1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053 |
- //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements induction variable simplification. It does
- // not define any actual pass or policy, but provides a single function to
- // simplify a loop's induction variables based on ScalarEvolution.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/SimplifyIndVar.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
- using namespace llvm;
- #define DEBUG_TYPE "indvars"
- STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
- STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
- STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
- STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
- STATISTIC(
- NumSimplifiedSDiv,
- "Number of IV signed division operations converted to unsigned division");
- STATISTIC(
- NumSimplifiedSRem,
- "Number of IV signed remainder operations converted to unsigned remainder");
- STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
- namespace {
- /// This is a utility for simplifying induction variables
- /// based on ScalarEvolution. It is the primary instrument of the
- /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
- /// other loop passes that preserve SCEV.
- class SimplifyIndvar {
- Loop *L;
- LoopInfo *LI;
- ScalarEvolution *SE;
- DominatorTree *DT;
- const TargetTransformInfo *TTI;
- SCEVExpander &Rewriter;
- SmallVectorImpl<WeakTrackingVH> &DeadInsts;
- bool Changed;
- public:
- SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, const TargetTransformInfo *TTI,
- SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &Dead)
- : L(Loop), LI(LI), SE(SE), DT(DT), TTI(TTI), Rewriter(Rewriter),
- DeadInsts(Dead), Changed(false) {
- assert(LI && "IV simplification requires LoopInfo");
- }
- bool hasChanged() const { return Changed; }
- /// Iteratively perform simplification on a worklist of users of the
- /// specified induction variable. This is the top-level driver that applies
- /// all simplifications to users of an IV.
- void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
- Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
- bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
- bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
- bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
- bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
- bool eliminateTrunc(TruncInst *TI);
- bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
- bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
- void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
- void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
- bool IsSigned);
- void replaceRemWithNumerator(BinaryOperator *Rem);
- void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
- void replaceSRemWithURem(BinaryOperator *Rem);
- bool eliminateSDiv(BinaryOperator *SDiv);
- bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
- bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
- };
- }
- /// Find a point in code which dominates all given instructions. We can safely
- /// assume that, whatever fact we can prove at the found point, this fact is
- /// also true for each of the given instructions.
- static Instruction *findCommonDominator(ArrayRef<Instruction *> Instructions,
- DominatorTree &DT) {
- Instruction *CommonDom = nullptr;
- for (auto *Insn : Instructions)
- if (!CommonDom || DT.dominates(Insn, CommonDom))
- CommonDom = Insn;
- else if (!DT.dominates(CommonDom, Insn))
- // If there is no dominance relation, use common dominator.
- CommonDom =
- DT.findNearestCommonDominator(CommonDom->getParent(),
- Insn->getParent())->getTerminator();
- assert(CommonDom && "Common dominator not found?");
- return CommonDom;
- }
- /// Fold an IV operand into its use. This removes increments of an
- /// aligned IV when used by a instruction that ignores the low bits.
- ///
- /// IVOperand is guaranteed SCEVable, but UseInst may not be.
- ///
- /// Return the operand of IVOperand for this induction variable if IVOperand can
- /// be folded (in case more folding opportunities have been exposed).
- /// Otherwise return null.
- Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
- Value *IVSrc = nullptr;
- const unsigned OperIdx = 0;
- const SCEV *FoldedExpr = nullptr;
- bool MustDropExactFlag = false;
- switch (UseInst->getOpcode()) {
- default:
- return nullptr;
- case Instruction::UDiv:
- case Instruction::LShr:
- // We're only interested in the case where we know something about
- // the numerator and have a constant denominator.
- if (IVOperand != UseInst->getOperand(OperIdx) ||
- !isa<ConstantInt>(UseInst->getOperand(1)))
- return nullptr;
- // Attempt to fold a binary operator with constant operand.
- // e.g. ((I + 1) >> 2) => I >> 2
- if (!isa<BinaryOperator>(IVOperand)
- || !isa<ConstantInt>(IVOperand->getOperand(1)))
- return nullptr;
- IVSrc = IVOperand->getOperand(0);
- // IVSrc must be the (SCEVable) IV, since the other operand is const.
- assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
- ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
- if (UseInst->getOpcode() == Instruction::LShr) {
- // Get a constant for the divisor. See createSCEV.
- uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
- if (D->getValue().uge(BitWidth))
- return nullptr;
- D = ConstantInt::get(UseInst->getContext(),
- APInt::getOneBitSet(BitWidth, D->getZExtValue()));
- }
- FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
- // We might have 'exact' flag set at this point which will no longer be
- // correct after we make the replacement.
- if (UseInst->isExact() &&
- SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
- MustDropExactFlag = true;
- }
- // We have something that might fold it's operand. Compare SCEVs.
- if (!SE->isSCEVable(UseInst->getType()))
- return nullptr;
- // Bypass the operand if SCEV can prove it has no effect.
- if (SE->getSCEV(UseInst) != FoldedExpr)
- return nullptr;
- LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
- << " -> " << *UseInst << '\n');
- UseInst->setOperand(OperIdx, IVSrc);
- assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
- if (MustDropExactFlag)
- UseInst->dropPoisonGeneratingFlags();
- ++NumElimOperand;
- Changed = true;
- if (IVOperand->use_empty())
- DeadInsts.emplace_back(IVOperand);
- return IVSrc;
- }
- bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
- Value *IVOperand) {
- unsigned IVOperIdx = 0;
- ICmpInst::Predicate Pred = ICmp->getPredicate();
- if (IVOperand != ICmp->getOperand(0)) {
- // Swapped
- assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
- IVOperIdx = 1;
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- // Get the SCEVs for the ICmp operands (in the specific context of the
- // current loop)
- const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
- const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
- const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
- auto *PN = dyn_cast<PHINode>(IVOperand);
- if (!PN)
- return false;
- auto LIP = SE->getLoopInvariantPredicate(Pred, S, X, L);
- if (!LIP)
- return false;
- ICmpInst::Predicate InvariantPredicate = LIP->Pred;
- const SCEV *InvariantLHS = LIP->LHS;
- const SCEV *InvariantRHS = LIP->RHS;
- // Rewrite the comparison to a loop invariant comparison if it can be done
- // cheaply, where cheaply means "we don't need to emit any new
- // instructions".
- SmallDenseMap<const SCEV*, Value*> CheapExpansions;
- CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
- CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
- // TODO: Support multiple entry loops? (We currently bail out of these in
- // the IndVarSimplify pass)
- if (auto *BB = L->getLoopPredecessor()) {
- const int Idx = PN->getBasicBlockIndex(BB);
- if (Idx >= 0) {
- Value *Incoming = PN->getIncomingValue(Idx);
- const SCEV *IncomingS = SE->getSCEV(Incoming);
- CheapExpansions[IncomingS] = Incoming;
- }
- }
- Value *NewLHS = CheapExpansions[InvariantLHS];
- Value *NewRHS = CheapExpansions[InvariantRHS];
- if (!NewLHS)
- if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
- NewLHS = ConstLHS->getValue();
- if (!NewRHS)
- if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
- NewRHS = ConstRHS->getValue();
- if (!NewLHS || !NewRHS)
- // We could not find an existing value to replace either LHS or RHS.
- // Generating new instructions has subtler tradeoffs, so avoid doing that
- // for now.
- return false;
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
- ICmp->setPredicate(InvariantPredicate);
- ICmp->setOperand(0, NewLHS);
- ICmp->setOperand(1, NewRHS);
- return true;
- }
- /// SimplifyIVUsers helper for eliminating useless
- /// comparisons against an induction variable.
- void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
- unsigned IVOperIdx = 0;
- ICmpInst::Predicate Pred = ICmp->getPredicate();
- ICmpInst::Predicate OriginalPred = Pred;
- if (IVOperand != ICmp->getOperand(0)) {
- // Swapped
- assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
- IVOperIdx = 1;
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- // Get the SCEVs for the ICmp operands (in the specific context of the
- // current loop)
- const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
- const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
- const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
- // If the condition is always true or always false in the given context,
- // replace it with a constant value.
