12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797 |
- //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Peephole optimize the CFG.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/ScopeExit.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/ADT/SetOperations.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/EHPersonalities.h"
- #include "llvm/Analysis/GuardUtils.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/NoFolder.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/PseudoProbe.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Support/BranchProbability.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include "llvm/Transforms/Utils/ValueMapper.h"
- #include <algorithm>
- #include <cassert>
- #include <climits>
- #include <cstddef>
- #include <cstdint>
- #include <iterator>
- #include <map>
- #include <set>
- #include <tuple>
- #include <utility>
- #include <vector>
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "simplifycfg"
- cl::opt<bool> llvm::RequireAndPreserveDomTree(
- "simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
- cl::init(false),
- cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
- "into preserving DomTree,"));
- // Chosen as 2 so as to be cheap, but still to have enough power to fold
- // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
- // To catch this, we need to fold a compare and a select, hence '2' being the
- // minimum reasonable default.
- static cl::opt<unsigned> PHINodeFoldingThreshold(
- "phi-node-folding-threshold", cl::Hidden, cl::init(2),
- cl::desc(
- "Control the amount of phi node folding to perform (default = 2)"));
- static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
- "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
- cl::desc("Control the maximal total instruction cost that we are willing "
- "to speculatively execute to fold a 2-entry PHI node into a "
- "select (default = 4)"));
- static cl::opt<bool>
- HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
- cl::desc("Hoist common instructions up to the parent block"));
- static cl::opt<bool>
- SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
- cl::desc("Sink common instructions down to the end block"));
- static cl::opt<bool> HoistCondStores(
- "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
- cl::desc("Hoist conditional stores if an unconditional store precedes"));
- static cl::opt<bool> MergeCondStores(
- "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
- cl::desc("Hoist conditional stores even if an unconditional store does not "
- "precede - hoist multiple conditional stores into a single "
- "predicated store"));
- static cl::opt<bool> MergeCondStoresAggressively(
- "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
- cl::desc("When merging conditional stores, do so even if the resultant "
- "basic blocks are unlikely to be if-converted as a result"));
- static cl::opt<bool> SpeculateOneExpensiveInst(
- "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
- cl::desc("Allow exactly one expensive instruction to be speculatively "
- "executed"));
- static cl::opt<unsigned> MaxSpeculationDepth(
- "max-speculation-depth", cl::Hidden, cl::init(10),
- cl::desc("Limit maximum recursion depth when calculating costs of "
- "speculatively executed instructions"));
- static cl::opt<int>
- MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
- cl::init(10),
- cl::desc("Max size of a block which is still considered "
- "small enough to thread through"));
- // Two is chosen to allow one negation and a logical combine.
- static cl::opt<unsigned>
- BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
- cl::init(2),
- cl::desc("Maximum cost of combining conditions when "
- "folding branches"));
- static cl::opt<unsigned> BranchFoldToCommonDestVectorMultiplier(
- "simplifycfg-branch-fold-common-dest-vector-multiplier", cl::Hidden,
- cl::init(2),
- cl::desc("Multiplier to apply to threshold when determining whether or not "
- "to fold branch to common destination when vector operations are "
- "present"));
- STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
- STATISTIC(NumLinearMaps,
- "Number of switch instructions turned into linear mapping");
- STATISTIC(NumLookupTables,
- "Number of switch instructions turned into lookup tables");
- STATISTIC(
- NumLookupTablesHoles,
- "Number of switch instructions turned into lookup tables (holes checked)");
- STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
- STATISTIC(NumFoldValueComparisonIntoPredecessors,
- "Number of value comparisons folded into predecessor basic blocks");
- STATISTIC(NumFoldBranchToCommonDest,
- "Number of branches folded into predecessor basic block");
- STATISTIC(
- NumHoistCommonCode,
- "Number of common instruction 'blocks' hoisted up to the begin block");
- STATISTIC(NumHoistCommonInstrs,
- "Number of common instructions hoisted up to the begin block");
- STATISTIC(NumSinkCommonCode,
- "Number of common instruction 'blocks' sunk down to the end block");
- STATISTIC(NumSinkCommonInstrs,
- "Number of common instructions sunk down to the end block");
- STATISTIC(NumSpeculations, "Number of speculative executed instructions");
- STATISTIC(NumInvokes,
- "Number of invokes with empty resume blocks simplified into calls");
- namespace {
- // The first field contains the value that the switch produces when a certain
- // case group is selected, and the second field is a vector containing the
- // cases composing the case group.
