123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // For each natural loop with multiple exit blocks, this pass creates a new
- // block N such that all exiting blocks now branch to N, and then control flow
- // is redistributed to all the original exit blocks.
- //
- // Limitation: This assumes that all terminators in the CFG are direct branches
- // (the "br" instruction). The presence of any other control flow
- // such as indirectbr, switch or callbr will cause an assert.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/UnifyLoopExits.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Transforms/Utils.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #define DEBUG_TYPE "unify-loop-exits"
- using namespace llvm;
- namespace {
- struct UnifyLoopExitsLegacyPass : public FunctionPass {
- static char ID;
- UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
- initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequiredID(LowerSwitchID);
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreservedID(LowerSwitchID);
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- }
- bool runOnFunction(Function &F) override;
- };
- } // namespace
- char UnifyLoopExitsLegacyPass::ID = 0;
- FunctionPass *llvm::createUnifyLoopExitsPass() {
- return new UnifyLoopExitsLegacyPass();
- }
- INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
- "Fixup each natural loop to have a single exit block",
- false /* Only looks at CFG */, false /* Analysis Pass */)
- INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
- "Fixup each natural loop to have a single exit block",
- false /* Only looks at CFG */, false /* Analysis Pass */)
- // The current transform introduces new control flow paths which may break the
- // SSA requirement that every def must dominate all its uses. For example,
- // consider a value D defined inside the loop that is used by some instruction
- // U outside the loop. It follows that D dominates U, since the original
- // program has valid SSA form. After merging the exits, all paths from D to U
- // now flow through the unified exit block. In addition, there may be other
- // paths that do not pass through D, but now reach the unified exit
- // block. Thus, D no longer dominates U.
- //
- // Restore the dominance by creating a phi for each such D at the new unified
- // loop exit. But when doing this, ignore any uses U that are in the new unified
- // loop exit, since those were introduced specially when the block was created.
- //
- // The use of SSAUpdater seems like overkill for this operation. The location
- // for creating the new PHI is well-known, and also the set of incoming blocks
- // to the new PHI.
- static void restoreSSA(const DominatorTree &DT, const Loop *L,
- const SetVector<BasicBlock *> &Incoming,
- BasicBlock *LoopExitBlock) {
- using InstVector = SmallVector<Instruction *, 8>;
- using IIMap = MapVector<Instruction *, InstVector>;
- IIMap ExternalUsers;
- for (auto BB : L->blocks()) {
- for (auto &I : *BB) {
- for (auto &U : I.uses()) {
- auto UserInst = cast<Instruction>(U.getUser());
- auto UserBlock = UserInst->getParent();
- if (UserBlock == LoopExitBlock)
- continue;
- if (L->contains(UserBlock))
- continue;
- LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
- << BB->getName() << ")"
- << ": " << UserInst->getName() << "("
- << UserBlock->getName() << ")"
- << "\n");
- ExternalUsers[&I].push_back(UserInst);
- }
- }
- }
- for (auto II : ExternalUsers) {
- // For each Def used outside the loop, create NewPhi in
- // LoopExitBlock. NewPhi receives Def only along exiting blocks that
- // dominate it, while the remaining values are undefined since those paths
- // didn't exist in the original CFG.
- auto Def = II.first;
- LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
- auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(),
- Def->getName() + ".moved",
- LoopExitBlock->getTerminator());
- for (auto In : Incoming) {
- LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
- if (Def->getParent() == In || DT.dominates(Def, In)) {
- LLVM_DEBUG(dbgs() << "dominated\n");
- NewPhi->addIncoming(Def, In);
- } else {
- LLVM_DEBUG(dbgs() << "not dominated\n");
- NewPhi->addIncoming(UndefValue::get(Def->getType()), In);
- }
- }
- LLVM_DEBUG(dbgs() << "external users:");
- for (auto U : II.second) {
- LLVM_DEBUG(dbgs() << " " << U->getName());
- U->replaceUsesOfWith(Def, NewPhi);
- }
- LLVM_DEBUG(dbgs() << "\n");
- }
- }
- static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
- // To unify the loop exits, we need a list of the exiting blocks as
- // well as exit blocks. The functions for locating these lists both
- // traverse the entire loop body. It is more efficient to first
- // locate the exiting blocks and then examine their successors to
- // locate the exit blocks.
- SetVector<BasicBlock *> ExitingBlocks;
- SetVector<BasicBlock *> Exits;
- // We need SetVectors, but the Loop API takes a vector, so we use a temporary.
- SmallVector<BasicBlock *, 8> Temp;
- L->getExitingBlocks(Temp);
- for (auto BB : Temp) {
- ExitingBlocks.insert(BB);
- for (auto S : successors(BB)) {
- auto SL = LI.getLoopFor(S);
- // A successor is not an exit if it is directly or indirectly in the
- // current loop.
- if (SL == L || L->contains(SL))
- continue;
- Exits.insert(S);
- }
- }
- LLVM_DEBUG(
- dbgs() << "Found exit blocks:";
- for (auto Exit : Exits) {
- dbgs() << " " << Exit->getName();
- }
- dbgs() << "\n";
- dbgs() << "Found exiting blocks:";
- for (auto EB : ExitingBlocks) {
- dbgs() << " " << EB->getName();
- }
- dbgs() << "\n";);
- if (Exits.size() <= 1) {
- LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
- return false;
- }
- SmallVector<BasicBlock *, 8> GuardBlocks;
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks,
- Exits, "loop.exit");
- restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
- #if defined(EXPENSIVE_CHECKS)
- assert(DT.verify(DominatorTree::VerificationLevel::Full));
- #else
- assert(DT.verify(DominatorTree::VerificationLevel::Fast));
- #endif // EXPENSIVE_CHECKS
- L->verifyLoop();
- // The guard blocks were created outside the loop, so they need to become
- // members of the parent loop.
- if (auto ParentLoop = L->getParentLoop()) {
- for (auto G : GuardBlocks) {
- ParentLoop->addBasicBlockToLoop(G, LI);
- }
- ParentLoop->verifyLoop();
- }
- #if defined(EXPENSIVE_CHECKS)
- LI.verify(DT);
- #endif // EXPENSIVE_CHECKS
- return true;
- }
- static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
- bool Changed = false;
- auto Loops = LI.getLoopsInPreorder();
- for (auto L : Loops) {
- LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
- << LI.getLoopDepth(L->getHeader()) << ")\n");
- Changed |= unifyLoopExits(DT, LI, L);
- }
- return Changed;
- }
- bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
- LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
- << "\n");
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- return runImpl(LI, DT);
- }
- namespace llvm {
- PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &LI = AM.getResult<LoopAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- if (!runImpl(LI, DT))
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<LoopAnalysis>();
- PA.preserve<DominatorTreeAnalysis>();
- return PA;
- }
- } // namespace llvm
|