- SmallVector<Instruction *, 4> Users;
- for (auto *U : ICmp->users())
- Users.push_back(cast<Instruction>(U));
- const Instruction *CtxI = findCommonDominator(Users, *DT);
- if (auto Ev = SE->evaluatePredicateAt(Pred, S, X, CtxI)) {
- ICmp->replaceAllUsesWith(ConstantInt::getBool(ICmp->getContext(), *Ev));
- DeadInsts.emplace_back(ICmp);
- LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
- } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
- // fallthrough to end of function
- } else if (ICmpInst::isSigned(OriginalPred) &&
- SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
- // If we were unable to make anything above, all we can is to canonicalize
- // the comparison hoping that it will open the doors for other
- // optimizations. If we find out that we compare two non-negative values,
- // we turn the instruction's predicate to its unsigned version. Note that
- // we cannot rely on Pred here unless we check if we have swapped it.
- assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
- LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
- << '\n');
- ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
- } else
- return;
- ++NumElimCmp;
- Changed = true;
- }
- bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
- // Get the SCEVs for the ICmp operands.
- auto *N = SE->getSCEV(SDiv->getOperand(0));
- auto *D = SE->getSCEV(SDiv->getOperand(1));
- // Simplify unnecessary loops away.
- const Loop *L = LI->getLoopFor(SDiv->getParent());
- N = SE->getSCEVAtScope(N, L);
- D = SE->getSCEVAtScope(D, L);
- // Replace sdiv by udiv if both of the operands are non-negative
- if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
- auto *UDiv = BinaryOperator::Create(
- BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
- SDiv->getName() + ".udiv", SDiv);
- UDiv->setIsExact(SDiv->isExact());
- SDiv->replaceAllUsesWith(UDiv);
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
- ++NumSimplifiedSDiv;
- Changed = true;
- DeadInsts.push_back(SDiv);
- return true;
- }
- return false;
- }
- // i %s n -> i %u n if i >= 0 and n >= 0
- void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
- auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
- auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
- Rem->getName() + ".urem", Rem);
- Rem->replaceAllUsesWith(URem);
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
- ++NumSimplifiedSRem;
- Changed = true;
- DeadInsts.emplace_back(Rem);
- }
- // i % n --> i if i is in [0,n).
- void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
- Rem->replaceAllUsesWith(Rem->getOperand(0));
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
- ++NumElimRem;
- Changed = true;
- DeadInsts.emplace_back(Rem);
- }
- // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
- void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
- auto *T = Rem->getType();
- auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
- ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
- SelectInst *Sel =
- SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
- Rem->replaceAllUsesWith(Sel);
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
- ++NumElimRem;
- Changed = true;
- DeadInsts.emplace_back(Rem);
- }
- /// SimplifyIVUsers helper for eliminating useless remainder operations
- /// operating on an induction variable or replacing srem by urem.
- void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
- bool IsSigned) {
- auto *NValue = Rem->getOperand(0);
- auto *DValue = Rem->getOperand(1);
- // We're only interested in the case where we know something about
- // the numerator, unless it is a srem, because we want to replace srem by urem
- // in general.
- bool UsedAsNumerator = IVOperand == NValue;
- if (!UsedAsNumerator && !IsSigned)
- return;
- const SCEV *N = SE->getSCEV(NValue);
- // Simplify unnecessary loops away.
- const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
- N = SE->getSCEVAtScope(N, ICmpLoop);
- bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
- // Do not proceed if the Numerator may be negative
- if (!IsNumeratorNonNegative)
- return;
- const SCEV *D = SE->getSCEV(DValue);
- D = SE->getSCEVAtScope(D, ICmpLoop);
- if (UsedAsNumerator) {
- auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
- if (SE->isKnownPredicate(LT, N, D)) {
- replaceRemWithNumerator(Rem);
- return;
- }
- auto *T = Rem->getType();
- const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
- if (SE->isKnownPredicate(LT, NLessOne, D)) {
- replaceRemWithNumeratorOrZero(Rem);
- return;
- }
- }
- // Try to replace SRem with URem, if both N and D are known non-negative.
- // Since we had already check N, we only need to check D now
- if (!IsSigned || !SE->isKnownNonNegative(D))
- return;
- replaceSRemWithURem(Rem);
- }
- bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
- const SCEV *LHS = SE->getSCEV(WO->getLHS());
- const SCEV *RHS = SE->getSCEV(WO->getRHS());
- if (!SE->willNotOverflow(WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
- return false;
- // Proved no overflow, nuke the overflow check and, if possible, the overflow
- // intrinsic as well.
- BinaryOperator *NewResult = BinaryOperator::Create(
- WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
- if (WO->isSigned())
- NewResult->setHasNoSignedWrap(true);
- else
- NewResult->setHasNoUnsignedWrap(true);
- SmallVector<ExtractValueInst *, 4> ToDelete;
- for (auto *U : WO->users()) {
- if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
- if (EVI->getIndices()[0] == 1)
- EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
- else {
- assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
- EVI->replaceAllUsesWith(NewResult);
- }
- ToDelete.push_back(EVI);
- }
- }
- for (auto *EVI : ToDelete)
- EVI->eraseFromParent();
- if (WO->use_empty())
- WO->eraseFromParent();
- Changed = true;
- return true;
- }
- bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
- const SCEV *LHS = SE->getSCEV(SI->getLHS());
- const SCEV *RHS = SE->getSCEV(SI->getRHS());
- if (!SE->willNotOverflow(SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
- return false;
- BinaryOperator *BO = BinaryOperator::Create(
- SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
- if (SI->isSigned())
- BO->setHasNoSignedWrap();
- else
- BO->setHasNoUnsignedWrap();
- SI->replaceAllUsesWith(BO);
- DeadInsts.emplace_back(SI);
- Changed = true;
- return true;
- }
- bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
- // It is always legal to replace
- // icmp <pred> i32 trunc(iv), n
- // with
- // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
- // Or with
- // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
- // Or with either of these if pred is an equality predicate.
- //
- // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
- // every comparison which uses trunc, it means that we can replace each of
- // them with comparison of iv against sext/zext(n). We no longer need trunc
- // after that.
- //
- // TODO: Should we do this if we can widen *some* comparisons, but not all
- // of them? Sometimes it is enough to enable other optimizations, but the
- // trunc instruction will stay in the loop.
- Value *IV = TI->getOperand(0);
- Type *IVTy = IV->getType();
- const SCEV *IVSCEV = SE->getSCEV(IV);
- const SCEV *TISCEV = SE->getSCEV(TI);
- // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
- // get rid of trunc
- bool DoesSExtCollapse = false;
- bool DoesZExtCollapse = false;
- if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
- DoesSExtCollapse = true;
- if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
- DoesZExtCollapse = true;
- // If neither sext nor zext does collapse, it is not profitable to do any
- // transform. Bail.
- if (!DoesSExtCollapse && !DoesZExtCollapse)
- return false;
- // Collect users of the trunc that look like comparisons against invariants.
- // Bail if we find something different.
- SmallVector<ICmpInst *, 4> ICmpUsers;
- for (auto *U : TI->users()) {
- // We don't care about users in unreachable blocks.
- if (isa<Instruction>(U) &&
- !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
- continue;
- ICmpInst *ICI = dyn_cast<ICmpInst>(U);
- if (!ICI) return false;
- assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
- if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
- !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
- return false;
- // If we cannot get rid of trunc, bail.
- if (ICI->isSigned() && !DoesSExtCollapse)
- return false;
- if (ICI->isUnsigned() && !DoesZExtCollapse)
- return false;
- // For equality, either signed or unsigned works.
- ICmpUsers.push_back(ICI);
- }
- auto CanUseZExt = [&](ICmpInst *ICI) {
- // Unsigned comparison can be widened as unsigned.