- using SwitchCaseResultVectorTy =
- SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
- // The first field contains the phi node that generates a result of the switch
- // and the second field contains the value generated for a certain case in the
- // switch for that PHI.
- using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
- /// ValueEqualityComparisonCase - Represents a case of a switch.
- struct ValueEqualityComparisonCase {
- ConstantInt *Value;
- BasicBlock *Dest;
- ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
- : Value(Value), Dest(Dest) {}
- bool operator<(ValueEqualityComparisonCase RHS) const {
- // Comparing pointers is ok as we only rely on the order for uniquing.
- return Value < RHS.Value;
- }
- bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
- };
- class SimplifyCFGOpt {
- const TargetTransformInfo &TTI;
- DomTreeUpdater *DTU;
- const DataLayout &DL;
- ArrayRef<WeakVH> LoopHeaders;
- const SimplifyCFGOptions &Options;
- bool Resimplify;
- Value *isValueEqualityComparison(Instruction *TI);
- BasicBlock *GetValueEqualityComparisonCases(
- Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
- bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
- BasicBlock *Pred,
- IRBuilder<> &Builder);
- bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
- Instruction *PTI,
- IRBuilder<> &Builder);
- bool FoldValueComparisonIntoPredecessors(Instruction *TI,
- IRBuilder<> &Builder);
- bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
- bool simplifySingleResume(ResumeInst *RI);
- bool simplifyCommonResume(ResumeInst *RI);
- bool simplifyCleanupReturn(CleanupReturnInst *RI);
- bool simplifyUnreachable(UnreachableInst *UI);
- bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
- bool simplifyIndirectBr(IndirectBrInst *IBI);
- bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
- bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
- bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
- bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
- IRBuilder<> &Builder);
- bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
- bool EqTermsOnly);
- bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
- const TargetTransformInfo &TTI);
- bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
- BasicBlock *TrueBB, BasicBlock *FalseBB,
- uint32_t TrueWeight, uint32_t FalseWeight);
- bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
- const DataLayout &DL);
- bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
- bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
- bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
- public:
- SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
- const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
- const SimplifyCFGOptions &Opts)
- : TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
- assert((!DTU || !DTU->hasPostDomTree()) &&
- "SimplifyCFG is not yet capable of maintaining validity of a "
- "PostDomTree, so don't ask for it.");
- }
- bool simplifyOnce(BasicBlock *BB);
- bool run(BasicBlock *BB);
- // Helper to set Resimplify and return change indication.
- bool requestResimplify() {
- Resimplify = true;
- return true;
- }
- };
- } // end anonymous namespace
- /// Return true if it is safe to merge these two
- /// terminator instructions together.
- static bool
- SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
- SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
- if (SI1 == SI2)
- return false; // Can't merge with self!
- // It is not safe to merge these two switch instructions if they have a common
- // successor, and if that successor has a PHI node, and if *that* PHI node has
- // conflicting incoming values from the two switch blocks.
- BasicBlock *SI1BB = SI1->getParent();
- BasicBlock *SI2BB = SI2->getParent();
- SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
- bool Fail = false;
- for (BasicBlock *Succ : successors(SI2BB))
- if (SI1Succs.count(Succ))
- for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
- PHINode *PN = cast<PHINode>(BBI);
- if (PN->getIncomingValueForBlock(SI1BB) !=
- PN->getIncomingValueForBlock(SI2BB)) {
- if (FailBlocks)
- FailBlocks->insert(Succ);
- Fail = true;
- }
- }
- return !Fail;
- }
- /// Update PHI nodes in Succ to indicate that there will now be entries in it
- /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
- /// will be the same as those coming in from ExistPred, an existing predecessor
- /// of Succ.
