add_c2(a, 3, 0, c1, c2, c3);
- sqr_add_c2(a, 2, 1, c1, c2, c3);
- r[3] = c1;
- c1 = 0;
- sqr_add_c(a, 2, c2, c3, c1);
- sqr_add_c2(a, 3, 1, c2, c3, c1);
- sqr_add_c2(a, 4, 0, c2, c3, c1);
- r[4] = c2;
- c2 = 0;
- sqr_add_c2(a, 5, 0, c3, c1, c2);
- sqr_add_c2(a, 4, 1, c3, c1, c2);
- sqr_add_c2(a, 3, 2, c3, c1, c2);
- r[5] = c3;
- c3 = 0;
- sqr_add_c(a, 3, c1, c2, c3);
- sqr_add_c2(a, 4, 2, c1, c2, c3);
- sqr_add_c2(a, 5, 1, c1, c2, c3);
- sqr_add_c2(a, 6, 0, c1, c2, c3);
- r[6] = c1;
- c1 = 0;
- sqr_add_c2(a, 7, 0, c2, c3, c1);
- sqr_add_c2(a, 6, 1, c2, c3, c1);
- sqr_add_c2(a, 5, 2, c2, c3, c1);
- sqr_add_c2(a, 4, 3, c2, c3, c1);
- r[7] = c2;
- c2 = 0;
- sqr_add_c(a, 4, c3, c1, c2);
- sqr_add_c2(a, 5, 3, c3, c1, c2);
- sqr_add_c2(a, 6, 2, c3, c1, c2);
- sqr_add_c2(a, 7, 1, c3, c1, c2);
- r[8] = c3;
- c3 = 0;
- sqr_add_c2(a, 7, 2, c1, c2, c3);
- sqr_add_c2(a, 6, 3, c1, c2, c3);
- sqr_add_c2(a, 5, 4, c1, c2, c3);
- r[9] = c1;
- c1 = 0;
- sqr_add_c(a, 5, c2, c3, c1);
- sqr_add_c2(a, 6, 4, c2, c3, c1);
- sqr_add_c2(a, 7, 3, c2, c3, c1);
- r[10] = c2;
- c2 = 0;
- sqr_add_c2(a, 7, 4, c3, c1, c2);
- sqr_add_c2(a, 6, 5, c3, c1, c2);
- r[11] = c3;
- c3 = 0;
- sqr_add_c(a, 6, c1, c2, c3);
- sqr_add_c2(a, 7, 5, c1, c2, c3);
- r[12] = c1;
- c1 = 0;
- sqr_add_c2(a, 7, 6, c2, c3, c1);
- r[13] = c2;
- c2 = 0;
- sqr_add_c(a, 7, c3, c1, c2);
- r[14] = c3;
- r[15] = c1;
- }
- void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
- {
- BN_ULONG c1, c2, c3;
- c1 = 0;
- c2 = 0;
- c3 = 0;
- sqr_add_c(a, 0, c1, c2, c3);
- r[0] = c1;
- c1 = 0;
- sqr_add_c2(a, 1, 0, c2, c3, c1);
- r[1] = c2;
- c2 = 0;
- sqr_add_c(a, 1, c3, c1, c2);
- sqr_add_c2(a, 2, 0, c3, c1, c2);
- r[2] = c3;
- c3 = 0;
- sqr_add_c2(a, 3, 0, c1, c2, c3);
- sqr_add_c2(a, 2, 1, c1, c2, c3);
- r[3] = c1;
- c1 = 0;
- sqr_add_c(a, 2, c2, c3, c1);
- sqr_add_c2(a, 3, 1, c2, c3, c1);
- r[4] = c2;
- c2 = 0;
- sqr_add_c2(a, 3, 2, c3, c1, c2);
- r[5] = c3;
- c3 = 0;
- sqr_add_c(a, 3, c1, c2, c3);
- r[6] = c1;
- r[7] = c2;
- }
- # ifdef OPENSSL_NO_ASM
- # ifdef OPENSSL_BN_ASM_MONT
- # include <alloca.h>
- /*
- * This is essentially reference implementation, which may or may not
- * result in performance improvement. E.g. on IA-32 this routine was
- * observed to give 40% faster rsa1024 private key operations and 10%
- * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
- * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
- * reference implementation, one to be used as starting point for
- * platform-specific assembler. Mentioned numbers apply to compiler
- * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
- * can vary not only from platform to platform, but even for compiler
- * versions. Assembler vs. assembler improvement coefficients can
- * [and are known to] differ and are to be documented elsewhere.