- if (ICI->isUnsigned())
- return true;
- // Is it profitable to do zext?
- if (!DoesZExtCollapse)
- return false;
- // For equality, we can safely zext both parts.
- if (ICI->isEquality())
- return true;
- // Otherwise we can only use zext when comparing two non-negative or two
- // negative values. But in practice, we will never pass DoesZExtCollapse
- // check for a negative value, because zext(trunc(x)) is non-negative. So
- // it only make sense to check for non-negativity here.
- const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
- const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
- return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
- };
- // Replace all comparisons against trunc with comparisons against IV.
- for (auto *ICI : ICmpUsers) {
- bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
- auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
- Instruction *Ext = nullptr;
- // For signed/unsigned predicate, replace the old comparison with comparison
- // of immediate IV against sext/zext of the invariant argument. If we can
- // use either sext or zext (i.e. we are dealing with equality predicate),
- // then prefer zext as a more canonical form.
- // TODO: If we see a signed comparison which can be turned into unsigned,
- // we can do it here for canonicalization purposes.
- ICmpInst::Predicate Pred = ICI->getPredicate();
- if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
- if (CanUseZExt(ICI)) {
- assert(DoesZExtCollapse && "Unprofitable zext?");
- Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
- Pred = ICmpInst::getUnsignedPredicate(Pred);
- } else {
- assert(DoesSExtCollapse && "Unprofitable sext?");
- Ext = new SExtInst(Op1, IVTy, "sext", ICI);
- assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
- }
- bool Changed;
- L->makeLoopInvariant(Ext, Changed);
- (void)Changed;
- ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
- ICI->replaceAllUsesWith(NewICI);
- DeadInsts.emplace_back(ICI);
- }
- // Trunc no longer needed.
- TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
- DeadInsts.emplace_back(TI);
- return true;
- }
- /// Eliminate an operation that consumes a simple IV and has no observable
- /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
- /// but UseInst may not be.
- bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
- Instruction *IVOperand) {
- if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
- eliminateIVComparison(ICmp, IVOperand);
- return true;
- }
- if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
- bool IsSRem = Bin->getOpcode() == Instruction::SRem;
- if (IsSRem || Bin->getOpcode() == Instruction::URem) {
- simplifyIVRemainder(Bin, IVOperand, IsSRem);
- return true;
- }
- if (Bin->getOpcode() == Instruction::SDiv)
- return eliminateSDiv(Bin);
- }
- if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
- if (eliminateOverflowIntrinsic(WO))
- return true;
- if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
- if (eliminateSaturatingIntrinsic(SI))
- return true;
- if (auto *TI = dyn_cast<TruncInst>(UseInst))
- if (eliminateTrunc(TI))
- return true;
- if (eliminateIdentitySCEV(UseInst, IVOperand))
- return true;
- return false;
- }
- static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
- if (auto *BB = L->getLoopPreheader())
- return BB->getTerminator();
- return Hint;
- }
- /// Replace the UseInst with a loop invariant expression if it is safe.
- bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
- if (!SE->isSCEVable(I->getType()))
- return false;
- // Get the symbolic expression for this instruction.
- const SCEV *S = SE->getSCEV(I);
- if (!SE->isLoopInvariant(S, L))
- return false;
- // Do not generate something ridiculous even if S is loop invariant.
- if (Rewriter.isHighCostExpansion(S, L, SCEVCheapExpansionBudget, TTI, I))
- return false;
- auto *IP = GetLoopInvariantInsertPosition(L, I);
- if (!isSafeToExpandAt(S, IP, *SE)) {
- LLVM_DEBUG(dbgs() << "INDVARS: Can not replace IV user: " << *I
- << " with non-speculable loop invariant: " << *S << '\n');
- return false;
- }
- auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
- I->replaceAllUsesWith(Invariant);
- LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
- << " with loop invariant: " << *S << '\n');
- ++NumFoldedUser;
- Changed = true;
- DeadInsts.emplace_back(I);
- return true;
- }
- /// Eliminate any operation that SCEV can prove is an identity function.
- bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
- Instruction *IVOperand) {
- if (!SE->isSCEVable(UseInst->getType()) ||
- (UseInst->getType() != IVOperand->getType()) ||
- (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
- return false;
- // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
- // dominator tree, even if X is an operand to Y. For instance, in
- //
- // %iv = phi i32 {0,+,1}
- // br %cond, label %left, label %merge
- //
- // left:
- // %X = add i32 %iv, 0
- // br label %merge
- //
- // merge:
- // %M = phi (%X, %iv)
- //
- // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
- // %M.replaceAllUsesWith(%X) would be incorrect.
- if (isa<PHINode>(UseInst))
- // If UseInst is not a PHI node then we know that IVOperand dominates
- // UseInst directly from the legality of SSA.
- if (!DT || !DT->dominates(IVOperand, UseInst))
- return false;
- if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
- return false;
- LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
- UseInst->replaceAllUsesWith(IVOperand);
- ++NumElimIdentity;
- Changed = true;
- DeadInsts.emplace_back(UseInst);
- return true;
- }
- /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
- /// unsigned-overflow. Returns true if anything changed, false otherwise.
- bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
- Value *IVOperand) {
- SCEV::NoWrapFlags Flags;
- bool Deduced;
- std::tie(Flags, Deduced) = SE->getStrengthenedNoWrapFlagsFromBinOp(
- cast<OverflowingBinaryOperator>(BO));
- if (!Deduced)
- return Deduced;
- BO->setHasNoUnsignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNUW) ==
- SCEV::FlagNUW);
- BO->setHasNoSignedWrap(ScalarEvolution::maskFlags(Flags, SCEV::FlagNSW) ==
- SCEV::FlagNSW);
- // The getStrengthenedNoWrapFlagsFromBinOp() check inferred additional nowrap
- // flags on addrecs while performing zero/sign extensions. We could call
- // forgetValue() here to make sure those flags also propagate to any other
- // SCEV expressions based on the addrec. However, this can have pathological
- // compile-time impact, see https://bugs.llvm.org/show_bug.cgi?id=50384.
- return Deduced;
- }
- /// Annotate the Shr in (X << IVOperand) >> C as exact using the
- /// information from the IV's range. Returns true if anything changed, false
- /// otherwise.
- bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
- Value *IVOperand) {
- using namespace llvm::PatternMatch;
- if (BO->getOpcode() == Instruction::Shl) {
- bool Changed = false;
- ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
- for (auto *U : BO->users()) {
- const APInt *C;
- if (match(U,
- m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
- match(U,
- m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
- BinaryOperator *Shr = cast<BinaryOperator>(U);
- if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
- Shr->setIsExact(true);
- Changed = true;
- }
- }
- }
- return Changed;
- }
- return false;
- }
- /// Add all uses of Def to the current IV's worklist.
- static void pushIVUsers(
- Instruction *Def, Loop *L,
- SmallPtrSet<Instruction*,16> &Simplified,
- SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
- for (User *U : Def->users()) {
- Instruction *UI = cast<Instruction>(U);
- // Avoid infinite or exponential worklist processing.
- // Also ensure unique worklist users.
- // If Def is a LoopPhi, it may not be in the Simplified set, so check for
- // self edges first.
- if (UI == Def)
- continue;
- // Only change the current Loop, do not change the other parts (e.g. other
- // Loops).
- if (!L->contains(UI))
- continue;
- // Do not push the same instruction more than once.
- if (!Simplified.insert(UI).second)
- continue;
- SimpleIVUsers.push_back(std::make_pair(UI, Def));
- }
- }
- /// Return true if this instruction generates a simple SCEV
- /// expression in terms of that IV.
- ///
- /// This is similar to IVUsers' isInteresting() but processes each instruction
- /// non-recursively when the operand is already known to be a simpleIVUser.
- ///
- static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
- if (!SE->isSCEVable(I->getType()))
- return false;
- // Get the symbolic expression for this instruction.
- const SCEV *S = SE->getSCEV(I);
- // Only consider affine recurrences.