- static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
- BasicBlock *ExistPred,
- MemorySSAUpdater *MSSAU = nullptr) {
- for (PHINode &PN : Succ->phis())
- PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
- if (MSSAU)
- if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
- MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
- }
- /// Compute an abstract "cost" of speculating the given instruction,
- /// which is assumed to be safe to speculate. TCC_Free means cheap,
- /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
- /// expensive.
- static InstructionCost computeSpeculationCost(const User *I,
- const TargetTransformInfo &TTI) {
- assert(isSafeToSpeculativelyExecute(I) &&
- "Instruction is not safe to speculatively execute!");
- return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
- }
- /// If we have a merge point of an "if condition" as accepted above,
- /// return true if the specified value dominates the block. We
- /// don't handle the true generality of domination here, just a special case
- /// which works well enough for us.
- ///
- /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
- /// see if V (which must be an instruction) and its recursive operands
- /// that do not dominate BB have a combined cost lower than Budget and
- /// are non-trapping. If both are true, the instruction is inserted into the
- /// set and true is returned.
- ///
- /// The cost for most non-trapping instructions is defined as 1 except for
- /// Select whose cost is 2.
- ///
- /// After this function returns, Cost is increased by the cost of
- /// V plus its non-dominating operands. If that cost is greater than
- /// Budget, false is returned and Cost is undefined.
- static bool dominatesMergePoint(Value *V, BasicBlock *BB,
- SmallPtrSetImpl<Instruction *> &AggressiveInsts,
- InstructionCost &Cost,
- InstructionCost Budget,
- const TargetTransformInfo &TTI,
- unsigned Depth = 0) {
- // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
- // so limit the recursion depth.
- // TODO: While this recursion limit does prevent pathological behavior, it
- // would be better to track visited instructions to avoid cycles.
- if (Depth == MaxSpeculationDepth)
- return false;
- Instruction *I = dyn_cast<Instruction>(V);
- if (!I) {
- // Non-instructions all dominate instructions, but not all constantexprs
- // can be executed unconditionally.
- if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
- if (C->canTrap())
- return false;
- return true;
- }
- BasicBlock *PBB = I->getParent();
- // We don't want to allow weird loops that might have the "if condition" in
- // the bottom of this block.
- if (PBB == BB)
- return false;
- // If this instruction is defined in a block that contains an unconditional
- // branch to BB, then it must be in the 'conditional' part of the "if
- // statement". If not, it definitely dominates the region.
- BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
- if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
- return true;
- // If we have seen this instruction before, don't count it again.
- if (AggressiveInsts.count(I))
- return true;
- // Okay, it looks like the instruction IS in the "condition". Check to
- // see if it's a cheap instruction to unconditionally compute, and if it
- // only uses stuff defined outside of the condition. If so, hoist it out.
- if (!isSafeToSpeculativelyExecute(I))
- return false;
- Cost += computeSpeculationCost(I, TTI);
- // Allow exactly one instruction to be speculated regardless of its cost
- // (as long as it is safe to do so).
- // This is intended to flatten the CFG even if the instruction is a division
- // or other expensive operation. The speculation of an expensive instruction
- // is expected to be undone in CodeGenPrepare if the speculation has not
- // enabled further IR optimizations.
- if (Cost > Budget &&
- (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
- !Cost.isValid()))
- return false;
- // Okay, we can only really hoist these out if their operands do
- // not take us over the cost threshold.
- for (Use &Op : I->operands())
- if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
- Depth + 1))
- return false;
- // Okay, it's safe to do this! Remember this instruction.
- AggressiveInsts.insert(I);
- return true;
- }
- /// Extract ConstantInt from value, looking through IntToPtr
- /// and PointerNullValue. Return NULL if value is not a constant int.