- */
- int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- const BN_ULONG *np, const BN_ULONG *n0p, int num)
- {
- BN_ULONG c0, c1, ml, *tp, n0;
- # ifdef mul64
- BN_ULONG mh;
- # endif
- volatile BN_ULONG *vp;
- int i = 0, j;
- # if 0 /* template for platform-specific
- * implementation */
- if (ap == bp)
- return bn_sqr_mont(rp, ap, np, n0p, num);
- # endif
- vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
- n0 = *n0p;
- c0 = 0;
- ml = bp[0];
- # ifdef mul64
- mh = HBITS(ml);
- ml = LBITS(ml);
- for (j = 0; j < num; ++j)
- mul(tp[j], ap[j], ml, mh, c0);
- # else
- for (j = 0; j < num; ++j)
- mul(tp[j], ap[j], ml, c0);
- # endif
- tp[num] = c0;
- tp[num + 1] = 0;
- goto enter;
- for (i = 0; i < num; i++) {
- c0 = 0;
- ml = bp[i];
- # ifdef mul64
- mh = HBITS(ml);
- ml = LBITS(ml);
- for (j = 0; j < num; ++j)
- mul_add(tp[j], ap[j], ml, mh, c0);
- # else
- for (j = 0; j < num; ++j)
- mul_add(tp[j], ap[j], ml, c0);
- # endif
- c1 = (tp[num] + c0) & BN_MASK2;
- tp[num] = c1;
- tp[num + 1] = (c1 < c0 ? 1 : 0);
- enter:
- c1 = tp[0];
- ml = (c1 * n0) & BN_MASK2;
- c0 = 0;
- # ifdef mul64
- mh = HBITS(ml);
- ml = LBITS(ml);
- mul_add(c1, np[0], ml, mh, c0);
- # else
- mul_add(c1, ml, np[0], c0);
- # endif
- for (j = 1; j < num; j++) {
- c1 = tp[j];
- # ifdef mul64
- mul_add(c1, np[j], ml, mh, c0);
- # else
- mul_add(c1, ml, np[j], c0);
- # endif
- tp[j - 1] = c1 & BN_MASK2;
- }
- c1 = (tp[num] + c0) & BN_MASK2;
- tp[num - 1] = c1;
- tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0);
- }
- if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
- c0 = bn_sub_words(rp, tp, np, num);
- if (tp[num] != 0 || c0 == 0) {
- for (i = 0; i < num + 2; i++)
- vp[i] = 0;
- return 1;
- }
- }
- for (i = 0; i < num; i++)
- rp[i] = tp[i], vp[i] = 0;
- vp[num] = 0;
- vp[num + 1] = 0;
- return 1;
- }
- # else
- /*
- * Return value of 0 indicates that multiplication/convolution was not
- * performed to signal the caller to fall down to alternative/original
- * code-path.
- */
- int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- const BN_ULONG *np, const BN_ULONG *n0, int num)
- {
- return 0;
- }
- # endif /* OPENSSL_BN_ASM_MONT */
- # endif
- #else /* !BN_MUL_COMBA */
- /* hmm... is it faster just to do a multiply? */
- # undef bn_sqr_comba4
- # undef bn_sqr_comba8
- void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
- {
- BN_ULONG t[8];
- bn_sqr_normal(r, a, 4, t);
- }
- void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
- {
- BN_ULONG t[16];
- bn_sqr_normal(r, a, 8, t);
- }
- void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
- {
- r[4] = bn_mul_words(&(r[0]), a, 4, b[0]);
- r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]);
- r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]);
- r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]);
- }
- void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
- {
- r[8] = bn_mul_words(&(r[0]), a, 8, b[0]);
- r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]);
- r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]);
- r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]);
- r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]);
- r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]);
- r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]);
- r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]);
- }
- # ifdef OPENSSL_NO_ASM
- # ifdef OPENSSL_BN_ASM_MONT
- # include <alloca.h>
- int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- const BN_ULONG *np, const BN_ULONG *n0p, int num)
- {
- BN_ULONG c0, c1, *tp, n0 = *n0p;
- volatile BN_ULONG *vp;
- int i = 0, j;
- vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
- for (i = 0; i <= num; i++)
- tp[i] = 0;
- for (i = 0; i < num; i++) {
- c0 = bn_mul_add_words(tp, ap, num, bp[i]);
- c1 = (tp[num] + c0) & BN_MASK2;
- tp[num] = c1;
- tp[num + 1] = (c1 < c0 ? 1 : 0);
- c0 = bn_mul_add_words(tp, np, num, tp[0] * n0);
- c1 = (tp[num] + c0) & BN_MASK2;
- tp[num] = c1;
- tp[num + 1] += (c1 < c0 ? 1 : 0);
- for (j = 0; j <= num; j++)
- tp[j] = tp[j + 1];
- }
- if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
- c0 = bn_sub_words(rp, tp, np, num);
- if (tp[num] != 0 || c0 == 0) {
- for (i = 0; i < num + 2; i++)
- vp[i] = 0;
- return 1;
- }
- }
- for (i = 0; i < num; i++)
- rp[i] = tp[i], vp[i] = 0;
- vp[num] = 0;
- vp[num + 1] = 0;
- return 1;
- }
- # else
- int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
- const BN_ULONG *np, const BN_ULONG *n0, int num)
- {
- return 0;
- }
- # endif /* OPENSSL_BN_ASM_MONT */
- # endif
- #endif /* !BN_MUL_COMBA */
|