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
- if (AR && AR->getLoop() == L)
- return true;
- return false;
- }
- /// Iteratively perform simplification on a worklist of users
- /// of the specified induction variable. Each successive simplification may push
- /// more users which may themselves be candidates for simplification.
- ///
- /// This algorithm does not require IVUsers analysis. Instead, it simplifies
- /// instructions in-place during analysis. Rather than rewriting induction
- /// variables bottom-up from their users, it transforms a chain of IVUsers
- /// top-down, updating the IR only when it encounters a clear optimization
- /// opportunity.
- ///
- /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
- ///
- void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
- if (!SE->isSCEVable(CurrIV->getType()))
- return;
- // Instructions processed by SimplifyIndvar for CurrIV.
- SmallPtrSet<Instruction*,16> Simplified;
- // Use-def pairs if IV users waiting to be processed for CurrIV.
- SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
- // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
- // called multiple times for the same LoopPhi. This is the proper thing to
- // do for loop header phis that use each other.
- pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
- while (!SimpleIVUsers.empty()) {
- std::pair<Instruction*, Instruction*> UseOper =
- SimpleIVUsers.pop_back_val();
- Instruction *UseInst = UseOper.first;
- // If a user of the IndVar is trivially dead, we prefer just to mark it dead
- // rather than try to do some complex analysis or transformation (such as
- // widening) basing on it.
- // TODO: Propagate TLI and pass it here to handle more cases.
- if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
- DeadInsts.emplace_back(UseInst);
- continue;
- }
- // Bypass back edges to avoid extra work.
- if (UseInst == CurrIV) continue;
- // Try to replace UseInst with a loop invariant before any other
- // simplifications.
- if (replaceIVUserWithLoopInvariant(UseInst))
- continue;
- Instruction *IVOperand = UseOper.second;
- for (unsigned N = 0; IVOperand; ++N) {
- assert(N <= Simplified.size() && "runaway iteration");
- Value *NewOper = foldIVUser(UseInst, IVOperand);
- if (!NewOper)
- break; // done folding
- IVOperand = dyn_cast<Instruction>(NewOper);
- }
- if (!IVOperand)
- continue;
- if (eliminateIVUser(UseInst, IVOperand)) {
- pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
- continue;
- }
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
- if ((isa<OverflowingBinaryOperator>(BO) &&
- strengthenOverflowingOperation(BO, IVOperand)) ||
- (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
- // re-queue uses of the now modified binary operator and fall
- // through to the checks that remain.
- pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
- }
- }
- CastInst *Cast = dyn_cast<CastInst>(UseInst);
- if (V && Cast) {
- V->visitCast(Cast);
- continue;
- }
- if (isSimpleIVUser(UseInst, L, SE)) {
- pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
- }
- }
- }
- namespace llvm {
- void IVVisitor::anchor() { }
- /// Simplify instructions that use this induction variable
- /// by using ScalarEvolution to analyze the IV's recurrence.
- bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, const TargetTransformInfo *TTI,
- SmallVectorImpl<WeakTrackingVH> &Dead,
- SCEVExpander &Rewriter, IVVisitor *V) {
- SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, TTI,
- Rewriter, Dead);
- SIV.simplifyUsers(CurrIV, V);
- return SIV.hasChanged();
- }
- /// Simplify users of induction variables within this
- /// loop. This does not actually change or add IVs.
- bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, const TargetTransformInfo *TTI,
- SmallVectorImpl<WeakTrackingVH> &Dead) {
- SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
- #ifndef NDEBUG
- Rewriter.setDebugType(DEBUG_TYPE);
- #endif
- bool Changed = false;
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
- Changed |=
- simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, TTI, Dead, Rewriter);
- }
- return Changed;
- }
- } // namespace llvm
- namespace {
- //===----------------------------------------------------------------------===//
- // Widen Induction Variables - Extend the width of an IV to cover its
- // widest uses.
- //===----------------------------------------------------------------------===//
- class WidenIV {
- // Parameters
- PHINode *OrigPhi;
- Type *WideType;
- // Context
- LoopInfo *LI;
- Loop *L;
- ScalarEvolution *SE;
- DominatorTree *DT;
- // Does the module have any calls to the llvm.experimental.guard intrinsic
- // at all? If not we can avoid scanning instructions looking for guards.
- bool HasGuards;
- bool UsePostIncrementRanges;
- // Statistics
- unsigned NumElimExt = 0;
- unsigned NumWidened = 0;
- // Result
- PHINode *WidePhi = nullptr;
- Instruction *WideInc = nullptr;
- const SCEV *WideIncExpr = nullptr;
- SmallVectorImpl<WeakTrackingVH> &DeadInsts;
- SmallPtrSet<Instruction *,16> Widened;
- enum ExtendKind { ZeroExtended, SignExtended, Unknown };
- // A map tracking the kind of extension used to widen each narrow IV
- // and narrow IV user.
- // Key: pointer to a narrow IV or IV user.
- // Value: the kind of extension used to widen this Instruction.
- DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
- using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
- // A map with control-dependent ranges for post increment IV uses. The key is
- // a pair of IV def and a use of this def denoting the context. The value is
- // a ConstantRange representing possible values of the def at the given
- // context.
- DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
- Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
- Instruction *UseI) {
- DefUserPair Key(Def, UseI);
- auto It = PostIncRangeInfos.find(Key);
- return It == PostIncRangeInfos.end()
- ? Optional<ConstantRange>(None)
- : Optional<ConstantRange>(It->second);
- }
- void calculatePostIncRanges(PHINode *OrigPhi);
- void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
- void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
- DefUserPair Key(Def, UseI);
- auto It = PostIncRangeInfos.find(Key);
- if (It == PostIncRangeInfos.end())
- PostIncRangeInfos.insert({Key, R});
- else
- It->second = R.intersectWith(It->second);
- }
- public:
- /// Record a link in the Narrow IV def-use chain along with the WideIV that
- /// computes the same value as the Narrow IV def. This avoids caching Use*
- /// pointers.
- struct NarrowIVDefUse {
- Instruction *NarrowDef = nullptr;
- Instruction *NarrowUse = nullptr;
- Instruction *WideDef = nullptr;
- // True if the narrow def is never negative. Tracking this information lets
- // us use a sign extension instead of a zero extension or vice versa, when
- // profitable and legal.
- bool NeverNegative = false;
- NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
- bool NeverNegative)
- : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
- NeverNegative(NeverNegative) {}
- };
- WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
- DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
- bool HasGuards, bool UsePostIncrementRanges = true);
- PHINode *createWideIV(SCEVExpander &Rewriter);
- unsigned getNumElimExt() { return NumElimExt; };
- unsigned getNumWidened() { return NumWidened; };
- protected:
- Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
- Instruction *Use);
- Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
- Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
- const SCEVAddRecExpr *WideAR);
- Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
- ExtendKind getExtendKind(Instruction *I);
- using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
- WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
- WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
- const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
- unsigned OpCode) const;
- Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
- bool widenLoopCompare(NarrowIVDefUse DU);
- bool widenWithVariantUse(NarrowIVDefUse DU);
- void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
- private:
- SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
- };
- } // namespace
- /// Determine the insertion point for this user. By default, insert immediately
- /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
- /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
- /// common dominator for the incoming blocks. A nullptr can be returned if no
- /// viable location is found: it may happen if User is a PHI and Def only comes
- /// to this PHI from unreachable blocks.
- static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
- DominatorTree *DT, LoopInfo *LI) {
- PHINode *PHI = dyn_cast<PHINode>(User);
- if (!PHI)
- return User;
- Instruction *InsertPt = nullptr;
- for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
- if (PHI->getIncomingValue(i) != Def)
- continue;
- BasicBlock *InsertBB = PHI->getIncomingBlock(i);
- if (!DT->isReachableFromEntry(InsertBB))
- continue;
- if (!InsertPt) {
- InsertPt = InsertBB->getTerminator();
- continue;
- }
- InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
- InsertPt = InsertBB->getTerminator();
- }
- // If we have skipped all inputs, it means that Def only comes to Phi from
- // unreachable blocks.