- static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
- // Normal constant int.
- ConstantInt *CI = dyn_cast<ConstantInt>(V);
- if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
- return CI;
- // This is some kind of pointer constant. Turn it into a pointer-sized
- // ConstantInt if possible.
- IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
- // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
- if (isa<ConstantPointerNull>(V))
- return ConstantInt::get(PtrTy, 0);
- // IntToPtr const int.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
- if (CE->getOpcode() == Instruction::IntToPtr)
- if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
- // The constant is very likely to have the right type already.
- if (CI->getType() == PtrTy)
- return CI;
- else
- return cast<ConstantInt>(
- ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
- }
- return nullptr;
- }
- namespace {
- /// Given a chain of or (||) or and (&&) comparison of a value against a
- /// constant, this will try to recover the information required for a switch
- /// structure.
- /// It will depth-first traverse the chain of comparison, seeking for patterns
- /// like %a == 12 or %a < 4 and combine them to produce a set of integer
- /// representing the different cases for the switch.
- /// Note that if the chain is composed of '||' it will build the set of elements
- /// that matches the comparisons (i.e. any of this value validate the chain)
- /// while for a chain of '&&' it will build the set elements that make the test
- /// fail.
- struct ConstantComparesGatherer {
- const DataLayout &DL;
- /// Value found for the switch comparison
- Value *CompValue = nullptr;
- /// Extra clause to be checked before the switch
- Value *Extra = nullptr;
- /// Set of integers to match in switch
- SmallVector<ConstantInt *, 8> Vals;
- /// Number of comparisons matched in the and/or chain
- unsigned UsedICmps = 0;
- /// Construct and compute the result for the comparison instruction Cond
- ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
- gather(Cond);
- }
- ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
- ConstantComparesGatherer &
- operator=(const ConstantComparesGatherer &) = delete;
- private:
- /// Try to set the current value used for the comparison, it succeeds only if
- /// it wasn't set before or if the new value is the same as the old one
- bool setValueOnce(Value *NewVal) {
- if (CompValue && CompValue != NewVal)
- return false;
- CompValue = NewVal;
- return (CompValue != nullptr);
- }
- /// Try to match Instruction "I" as a comparison against a constant and
- /// populates the array Vals with the set of values that match (or do not
- /// match depending on isEQ).
- /// Return false on failure. On success, the Value the comparison matched
- /// against is placed in CompValue.
- /// If CompValue is already set, the function is expected to fail if a match
- /// is found but the value compared to is different.
- bool matchInstruction(Instruction *I, bool isEQ) {
- // If this is an icmp against a constant, handle this as one of the cases.
- ICmpInst *ICI;
- ConstantInt *C;
- if (!((ICI = dyn_cast<ICmpInst>(I)) &&
- (C = GetConstantInt(I->getOperand(1), DL)))) {
- return false;
- }
- Value *RHSVal;
- const APInt *RHSC;
- // Pattern match a special case
- // (x & ~2^z) == y --> x == y || x == y|2^z
- // This undoes a transformation done by instcombine to fuse 2 compares.
- if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
- // It's a little bit hard to see why the following transformations are
- // correct. Here is a CVC3 program to verify them for 64-bit values:
- /*
- ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
- x : BITVECTOR(64);
- y : BITVECTOR(64);
- z : BITVECTOR(64);
- mask : BITVECTOR(64) = BVSHL(ONE, z);
- QUERY( (y & ~mask = y) =>
- ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
- );
- QUERY( (y | mask = y) =>
- ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
- );
- */
- // Please note that each pattern must be a dual implication (<--> or
- // iff). One directional implication can create spurious matches. If the
- // implication is only one-way, an unsatisfiable condition on the left
- // side can imply a satisfiable condition on the right side. Dual
- // implication ensures that satisfiable conditions are transformed to
- // other satisfiable conditions and unsatisfiable conditions are
- // transformed to other unsatisfiable conditions.
