123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596 |
- #include "llvm/Transforms/Utils/VNCoercion.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/Support/Debug.h"
- #define DEBUG_TYPE "vncoerce"
- namespace llvm {
- namespace VNCoercion {
- static bool isFirstClassAggregateOrScalableType(Type *Ty) {
- return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
- }
- /// Return true if coerceAvailableValueToLoadType will succeed.
- bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
- const DataLayout &DL) {
- Type *StoredTy = StoredVal->getType();
- if (StoredTy == LoadTy)
- return true;
- // If the loaded/stored value is a first class array/struct, or scalable type,
- // don't try to transform them. We need to be able to bitcast to integer.
- if (isFirstClassAggregateOrScalableType(LoadTy) ||
- isFirstClassAggregateOrScalableType(StoredTy))
- return false;
- uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize();
- // The store size must be byte-aligned to support future type casts.
- if (llvm::alignTo(StoreSize, 8) != StoreSize)
- return false;
- // The store has to be at least as big as the load.
- if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize())
- return false;
- bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
- bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
- // Don't coerce non-integral pointers to integers or vice versa.
- if (StoredNI != LoadNI) {
- // As a special case, allow coercion of memset used to initialize
- // an array w/null. Despite non-integral pointers not generally having a
- // specific bit pattern, we do assume null is zero.
- if (auto *CI = dyn_cast<Constant>(StoredVal))
- return CI->isNullValue();
- return false;
- } else if (StoredNI && LoadNI &&
- StoredTy->getPointerAddressSpace() !=
- LoadTy->getPointerAddressSpace()) {
- return false;
- }
- // The implementation below uses inttoptr for vectors of unequal size; we
- // can't allow this for non integral pointers. We could teach it to extract
- // exact subvectors if desired.
- if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize())
- return false;
- return true;
- }
- template <class T, class HelperClass>
- static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
- HelperClass &Helper,
- const DataLayout &DL) {
- assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
- "precondition violation - materialization can't fail");
- if (auto *C = dyn_cast<Constant>(StoredVal))
- StoredVal = ConstantFoldConstant(C, DL);
- // If this is already the right type, just return it.
- Type *StoredValTy = StoredVal->getType();
- uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize();
- uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize();
- // If the store and reload are the same size, we can always reuse it.
- if (StoredValSize == LoadedValSize) {
- // Pointer to Pointer -> use bitcast.
- if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
- StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
- } else {
- // Convert source pointers to integers, which can be bitcast.
- if (StoredValTy->isPtrOrPtrVectorTy()) {
- StoredValTy = DL.getIntPtrType(StoredValTy);
- StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
- }
- Type *TypeToCastTo = LoadedTy;
- if (TypeToCastTo->isPtrOrPtrVectorTy())
- TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
- if (StoredValTy != TypeToCastTo)
- StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
- // Cast to pointer if the load needs a pointer type.
- if (LoadedTy->isPtrOrPtrVectorTy())
- StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
- }
- if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
- StoredVal = ConstantFoldConstant(C, DL);
- return StoredVal;
- }
- // If the loaded value is smaller than the available value, then we can
- // extract out a piece from it. If the available value is too small, then we
- // can't do anything.
- assert(StoredValSize >= LoadedValSize &&
- "canCoerceMustAliasedValueToLoad fail");
- // Convert source pointers to integers, which can be manipulated.
- if (StoredValTy->isPtrOrPtrVectorTy()) {
- StoredValTy = DL.getIntPtrType(StoredValTy);
- StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
- }
- // Convert vectors and fp to integer, which can be manipulated.
- if (!StoredValTy->isIntegerTy()) {
- StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
- StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
- }
- // If this is a big-endian system, we need to shift the value down to the low
- // bits so that a truncate will work.
- if (DL.isBigEndian()) {
- uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() -
- DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize();
- StoredVal = Helper.CreateLShr(
- StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
- }
- // Truncate the integer to the right size now.
- Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
- StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
- if (LoadedTy != NewIntTy) {
- // If the result is a pointer, inttoptr.
- if (LoadedTy->isPtrOrPtrVectorTy())
- StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
- else
- // Otherwise, bitcast.
- StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
- }
- if (auto *C = dyn_cast<Constant>(StoredVal))
- StoredVal = ConstantFoldConstant(C, DL);
- return StoredVal;
- }
- /// If we saw a store of a value to memory, and
- /// then a load from a must-aliased pointer of a different type, try to coerce
- /// the stored value. LoadedTy is the type of the load we want to replace.
- /// IRB is IRBuilder used to insert new instructions.
- ///
- /// If we can't do it, return null.
- Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
- IRBuilderBase &IRB,
- const DataLayout &DL) {
- return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
- }
- /// This function is called when we have a memdep query of a load that ends up
- /// being a clobbering memory write (store, memset, memcpy, memmove). This
- /// means that the write *may* provide bits used by the load but we can't be
- /// sure because the pointers don't must-alias.
- ///
- /// Check this case to see if there is anything more we can do before we give
- /// up. This returns -1 if we have to give up, or a byte number in the stored
- /// value of the piece that feeds the load.
- static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
- Value *WritePtr,
- uint64_t WriteSizeInBits,
- const DataLayout &DL) {
- // If the loaded/stored value is a first class array/struct, or scalable type,
- // don't try to transform them. We need to be able to bitcast to integer.
- if (isFirstClassAggregateOrScalableType(LoadTy))
- return -1;
- int64_t StoreOffset = 0, LoadOffset = 0;
- Value *StoreBase =
- GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
- Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
- if (StoreBase != LoadBase)
- return -1;
- uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize();
- if ((WriteSizeInBits & 7) | (LoadSize & 7))
- return -1;
- uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
- LoadSize /= 8;
- // If the Load isn't completely contained within the stored bits, we don't
- // have all the bits to feed it. We could do something crazy in the future
- // (issue a smaller load then merge the bits in) but this seems unlikely to be
- // valuable.
- if (StoreOffset > LoadOffset ||
- StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
- return -1;
- // Okay, we can do this transformation. Return the number of bytes into the
- // store that the load is.
- return LoadOffset - StoreOffset;
- }
- /// This function is called when we have a
- /// memdep query of a load that ends up being a clobbering store.
- int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
- StoreInst *DepSI, const DataLayout &DL) {
- auto *StoredVal = DepSI->getValueOperand();
- // Cannot handle reading from store of first-class aggregate or scalable type.
- if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
- return -1;
- if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
- return -1;
- Value *StorePtr = DepSI->getPointerOperand();
- uint64_t StoreSize =
- DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize();
- return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
- DL);
- }
- /// Looks at a memory location for a load (specified by MemLocBase, Offs, and
- /// Size) and compares it against a load.
- ///
- /// If the specified load could be safely widened to a larger integer load
- /// that is 1) still efficient, 2) safe for the target, and 3) would provide
- /// the specified memory location value, then this function returns the size
- /// in bytes of the load width to use. If not, this returns zero.
- static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
- int64_t MemLocOffs,
- unsigned MemLocSize,
- const LoadInst *LI) {
- // We can only extend simple integer loads.
- if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
- return 0;
- // Load widening is hostile to ThreadSanitizer: it may cause false positives
- // or make the reports more cryptic (access sizes are wrong).
- if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
- return 0;
- const DataLayout &DL = LI->getModule()->getDataLayout();
- // Get the base of this load.
- int64_t LIOffs = 0;
- const Value *LIBase =
- GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
- // If the two pointers are not based on the same pointer, we can't tell that
- // they are related.
- if (LIBase != MemLocBase)
- return 0;
- // Okay, the two values are based on the same pointer, but returned as
- // no-alias. This happens when we have things like two byte loads at "P+1"
- // and "P+3". Check to see if increasing the size of the "LI" load up to its
- // alignment (or the largest native integer type) will allow us to load all
- // the bits required by MemLoc.
- // If MemLoc is before LI, then no widening of LI will help us out.
- if (MemLocOffs < LIOffs)
- return 0;
- // Get the alignment of the load in bytes. We assume that it is safe to load
- // any legal integer up to this size without a problem. For example, if we're
- // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
- // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
- // to i16.
- unsigned LoadAlign = LI->getAlignment();
- int64_t MemLocEnd = MemLocOffs + MemLocSize;
- // If no amount of rounding up will let MemLoc fit into LI, then bail out.
- if (LIOffs + LoadAlign < MemLocEnd)
- return 0;
- // This is the size of the load to try. Start with the next larger power of
- // two.
- unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
- NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
- while (true) {
- // If this load size is bigger than our known alignment or would not fit
- // into a native integer register, then we fail.
- if (NewLoadByteSize > LoadAlign ||
- !DL.fitsInLegalInteger(NewLoadByteSize * 8))
- return 0;
- if (LIOffs + NewLoadByteSize > MemLocEnd &&
- (LI->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeAddress) ||
- LI->getParent()->getParent()->hasFnAttribute(
- Attribute::SanitizeHWAddress)))
- // We will be reading past the location accessed by the original program.
- // While this is safe in a regular build, Address Safety analysis tools
- // may start reporting false warnings. So, don't do widening.
- return 0;
- // If a load of this width would include all of MemLoc, then we succeed.
- if (LIOffs + NewLoadByteSize >= MemLocEnd)
- return NewLoadByteSize;
- NewLoadByteSize <<= 1;
- }
- }
- /// This function is called when we have a
- /// memdep query of a load that ends up being clobbered by another load. See if
- /// the other load can feed into the second load.
- int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
- const DataLayout &DL) {
- // Cannot handle reading from store of first-class aggregate yet.
- if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
- return -1;
- if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
- return -1;
- Value *DepPtr = DepLI->getPointerOperand();
- uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize();
- int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
- if (R != -1)
- return R;
- // If we have a load/load clobber an DepLI can be widened to cover this load,
- // then we should widen it!
- int64_t LoadOffs = 0;
- const Value *LoadBase =
- GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
- unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
- unsigned Size =
- getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI);
- if (Size == 0)
- return -1;
- // Check non-obvious conditions enforced by MDA which we rely on for being
- // able to materialize this potentially available value
- assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
- assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
- return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
- }
- int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
- MemIntrinsic *MI, const DataLayout &DL) {
- // If the mem operation is a non-constant size, we can't handle it.
- ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
- if (!SizeCst)
- return -1;
- uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
- // If this is memset, we just need to see if the offset is valid in the size
- // of the memset..
- if (MI->getIntrinsicID() == Intrinsic::memset) {
- if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
- auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
- if (!CI || !CI->isZero())
- return -1;
- }
- return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
- MemSizeInBits, DL);
- }
- // If we have a memcpy/memmove, the only case we can handle is if this is a
- // copy from constant memory. In that case, we can read directly from the
- // constant memory.
- MemTransferInst *MTI = cast<MemTransferInst>(MI);
- Constant *Src = dyn_cast<Constant>(MTI->getSource());
- if (!Src)
- return -1;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
- return -1;
- // See if the access is within the bounds of the transfer.
- int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
- MemSizeInBits, DL);
- if (Offset == -1)
- return Offset;
- // Otherwise, see if we can constant fold a load from the constant with the
- // offset applied as appropriate.
- unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
- if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
- return Offset;
- return -1;
- }
- template <class T, class HelperClass>
- static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
- HelperClass &Helper,
- const DataLayout &DL) {
- LLVMContext &Ctx = SrcVal->getType()->getContext();
- // If two pointers are in the same address space, they have the same size,
- // so we don't need to do any truncation, etc. This avoids introducing
- // ptrtoint instructions for pointers that may be non-integral.
- if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
- cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
- cast<PointerType>(LoadTy)->getAddressSpace()) {
- return SrcVal;
- }
- uint64_t StoreSize =
- (DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8;
- uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8;
- // Compute which bits of the stored value are being used by the load. Convert
- // to an integer type to start with.
- if (SrcVal->getType()->isPtrOrPtrVectorTy())
- SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
- if (!SrcVal->getType()->isIntegerTy())
- SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
- // Shift the bits to the least significant depending on endianness.
- unsigned ShiftAmt;
- if (DL.isLittleEndian())
- ShiftAmt = Offset * 8;
- else
- ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
- if (ShiftAmt)
- SrcVal = Helper.CreateLShr(SrcVal,
- ConstantInt::get(SrcVal->getType(), ShiftAmt));
- if (LoadSize != StoreSize)
- SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
- IntegerType::get(Ctx, LoadSize * 8));
- return SrcVal;
- }
- /// This function is called when we have a memdep query of a load that ends up
- /// being a clobbering store. This means that the store provides bits used by
- /// the load but the pointers don't must-alias. Check this case to see if
- /// there is anything more we can do before we give up.
- Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
- Instruction *InsertPt, const DataLayout &DL) {
- IRBuilder<> Builder(InsertPt);
- SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
- return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
- }
- Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
- Type *LoadTy, const DataLayout &DL) {
- ConstantFolder F;
- SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
- return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
- }
- /// This function is called when we have a memdep query of a load that ends up
- /// being a clobbering load. This means that the load *may* provide bits used
- /// by the load but we can't be sure because the pointers don't must-alias.
- /// Check this case to see if there is anything more we can do before we give
- /// up.
- Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
- Instruction *InsertPt, const DataLayout &DL) {
- // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
- // widen SrcVal out to a larger load.
- unsigned SrcValStoreSize =
- DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
- unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
- if (Offset + LoadSize > SrcValStoreSize) {
- assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
- assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
- // If we have a load/load clobber an DepLI can be widened to cover this
- // load, then we should widen it to the next power of 2 size big enough!
- unsigned NewLoadSize = Offset + LoadSize;
- if (!isPowerOf2_32(NewLoadSize))
- NewLoadSize = NextPowerOf2(NewLoadSize);
- Value *PtrVal = SrcVal->getPointerOperand();
- // Insert the new load after the old load. This ensures that subsequent
- // memdep queries will find the new load. We can't easily remove the old
- // load completely because it is already in the value numbering table.
- IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
- Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
- Type *DestPTy =
- PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
- Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
- PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
- LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
- NewLoad->takeName(SrcVal);
- NewLoad->setAlignment(SrcVal->getAlign());
- LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
- LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
- // Replace uses of the original load with the wider load. On a big endian
- // system, we need to shift down to get the relevant bits.
- Value *RV = NewLoad;
- if (DL.isBigEndian())
- RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
- RV = Builder.CreateTrunc(RV, SrcVal->getType());
- SrcVal->replaceAllUsesWith(RV);
- SrcVal = NewLoad;
- }
- return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
- }
- Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
- Type *LoadTy, const DataLayout &DL) {
- unsigned SrcValStoreSize =
- DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
- unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
- if (Offset + LoadSize > SrcValStoreSize)
- return nullptr;
- return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
- }
- template <class T, class HelperClass>
- T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
- Type *LoadTy, HelperClass &Helper,
- const DataLayout &DL) {
- LLVMContext &Ctx = LoadTy->getContext();
- uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8;
- // We know that this method is only called when the mem transfer fully
- // provides the bits for the load.
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
- // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
- // independently of what the offset is.
- T *Val = cast<T>(MSI->getValue());
- if (LoadSize != 1)
- Val =
- Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
- T *OneElt = Val;
- // Splat the value out to the right number of bits.
- for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
- // If we can double the number of bytes set, do it.
- if (NumBytesSet * 2 <= LoadSize) {
- T *ShVal = Helper.CreateShl(
- Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
- Val = Helper.CreateOr(Val, ShVal);
- NumBytesSet <<= 1;
- continue;
- }
- // Otherwise insert one byte at a time.
- T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
- Val = Helper.CreateOr(OneElt, ShVal);
- ++NumBytesSet;
- }
- return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
- }
- // Otherwise, this is a memcpy/memmove from a constant global.
- MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
- Constant *Src = cast<Constant>(MTI->getSource());
- // Otherwise, see if we can constant fold a load from the constant with the
- // offset applied as appropriate.
- unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
- return ConstantFoldLoadFromConstPtr(
- Src, LoadTy, APInt(IndexSize, Offset), DL);
- }
- /// This function is called when we have a
- /// memdep query of a load that ends up being a clobbering mem intrinsic.
- Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
- Type *LoadTy, Instruction *InsertPt,
- const DataLayout &DL) {
- IRBuilder<> Builder(InsertPt);
- return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
- LoadTy, Builder, DL);
- }
- Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
- Type *LoadTy, const DataLayout &DL) {
- // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
- // constant is when it's a memset of a non-constant.
- if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
- if (!isa<Constant>(MSI->getValue()))
- return nullptr;
- ConstantFolder F;
- return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
- LoadTy, F, DL);
- }
- } // namespace VNCoercion
- } // namespace llvm
|