- if (!InsertPt)
- return nullptr;
- auto *DefI = dyn_cast<Instruction>(Def);
- if (!DefI)
- return InsertPt;
- assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
- auto *L = LI->getLoopFor(DefI->getParent());
- assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
- for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
- if (LI->getLoopFor(DTN->getBlock()) == L)
- return DTN->getBlock()->getTerminator();
- llvm_unreachable("DefI dominates InsertPt!");
- }
- WidenIV::WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
- DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
- bool HasGuards, bool UsePostIncrementRanges)
- : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
- L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
- HasGuards(HasGuards), UsePostIncrementRanges(UsePostIncrementRanges),
- DeadInsts(DI) {
- assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
- ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
- }
- Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
- bool IsSigned, Instruction *Use) {
- // Set the debug location and conservative insertion point.
- IRBuilder<> Builder(Use);
- // Hoist the insertion point into loop preheaders as far as possible.
- for (const Loop *L = LI->getLoopFor(Use->getParent());
- L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
- L = L->getParentLoop())
- Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
- return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
- Builder.CreateZExt(NarrowOper, WideType);
- }
- /// Instantiate a wide operation to replace a narrow operation. This only needs
- /// to handle operations that can evaluation to SCEVAddRec. It can safely return
- /// 0 for any operation we decide not to clone.
- Instruction *WidenIV::cloneIVUser(WidenIV::NarrowIVDefUse DU,
- const SCEVAddRecExpr *WideAR) {
- unsigned Opcode = DU.NarrowUse->getOpcode();
- switch (Opcode) {
- default:
- return nullptr;
- case Instruction::Add:
- case Instruction::Mul:
- case Instruction::UDiv:
- case Instruction::Sub:
- return cloneArithmeticIVUser(DU, WideAR);
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- return cloneBitwiseIVUser(DU);
- }
- }
- Instruction *WidenIV::cloneBitwiseIVUser(WidenIV::NarrowIVDefUse DU) {
- Instruction *NarrowUse = DU.NarrowUse;
- Instruction *NarrowDef = DU.NarrowDef;
- Instruction *WideDef = DU.WideDef;
- LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
- // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
- // about the narrow operand yet so must insert a [sz]ext. It is probably loop
- // invariant and will be folded or hoisted. If it actually comes from a
- // widened IV, it should be removed during a future call to widenIVUse.
- bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
- Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(0), WideType,
- IsSigned, NarrowUse);
- Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(1), WideType,
- IsSigned, NarrowUse);
- auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
- auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
- NarrowBO->getName());
- IRBuilder<> Builder(NarrowUse);
- Builder.Insert(WideBO);
- WideBO->copyIRFlags(NarrowBO);
- return WideBO;
- }
- Instruction *WidenIV::cloneArithmeticIVUser(WidenIV::NarrowIVDefUse DU,
- const SCEVAddRecExpr *WideAR) {
- Instruction *NarrowUse = DU.NarrowUse;
- Instruction *NarrowDef = DU.NarrowDef;
- Instruction *WideDef = DU.WideDef;
- LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
- unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
- // We're trying to find X such that
- //
- // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
- //
- // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
- // and check using SCEV if any of them are correct.
- // Returns true if extending NonIVNarrowDef according to `SignExt` is a
- // correct solution to X.
- auto GuessNonIVOperand = [&](bool SignExt) {
- const SCEV *WideLHS;
- const SCEV *WideRHS;
- auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
- if (SignExt)
- return SE->getSignExtendExpr(S, Ty);
- return SE->getZeroExtendExpr(S, Ty);
- };
- if (IVOpIdx == 0) {
- WideLHS = SE->getSCEV(WideDef);
- const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
- WideRHS = GetExtend(NarrowRHS, WideType);
- } else {
- const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
- WideLHS = GetExtend(NarrowLHS, WideType);
- WideRHS = SE->getSCEV(WideDef);
- }
- // WideUse is "WideDef `op.wide` X" as described in the comment.
- const SCEV *WideUse =
- getSCEVByOpCode(WideLHS, WideRHS, NarrowUse->getOpcode());
- return WideUse == WideAR;
- };
- bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
- if (!GuessNonIVOperand(SignExtend)) {
- SignExtend = !SignExtend;
- if (!GuessNonIVOperand(SignExtend))
- return nullptr;
- }
- Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(0), WideType,
- SignExtend, NarrowUse);
- Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(1), WideType,
- SignExtend, NarrowUse);
- auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
- auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
- NarrowBO->getName());
- IRBuilder<> Builder(NarrowUse);
- Builder.Insert(WideBO);
- WideBO->copyIRFlags(NarrowBO);
- return WideBO;
- }
- WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
- auto It = ExtendKindMap.find(I);
- assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
- return It->second;
- }
- const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
- unsigned OpCode) const {
- switch (OpCode) {
- case Instruction::Add:
- return SE->getAddExpr(LHS, RHS);
- case Instruction::Sub:
- return SE->getMinusSCEV(LHS, RHS);
- case Instruction::Mul:
- return SE->getMulExpr(LHS, RHS);
- case Instruction::UDiv:
- return SE->getUDivExpr(LHS, RHS);
- default:
- llvm_unreachable("Unsupported opcode.");
- };
- }
- /// No-wrap operations can transfer sign extension of their result to their
- /// operands. Generate the SCEV value for the widened operation without
- /// actually modifying the IR yet. If the expression after extending the
- /// operands is an AddRec for this loop, return the AddRec and the kind of
- /// extension used.
- WidenIV::WidenedRecTy
- WidenIV::getExtendedOperandRecurrence(WidenIV::NarrowIVDefUse DU) {
- // Handle the common case of add<nsw/nuw>
- const unsigned OpCode = DU.NarrowUse->getOpcode();
- // Only Add/Sub/Mul instructions supported yet.
- if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
- OpCode != Instruction::Mul)
- return {nullptr, Unknown};
- // One operand (NarrowDef) has already been extended to WideDef. Now determine
- // if extending the other will lead to a recurrence.
- const unsigned ExtendOperIdx =
- DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
- assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
- const SCEV *ExtendOperExpr = nullptr;
- const OverflowingBinaryOperator *OBO =
- cast<OverflowingBinaryOperator>(DU.NarrowUse);
- ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
- if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
- ExtendOperExpr = SE->getSignExtendExpr(
- SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
- else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
- ExtendOperExpr = SE->getZeroExtendExpr(
- SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
- else
- return {nullptr, Unknown};
- // When creating this SCEV expr, don't apply the current operations NSW or NUW
- // flags. This instruction may be guarded by control flow that the no-wrap
- // behavior depends on. Non-control-equivalent instructions can be mapped to
- // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
- // semantics to those operations.
- const SCEV *lhs = SE->getSCEV(DU.WideDef);
- const SCEV *rhs = ExtendOperExpr;
- // Let's swap operands to the initial order for the case of non-commutative
- // operations, like SUB. See PR21014.
- if (ExtendOperIdx == 0)
- std::swap(lhs, rhs);
- const SCEVAddRecExpr *AddRec =
- dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
- if (!AddRec || AddRec->getLoop() != L)
- return {nullptr, Unknown};
- return {AddRec, ExtKind};
- }
- /// Is this instruction potentially interesting for further simplification after
- /// widening it's type? In other words, can the extend be safely hoisted out of
- /// the loop with SCEV reducing the value to a recurrence on the same loop. If
- /// so, return the extended recurrence and the kind of extension used. Otherwise
- /// return {nullptr, Unknown}.
- WidenIV::WidenedRecTy WidenIV::getWideRecurrence(WidenIV::NarrowIVDefUse DU) {
- if (!DU.NarrowUse->getType()->isIntegerTy())
- return {nullptr, Unknown};
- const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
- if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
- SE->getTypeSizeInBits(WideType)) {
- // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
- // index. So don't follow this use.