- // Here is a concrete example of a unsatisfiable condition on the left
- // implying a satisfiable condition on the right:
- //
- // mask = (1 << z)
- // (x & ~mask) == y --> (x == y || x == (y | mask))
- //
- // Substituting y = 3, z = 0 yields:
- // (x & -2) == 3 --> (x == 3 || x == 2)
- // Pattern match a special case:
- /*
- QUERY( (y & ~mask = y) =>
- ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
- );
- */
- if (match(ICI->getOperand(0),
- m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
- APInt Mask = ~*RHSC;
- if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
- // If we already have a value for the switch, it has to match!
- if (!setValueOnce(RHSVal))
- return false;
- Vals.push_back(C);
- Vals.push_back(
- ConstantInt::get(C->getContext(),
- C->getValue() | Mask));
- UsedICmps++;
- return true;
- }
- }
- // Pattern match a special case:
- /*
- QUERY( (y | mask = y) =>
- ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
- );
- */
- if (match(ICI->getOperand(0),
- m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
- APInt Mask = *RHSC;
- if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
- // If we already have a value for the switch, it has to match!
- if (!setValueOnce(RHSVal))
- return false;
- Vals.push_back(C);
- Vals.push_back(ConstantInt::get(C->getContext(),
- C->getValue() & ~Mask));
- UsedICmps++;
- return true;
- }
- }
- // If we already have a value for the switch, it has to match!
- if (!setValueOnce(ICI->getOperand(0)))
- return false;
- UsedICmps++;
- Vals.push_back(C);
- return ICI->getOperand(0);
- }
- // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
- ConstantRange Span =
- ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
- // Shift the range if the compare is fed by an add. This is the range
- // compare idiom as emitted by instcombine.
- Value *CandidateVal = I->getOperand(0);
- if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
- Span = Span.subtract(*RHSC);
- CandidateVal = RHSVal;
- }
- // If this is an and/!= check, then we are looking to build the set of
- // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
- // x != 0 && x != 1.
- if (!isEQ)
- Span = Span.inverse();
- // If there are a ton of values, we don't want to make a ginormous switch.
- if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
- return false;
- }
- // If we already have a value for the switch, it has to match!
- if (!setValueOnce(CandidateVal))
- return false;
- // Add all values from the range to the set
- for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
- Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
- UsedICmps++;
- return true;
- }
- /// Given a potentially 'or'd or 'and'd together collection of icmp
- /// eq/ne/lt/gt instructions that compare a value against a constant, extract
- /// the value being compared, and stick the list constants into the Vals
- /// vector.
- /// One "Extra" case is allowed to differ from the other.
- void gather(Value *V) {
- bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
- // Keep a stack (SmallVector for efficiency) for depth-first traversal
- SmallVector<Value *, 8> DFT;
- SmallPtrSet<Value *, 8> Visited;
- // Initialize
- Visited.insert(V);
- DFT.push_back(V);
- while (!DFT.empty()) {
- V = DFT.pop_back_val();
- if (Instruction *I = dyn_cast<Instruction>(V)) {
- // If it is a || (or && depending on isEQ), process the operands.
- Value *Op0, *Op1;
- if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
- : match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
- if (Visited.insert(Op1).second)
- DFT.push_back(Op1);
- if (Visited.insert(Op0).second)
- DFT.push_back(Op0);
- continue;
- }
- // Try to match the current instruction
- if (matchInstruction(I, isEQ))
- // Match succeed, continue the loop
- continue;
- }
- // One element of the sequence of || (or &&) could not be match as a
- // comparison against the same value as the others.
- // We allow only one "Extra" case to be checked before the switch
- if (!Extra) {
- Extra = V;
- continue;
- }
- // Failed to parse a proper sequence, abort now
- CompValue = nullptr;
- break;
- }
- }
- };
- } // end anonymous namespace
- static void EraseTerminatorAndDCECond(Instruction *TI,
- MemorySSAUpdater *MSSAU = nullptr) {
- Instruction *Cond = nullptr;
- if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- Cond = dyn_cast<Instruction>(SI->getCondition());
- } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isConditional())
- Cond = dyn_cast<Instruction>(BI->getCondition());
- } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
- Cond = dyn_cast<Instruction>(IBI->getAddress());
- }
- TI->eraseFromParent();
- if (Cond)
- RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
- }
- /// Return true if the specified terminator checks
- /// to see if a value is equal to constant integer value.
- Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
- Value *CV = nullptr;
- if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- // Do not permit merging of large switch instructions into their
- // predecessors unless there is only one predecessor.
- if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
- CV = SI->getCondition();
- } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
- if (BI->isConditional() && BI->getCondition()->hasOneUse())
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
- if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
- CV = ICI->getOperand(0);
- }
- // Unwrap any lossless ptrtoint cast.
- if (CV) {
- if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
- Value *Ptr = PTII->getPointerOperand();
- if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
- CV = Ptr;
- }
- }
- return CV;
- }
- /// Given a value comparison instruction,
- /// decode all of the 'cases' that it represents and return the 'default' block.
- BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
- Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
- if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- Cases.reserve(SI->getNumCases());
- for (auto Case : SI->cases())
- Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
- Case.getCaseSuccessor()));
- return SI->getDefaultDest();
- }
- BranchInst *BI = cast<BranchInst>(TI);
- ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
- BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
- Cases.push_back(ValueEqualityComparisonCase(
- GetConstantInt(ICI->getOperand(1), DL), Succ));
- return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
- }
- /// Given a vector of bb/value pairs, remove any entries
- /// in the list that match the specified block.
- static void
- EliminateBlockCases(BasicBlock *BB,
- std::vector<ValueEqualityComparisonCase> &Cases) {
- llvm::erase_value(Cases, BB);
- }
- /// Return true if there are any keys in C1 that exist in C2 as well.
- static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
- std::vector<ValueEqualityComparisonCase> &C2) {
- std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
- // Make V1 be smaller than V2.
- if (V1->size() > V2->size())
- std::swap(V1, V2);
- if (V1->empty())
- return false;
- if (V1->size() == 1) {
- // Just scan V2.
- ConstantInt *TheVal = (*V1)[0].Value;
- for (unsigned i = 0, e = V2->size(); i != e; ++i)
- if (TheVal == (*V2)[i].Value)
- return true;
- }
- // Otherwise, just sort both lists and compare element by element.
- array_pod_sort(V1->begin(), V1->end());
- array_pod_sort(V2->begin(), V2->end());
- unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
- while (i1 != e1 && i2 != e2) {
- if ((*V1)[i1].Value == (*V2)[i2].Value)
- return true;
- if ((*V1)[i1].Value < (*V2)[i2].Value)
- ++i1;
- else
- ++i2;
- }
- return false;
- }
- // Set branch weights on SwitchInst. This sets the metadata if there is at
- // least one non-zero weight.
- static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
- // Check that there is at least one non-zero weight. Otherwise, pass
- // nullptr to setMetadata which will erase the existing metadata.
- MDNode *N = nullptr;
- if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
- N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
- SI->setMetadata(LLVMContext::MD_prof, N);
- }
- // Similar to the above, but for branch and select instructions that take
- // exactly 2 weights.
- static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
- uint32_t FalseWeight) {
- assert(isa<BranchInst>(I) || isa<SelectInst>(I));
- // Check that there is at least one non-zero weight. Otherwise, pass
- // nullptr to setMetadata which will erase the existing metadata.
- MDNode *N = nullptr;
- if (TrueWeight || FalseWeight)
- N = MDBuilder(I->getParent()->getContext())
- .createBranchWeights(TrueWeight, FalseWeight);
- I->setMetadata(LLVMContext::MD_prof, N);
- }
- /// If TI is known to be a terminator instruction and its block is known to
- /// only have a single predecessor block, check to see if that predecessor is
- /// also a value comparison with the same value, and if that comparison
- /// determines the outcome of this comparison. If so, simplify TI. This does a
- /// very limited form of jump threading.
- bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
- Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
- Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
- if (!PredVal)
- return false; // Not a value comparison in predecessor.
- Value *ThisVal = isValueEqualityComparison(TI);
- assert(ThisVal && "This isn't a value comparison!!");
- if (ThisVal != PredVal)
- return false; // Different predicates.
- // TODO: Preserve branch weight metadata, similarly to how
- // FoldValueComparisonIntoPredecessors preserves it.
- // Find out information about when control will move from Pred to TI's block.
- std::vector<ValueEqualityComparisonCase> PredCases;
- BasicBlock *PredDef =
- GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
- EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
- // Find information about how control leaves this block.
- std::vector<ValueEqualityComparisonCase> ThisCases;
- BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
- EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
- // If TI's block is the default block from Pred's comparison, potentially
- // simplify TI based on this knowledge.
- if (PredDef == TI->getParent()) {
- // If we are here, we know that the value is none of those cases listed in
- // PredCases. If there are any cases in ThisCases that are in PredCases, we
- // can simplify TI.
- if (!ValuesOverlap(PredCases, ThisCases))
- return false;
- if (isa<BranchInst>(TI)) {
- // Okay, one of the successors of this condbr is dead. Convert it to a
- // uncond br.
- assert(ThisCases.size() == 1 && "Branch can only have one case!");
- // Insert the new branch.
- Instruction *NI = Builder.CreateBr(ThisDef);
- (void)NI;
- // Remove PHI node entries for the dead edge.
- ThisCases[0].Dest->removePredecessor(PredDef);
- LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI << "Leaving: " << *NI
- << "\n");
- EraseTerminatorAndDCECond(TI);
- if (DTU)
- DTU->applyUpdates(
- {{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
- return true;
- }
- SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
- // Okay, TI has cases that are statically dead, prune them away.
- SmallPtrSet<Constant *, 16> DeadCases;
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- DeadCases.insert(PredCases[i].Value);
- LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI);
- SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
- for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
- --i;
- auto *Successor = i->getCaseSuccessor();
- if (DTU)
- ++NumPerSuccessorCases[Successor];
- if (DeadCases.count(i->getCaseValue())) {
- Successor->removePredecessor(PredDef);
- SI.removeCase(i);
- if (DTU)
- --NumPerSuccessorCases[Successor];
- }
- }
- if (DTU) {
- std::vector<DominatorTree::UpdateType> Updates;
- for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
- if (I.second == 0)
- Updates.push_back({DominatorTree::Delete, PredDef, I.first});
- DTU->applyUpdates(Updates);
- }
- LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
- return true;
- }
- // Otherwise, TI's block must correspond to some matched value. Find out
- // which value (or set of values) this is.
- ConstantInt *TIV = nullptr;
- BasicBlock *TIBB = TI->getParent();
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- if (PredCases[i].Dest == TIBB) {
- if (TIV)
- return false; // Cannot handle multiple values coming to this block.
- TIV = PredCases[i].Value;
- }
- assert(TIV && "No edge from pred to succ?");
- // Okay, we found the one constant that our value can be if we get into TI's
- // BB. Find out which successor will unconditionally be branched to.
- BasicBlock *TheRealDest = nullptr;
- for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
- if (ThisCases[i].Value == TIV) {
- TheRealDest = ThisCases[i].Dest;
- break;
- }
- // If not handled by any explicit cases, it is handled by the default case.
- if (!TheRealDest)
- TheRealDest = ThisDef;
- SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
- // Remove PHI node entries for dead edges.
- BasicBlock *CheckEdge = TheRealDest;
- for (BasicBlock *Succ : successors(TIBB))
- if (Succ != CheckEdge) {
- if (Succ != TheRealDest)
- RemovedSuccs.insert(Succ);
- Succ->removePredecessor(TIBB);
- } else
- CheckEdge = nullptr;
- // Insert the new branch.