- return {nullptr, Unknown};
- }
- const SCEV *WideExpr;
- ExtendKind ExtKind;
- if (DU.NeverNegative) {
- WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
- if (isa<SCEVAddRecExpr>(WideExpr))
- ExtKind = SignExtended;
- else {
- WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
- ExtKind = ZeroExtended;
- }
- } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
- WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
- ExtKind = SignExtended;
- } else {
- WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
- ExtKind = ZeroExtended;
- }
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
- if (!AddRec || AddRec->getLoop() != L)
- return {nullptr, Unknown};
- return {AddRec, ExtKind};
- }
- /// This IV user cannot be widened. Replace this use of the original narrow IV
- /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
- static void truncateIVUse(WidenIV::NarrowIVDefUse DU, DominatorTree *DT,
- LoopInfo *LI) {
- auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
- if (!InsertPt)
- return;
- LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
- << *DU.NarrowUse << "\n");
- IRBuilder<> Builder(InsertPt);
- Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
- DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
- }
- /// If the narrow use is a compare instruction, then widen the compare
- // (and possibly the other operand). The extend operation is hoisted into the
- // loop preheader as far as possible.
- bool WidenIV::widenLoopCompare(WidenIV::NarrowIVDefUse DU) {
- ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
- if (!Cmp)
- return false;
- // We can legally widen the comparison in the following two cases:
- //
- // - The signedness of the IV extension and comparison match
- //
- // - The narrow IV is always positive (and thus its sign extension is equal
- // to its zero extension). For instance, let's say we're zero extending
- // %narrow for the following use
- //
- // icmp slt i32 %narrow, %val ... (A)
- //
- // and %narrow is always positive. Then
- //
- // (A) == icmp slt i32 sext(%narrow), sext(%val)
- // == icmp slt i32 zext(%narrow), sext(%val)
- bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
- if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
- return false;
- Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
- unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
- unsigned IVWidth = SE->getTypeSizeInBits(WideType);
- assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
- // Widen the compare instruction.
- auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
- if (!InsertPt)
- return false;
- IRBuilder<> Builder(InsertPt);
- DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
- // Widen the other operand of the compare, if necessary.
- if (CastWidth < IVWidth) {
- Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
- DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
- }
- return true;
- }
- // The widenIVUse avoids generating trunc by evaluating the use as AddRec, this
- // will not work when:
- // 1) SCEV traces back to an instruction inside the loop that SCEV can not
- // expand, eg. add %indvar, (load %addr)
- // 2) SCEV finds a loop variant, eg. add %indvar, %loopvariant
- // While SCEV fails to avoid trunc, we can still try to use instruction
- // combining approach to prove trunc is not required. This can be further
- // extended with other instruction combining checks, but for now we handle the
- // following case (sub can be "add" and "mul", "nsw + sext" can be "nus + zext")
- //
- // Src:
- // %c = sub nsw %b, %indvar
- // %d = sext %c to i64
- // Dst:
- // %indvar.ext1 = sext %indvar to i64
- // %m = sext %b to i64
- // %d = sub nsw i64 %m, %indvar.ext1
- // Therefore, as long as the result of add/sub/mul is extended to wide type, no
- // trunc is required regardless of how %b is generated. This pattern is common
- // when calculating address in 64 bit architecture
- bool WidenIV::widenWithVariantUse(WidenIV::NarrowIVDefUse DU) {
- Instruction *NarrowUse = DU.NarrowUse;
- Instruction *NarrowDef = DU.NarrowDef;
- Instruction *WideDef = DU.WideDef;
- // Handle the common case of add<nsw/nuw>
- const unsigned OpCode = NarrowUse->getOpcode();
- // Only Add/Sub/Mul instructions are supported.
- if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
- OpCode != Instruction::Mul)
- return false;
- // The operand that is not defined by NarrowDef of DU. Let's call it the
- // other operand.
- assert((NarrowUse->getOperand(0) == NarrowDef ||
- NarrowUse->getOperand(1) == NarrowDef) &&
- "bad DU");
- const OverflowingBinaryOperator *OBO =
- cast<OverflowingBinaryOperator>(NarrowUse);
- ExtendKind ExtKind = getExtendKind(NarrowDef);
- bool CanSignExtend = ExtKind == SignExtended && OBO->hasNoSignedWrap();
- bool CanZeroExtend = ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap();
- auto AnotherOpExtKind = ExtKind;
- // Check that all uses are either:
- // - narrow def (in case of we are widening the IV increment);
- // - single-input LCSSA Phis;
- // - comparison of the chosen type;
- // - extend of the chosen type (raison d'etre).
- SmallVector<Instruction *, 4> ExtUsers;
- SmallVector<PHINode *, 4> LCSSAPhiUsers;
- SmallVector<ICmpInst *, 4> ICmpUsers;
- for (Use &U : NarrowUse->uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- if (User == NarrowDef)
- continue;
- if (!L->contains(User)) {
- auto *LCSSAPhi = cast<PHINode>(User);
- // Make sure there is only 1 input, so that we don't have to split
- // critical edges.
- if (LCSSAPhi->getNumOperands() != 1)
- return false;
- LCSSAPhiUsers.push_back(LCSSAPhi);
- continue;
- }
- if (auto *ICmp = dyn_cast<ICmpInst>(User)) {
- auto Pred = ICmp->getPredicate();
- // We have 3 types of predicates: signed, unsigned and equality
- // predicates. For equality, it's legal to widen icmp for either sign and
- // zero extend. For sign extend, we can also do so for signed predicates,
- // likeweise for zero extend we can widen icmp for unsigned predicates.
- if (ExtKind == ZeroExtended && ICmpInst::isSigned(Pred))
- return false;
- if (ExtKind == SignExtended && ICmpInst::isUnsigned(Pred))
- return false;
- ICmpUsers.push_back(ICmp);
- continue;
- }
- if (ExtKind == SignExtended)
- User = dyn_cast<SExtInst>(User);
- else
- User = dyn_cast<ZExtInst>(User);
- if (!User || User->getType() != WideType)
- return false;
- ExtUsers.push_back(User);
- }
- if (ExtUsers.empty()) {
- DeadInsts.emplace_back(NarrowUse);
- return true;
- }
- // We'll prove some facts that should be true in the context of ext users. If
- // there is no users, we are done now. If there are some, pick their common
- // dominator as context.
- const Instruction *CtxI = findCommonDominator(ExtUsers, *DT);
- if (!CanSignExtend && !CanZeroExtend) {
- // Because InstCombine turns 'sub nuw' to 'add' losing the no-wrap flag, we
- // will most likely not see it. Let's try to prove it.
- if (OpCode != Instruction::Add)
- return false;
- if (ExtKind != ZeroExtended)
- return false;
- const SCEV *LHS = SE->getSCEV(OBO->getOperand(0));
- const SCEV *RHS = SE->getSCEV(OBO->getOperand(1));
- // TODO: Support case for NarrowDef = NarrowUse->getOperand(1).
- if (NarrowUse->getOperand(0) != NarrowDef)
- return false;
- if (!SE->isKnownNegative(RHS))
- return false;
- bool ProvedSubNUW = SE->isKnownPredicateAt(ICmpInst::ICMP_UGE, LHS,
- SE->getNegativeSCEV(RHS), CtxI);
- if (!ProvedSubNUW)
- return false;
- // In fact, our 'add' is 'sub nuw'. We will need to widen the 2nd operand as
- // neg(zext(neg(op))), which is basically sext(op).
- AnotherOpExtKind = SignExtended;
- }
- // Verifying that Defining operand is an AddRec
- const SCEV *Op1 = SE->getSCEV(WideDef);
- const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
- if (!AddRecOp1 || AddRecOp1->getLoop() != L)
- return false;
- LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
- // Generating a widening use instruction.
- Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(0), WideType,
- AnotherOpExtKind, NarrowUse);
- Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
- ? WideDef
- : createExtendInst(NarrowUse->getOperand(1), WideType,
- AnotherOpExtKind, NarrowUse);
- auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
- auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
- NarrowBO->getName());
- IRBuilder<> Builder(NarrowUse);
- Builder.Insert(WideBO);
- WideBO->copyIRFlags(NarrowBO);
- ExtendKindMap[NarrowUse] = ExtKind;
- for (Instruction *User : ExtUsers) {
- assert(User->getType() == WideType && "Checked before!");
- LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
- << *WideBO << "\n");
- ++NumElimExt;
- User->replaceAllUsesWith(WideBO);
- DeadInsts.emplace_back(User);
- }
- for (PHINode *User : LCSSAPhiUsers) {
- assert(User->getNumOperands() == 1 && "Checked before!");
- Builder.SetInsertPoint(User);
- auto *WidePN =
- Builder.CreatePHI(WideBO->getType(), 1, User->getName() + ".wide");
- BasicBlock *LoopExitingBlock = User->getParent()->getSinglePredecessor();
- assert(LoopExitingBlock && L->contains(LoopExitingBlock) &&
- "Not a LCSSA Phi?");
- WidePN->addIncoming(WideBO, LoopExitingBlock);
- Builder.SetInsertPoint(&*User->getParent()->getFirstInsertionPt());
- auto *TruncPN = Builder.CreateTrunc(WidePN, User->getType());
- User->replaceAllUsesWith(TruncPN);
- DeadInsts.emplace_back(User);
- }
- for (ICmpInst *User : ICmpUsers) {
- Builder.SetInsertPoint(User);
- auto ExtendedOp = [&](Value * V)->Value * {
- if (V == NarrowUse)
- return WideBO;
- if (ExtKind == ZeroExtended)
- return Builder.CreateZExt(V, WideBO->getType());
- else
- return Builder.CreateSExt(V, WideBO->getType());
- };
- auto Pred = User->getPredicate();
- auto *LHS = ExtendedOp(User->getOperand(0));
- auto *RHS = ExtendedOp(User->getOperand(1));
- auto *WideCmp =
- Builder.CreateICmp(Pred, LHS, RHS, User->getName() + ".wide");
- User->replaceAllUsesWith(WideCmp);
- DeadInsts.emplace_back(User);
- }
- return true;
- }
- /// Determine whether an individual user of the narrow IV can be widened. If so,
- /// return the wide clone of the user.
- Instruction *WidenIV::widenIVUse(WidenIV::NarrowIVDefUse DU, SCEVExpander &Rewriter) {
- assert(ExtendKindMap.count(DU.NarrowDef) &&
- "Should already know the kind of extension used to widen NarrowDef");
- // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
- if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
- if (LI->getLoopFor(UsePhi->getParent()) != L) {
- // For LCSSA phis, sink the truncate outside the loop.
- // After SimplifyCFG most loop exit targets have a single predecessor.
- // Otherwise fall back to a truncate within the loop.
- if (UsePhi->getNumOperands() != 1)
- truncateIVUse(DU, DT, LI);
- else {
- // Widening the PHI requires us to insert a trunc. The logical place
- // for this trunc is in the same BB as the PHI. This is not possible if
- // the BB is terminated by a catchswitch.
- if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
- return nullptr;
- PHINode *WidePhi =
- PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
- UsePhi);
- WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
- IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
- Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
- UsePhi->replaceAllUsesWith(Trunc);
- DeadInsts.emplace_back(UsePhi);
- LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
- << *WidePhi << "\n");
- }
- return nullptr;
- }
- }
- // This narrow use can be widened by a sext if it's non-negative or its narrow
- // def was widended by a sext. Same for zext.
- auto canWidenBySExt = [&]() {
- return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
- };
- auto canWidenByZExt = [&]() {
- return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
- };
- // Our raison d'etre! Eliminate sign and zero extension.
- if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
- (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
- Value *NewDef = DU.WideDef;
- if (DU.NarrowUse->getType() != WideType) {
- unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
- unsigned IVWidth = SE->getTypeSizeInBits(WideType);
- if (CastWidth < IVWidth) {
- // The cast isn't as wide as the IV, so insert a Trunc.
- IRBuilder<> Builder(DU.NarrowUse);
- NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
- }
- else {
- // A wider extend was hidden behind a narrower one. This may induce
- // another round of IV widening in which the intermediate IV becomes
- // dead. It should be very rare.
- LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
- << " not wide enough to subsume " << *DU.NarrowUse
- << "\n");
- DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
- NewDef = DU.NarrowUse;
- }
- }
- if (NewDef != DU.NarrowUse) {
- LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
- << " replaced by " << *DU.WideDef << "\n");
- ++NumElimExt;
- DU.NarrowUse->replaceAllUsesWith(NewDef);
- DeadInsts.emplace_back(DU.NarrowUse);
- }
- // Now that the extend is gone, we want to expose it's uses for potential
- // further simplification. We don't need to directly inform SimplifyIVUsers
- // of the new users, because their parent IV will be processed later as a
- // new loop phi. If we preserved IVUsers analysis, we would also want to
- // push the uses of WideDef here.
- // No further widening is needed. The deceased [sz]ext had done it for us.
- return nullptr;
- }
- // Does this user itself evaluate to a recurrence after widening?
- WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
- if (!WideAddRec.first)
- WideAddRec = getWideRecurrence(DU);
- assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
- if (!WideAddRec.first) {
- // If use is a loop condition, try to promote the condition instead of
- // truncating the IV first.
- if (widenLoopCompare(DU))
- return nullptr;
- // We are here about to generate a truncate instruction that may hurt
- // performance because the scalar evolution expression computed earlier
- // in WideAddRec.first does not indicate a polynomial induction expression.
- // In that case, look at the operands of the use instruction to determine
- // if we can still widen the use instead of truncating its operand.
- if (widenWithVariantUse(DU))
- return nullptr;
- // This user does not evaluate to a recurrence after widening, so don't
- // follow it. Instead insert a Trunc to kill off the original use,
- // eventually isolating the original narrow IV so it can be removed.
- truncateIVUse(DU, DT, LI);
- return nullptr;
- }
- // Assume block terminators cannot evaluate to a recurrence. We can't to
- // insert a Trunc after a terminator if there happens to be a critical edge.
- assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
- "SCEV is not expected to evaluate a block terminator");
- // Reuse the IV increment that SCEVExpander created as long as it dominates
- // NarrowUse.
- Instruction *WideUse = nullptr;
- if (WideAddRec.first == WideIncExpr &&
- Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
- WideUse = WideInc;
- else {
- WideUse = cloneIVUser(DU, WideAddRec.first);
- if (!WideUse)
- return nullptr;
- }
- // Evaluation of WideAddRec ensured that the narrow expression could be
- // extended outside the loop without overflow. This suggests that the wide use
- // evaluates to the same expression as the extended narrow use, but doesn't
- // absolutely guarantee it. Hence the following failsafe check. In rare cases
- // where it fails, we simply throw away the newly created wide use.
- if (WideAddRec.first != SE->getSCEV(WideUse)) {
- LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
- << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
- << "\n");
- DeadInsts.emplace_back(WideUse);
- return nullptr;
- }
- // if we reached this point then we are going to replace
- // DU.NarrowUse with WideUse. Reattach DbgValue then.
- replaceAllDbgUsesWith(*DU.NarrowUse, *WideUse, *WideUse, *DT);
- ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
- // Returning WideUse pushes it on the worklist.
- return WideUse;
- }
- /// Add eligible users of NarrowDef to NarrowIVUsers.
- void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
- const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
- bool NonNegativeDef =
- SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
- SE->getZero(NarrowSCEV->getType()));
- for (User *U : NarrowDef->users()) {
- Instruction *NarrowUser = cast<Instruction>(U);
- // Handle data flow merges and bizarre phi cycles.
- if (!Widened.insert(NarrowUser).second)
- continue;
- bool NonNegativeUse = false;
- if (!NonNegativeDef) {
- // We might have a control-dependent range information for this context.
- if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
- NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
- }
- NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
- NonNegativeDef || NonNegativeUse);
- }
- }
- /// Process a single induction variable. First use the SCEVExpander to create a
- /// wide induction variable that evaluates to the same recurrence as the
- /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
- /// def-use chain. After widenIVUse has processed all interesting IV users, the
- /// narrow IV will be isolated for removal by DeleteDeadPHIs.
- ///
- /// It would be simpler to delete uses as they are processed, but we must avoid
- /// invalidating SCEV expressions.
- PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
- // Is this phi an induction variable?
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
- if (!AddRec)
- return nullptr;
- // Widen the induction variable expression.
- const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
- ? SE->getSignExtendExpr(AddRec, WideType)
- : SE->getZeroExtendExpr(AddRec, WideType);
- assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
- "Expect the new IV expression to preserve its type");
- // Can the IV be extended outside the loop without overflow?
- AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
- if (!AddRec || AddRec->getLoop() != L)
- return nullptr;
- // An AddRec must have loop-invariant operands. Since this AddRec is
- // materialized by a loop header phi, the expression cannot have any post-loop
- // operands, so they must dominate the loop header.
- assert(
- SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
- SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
- "Loop header phi recurrence inputs do not dominate the loop");
- // Iterate over IV uses (including transitive ones) looking for IV increments
- // of the form 'add nsw %iv, <const>'. For each increment and each use of
- // the increment calculate control-dependent range information basing on
- // dominating conditions inside of the loop (e.g. a range check inside of the
- // loop). Calculated ranges are stored in PostIncRangeInfos map.
- //
- // Control-dependent range information is later used to prove that a narrow
- // definition is not negative (see pushNarrowIVUsers). It's difficult to do
- // this on demand because when pushNarrowIVUsers needs this information some
- // of the dominating conditions might be already widened.
- if (UsePostIncrementRanges)
- calculatePostIncRanges(OrigPhi);
- // The rewriter provides a value for the desired IV expression. This may
- // either find an existing phi or materialize a new one. Either way, we
- // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
- // of the phi-SCC dominates the loop entry.
- Instruction *InsertPt = &*L->getHeader()->getFirstInsertionPt();
- Value *ExpandInst = Rewriter.expandCodeFor(AddRec, WideType, InsertPt);
- // If the wide phi is not a phi node, for example a cast node, like bitcast,
- // inttoptr, ptrtoint, just skip for now.
- if (!(WidePhi = dyn_cast<PHINode>(ExpandInst))) {
- // if the cast node is an inserted instruction without any user, we should
- // remove it to make sure the pass don't touch the function as we can not
- // wide the phi.
- if (ExpandInst->hasNUses(0) &&
- Rewriter.isInsertedInstruction(cast<Instruction>(ExpandInst)))
- DeadInsts.emplace_back(ExpandInst);
- return nullptr;
- }
- // Remembering the WideIV increment generated by SCEVExpander allows
- // widenIVUse to reuse it when widening the narrow IV's increment. We don't
- // employ a general reuse mechanism because the call above is the only call to
- // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
- if (BasicBlock *LatchBlock = L->getLoopLatch()) {
- WideInc =
- cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
- WideIncExpr = SE->getSCEV(WideInc);
- // Propagate the debug location associated with the original loop increment
- // to the new (widened) increment.
- auto *OrigInc =
- cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
- WideInc->setDebugLoc(OrigInc->getDebugLoc());
- }
- LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
- ++NumWidened;
- // Traverse the def-use chain using a worklist starting at the original IV.
- assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
- Widened.insert(OrigPhi);
- pushNarrowIVUsers(OrigPhi, WidePhi);
- while (!NarrowIVUsers.empty()) {
- WidenIV::NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
- // Process a def-use edge. This may replace the use, so don't hold a
- // use_iterator across it.
- Instruction *WideUse = widenIVUse(DU, Rewriter);
- // Follow all def-use edges from the previous narrow use.
- if (WideUse)
- pushNarrowIVUsers(DU.NarrowUse, WideUse);
- // widenIVUse may have removed the def-use edge.
- if (DU.NarrowDef->use_empty())
- DeadInsts.emplace_back(DU.NarrowDef);
- }
- // Attach any debug information to the new PHI.
- replaceAllDbgUsesWith(*OrigPhi, *WidePhi, *WidePhi, *DT);
- return WidePhi;
- }
- /// Calculates control-dependent range for the given def at the given context
- /// by looking at dominating conditions inside of the loop
- void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
- Instruction *NarrowUser) {
- using namespace llvm::PatternMatch;
- Value *NarrowDefLHS;
- const APInt *NarrowDefRHS;
- if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
- m_APInt(NarrowDefRHS))) ||
- !NarrowDefRHS->isNonNegative())
- return;
- auto UpdateRangeFromCondition = [&] (Value *Condition,
- bool TrueDest) {
- CmpInst::Predicate Pred;
- Value *CmpRHS;
- if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
- m_Value(CmpRHS))))
- return;
- CmpInst::Predicate P =
- TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
- auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
- auto CmpConstrainedLHSRange =
- ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
- auto NarrowDefRange = CmpConstrainedLHSRange.addWithNoWrap(
- *NarrowDefRHS, OverflowingBinaryOperator::NoSignedWrap);
- updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
- };
- auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
- if (!HasGuards)
- return;
- for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
- Ctx->getParent()->rend())) {
- Value *C = nullptr;
- if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
- UpdateRangeFromCondition(C, /*TrueDest=*/true);
- }
- };
- UpdateRangeFromGuards(NarrowUser);
- BasicBlock *NarrowUserBB = NarrowUser->getParent();
- // If NarrowUserBB is statically unreachable asking dominator queries may
- // yield surprising results. (e.g. the block may not have a dom tree node)
- if (!DT->isReachableFromEntry(NarrowUserBB))
- return;
- for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
- L->contains(DTB->getBlock());
- DTB = DTB->getIDom()) {
- auto *BB = DTB->getBlock();
- auto *TI = BB->getTerminator();
- UpdateRangeFromGuards(TI);
- auto *BI = dyn_cast<BranchInst>(TI);
- if (!BI || !BI->isConditional())
- continue;
- auto *TrueSuccessor = BI->getSuccessor(0);
- auto *FalseSuccessor = BI->getSuccessor(1);
- auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
- return BBE.isSingleEdge() &&
- DT->dominates(BBE, NarrowUser->getParent());
- };
- if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
- UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
- if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
- UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
- }
- }
- /// Calculates PostIncRangeInfos map for the given IV
- void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
- SmallPtrSet<Instruction *, 16> Visited;
- SmallVector<Instruction *, 6> Worklist;
- Worklist.push_back(OrigPhi);
- Visited.insert(OrigPhi);
- while (!Worklist.empty()) {
- Instruction *NarrowDef = Worklist.pop_back_val();
- for (Use &U : NarrowDef->uses()) {
- auto *NarrowUser = cast<Instruction>(U.getUser());
- // Don't go looking outside the current loop.
- auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
- if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
- continue;
- if (!Visited.insert(NarrowUser).second)
- continue;
- Worklist.push_back(NarrowUser);
- calculatePostIncRange(NarrowDef, NarrowUser);
- }
- }
- }
- PHINode *llvm::createWideIV(const WideIVInfo &WI,
- LoopInfo *LI, ScalarEvolution *SE, SCEVExpander &Rewriter,
- DominatorTree *DT, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
- unsigned &NumElimExt, unsigned &NumWidened,
- bool HasGuards, bool UsePostIncrementRanges) {
- WidenIV Widener(WI, LI, SE, DT, DeadInsts, HasGuards, UsePostIncrementRanges);
- PHINode *WidePHI = Widener.createWideIV(Rewriter);
- NumElimExt = Widener.getNumElimExt();
- NumWidened = Widener.getNumWidened();
- return WidePHI;
- }
|