- Instruction *NI = Builder.CreateBr(TheRealDest);
- (void)NI;
- LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
- << "Through successor TI: " << *TI << "Leaving: " << *NI
- << "\n");
- EraseTerminatorAndDCECond(TI);
- if (DTU) {
- SmallVector<DominatorTree::UpdateType, 2> Updates;
- Updates.reserve(RemovedSuccs.size());
- for (auto *RemovedSucc : RemovedSuccs)
- Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
- DTU->applyUpdates(Updates);
- }
- return true;
- }
- namespace {
- /// This class implements a stable ordering of constant
- /// integers that does not depend on their address. This is important for
- /// applications that sort ConstantInt's to ensure uniqueness.
- struct ConstantIntOrdering {
- bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
- return LHS->getValue().ult(RHS->getValue());
- }
- };
- } // end anonymous namespace
- static int ConstantIntSortPredicate(ConstantInt *const *P1,
- ConstantInt *const *P2) {
- const ConstantInt *LHS = *P1;
- const ConstantInt *RHS = *P2;
- if (LHS == RHS)
- return 0;
- return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
- }
- static inline bool HasBranchWeights(const Instruction *I) {
- MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
- if (ProfMD && ProfMD->getOperand(0))
- if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
- return MDS->getString().equals("branch_weights");
- return false;
- }
- /// Get Weights of a given terminator, the default weight is at the front
- /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
- /// metadata.
- static void GetBranchWeights(Instruction *TI,
- SmallVectorImpl<uint64_t> &Weights) {
- MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
- assert(MD);
- for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
- ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
- Weights.push_back(CI->getValue().getZExtValue());
- }
- // If TI is a conditional eq, the default case is the false case,
- // and the corresponding branch-weight data is at index 2. We swap the
- // default weight to be the first entry.
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- assert(Weights.size() == 2);
- ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- std::swap(Weights.front(), Weights.back());
- }
- }
- /// Keep halving the weights until all can fit in uint32_t.
- static void FitWeights(MutableArrayRef<uint64_t> Weights) {
- uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
- if (Max > UINT_MAX) {
- unsigned Offset = 32 - countLeadingZeros(Max);
- for (uint64_t &I : Weights)
- I >>= Offset;
- }
- }
- static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
- BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
- Instruction *PTI = PredBlock->getTerminator();
- // If we have bonus instructions, clone them into the predecessor block.
- // Note that there may be multiple predecessor blocks, so we cannot move
- // bonus instructions to a predecessor block.
- for (Instruction &BonusInst : *BB) {
- if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
- continue;
- Instruction *NewBonusInst = BonusInst.clone();
- if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
- // Unless the instruction has the same !dbg location as the original
- // branch, drop it. When we fold the bonus instructions we want to make
- // sure we reset their debug locations in order to avoid stepping on
- // dead code caused by folding dead branches.
- NewBonusInst->setDebugLoc(DebugLoc());
- }
- RemapInstruction(NewBonusInst, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
- VMap[&BonusInst] = NewBonusInst;
- // If we moved a load, we cannot any longer claim any knowledge about
- // its potential value. The previous information might have been valid
- // only given the branch precondition.
- // For an analogous reason, we must also drop all the metadata whose
- // semantics we don't understand. We *can* preserve !annotation, because
- // it is tied to the instruction itself, not the value or position.
- // Similarly strip attributes on call parameters that may cause UB in
- // location the call is moved to.
- NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
- LLVMContext::MD_annotation);
- PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
- NewBonusInst->takeName(&BonusInst);
- BonusInst.setName(NewBonusInst->getName() + ".old");
- // Update (liveout) uses of bonus instructions,
- // now that the bonus instruction has been cloned into predecessor.
- // Note that we expect to be in a block-closed SSA form for this to work!
- for (Use &U : make_early_inc_range(BonusInst.uses())) {
- auto *UI = cast<Instruction>(U.getUser());
- auto *PN = dyn_cast<PHINode>(UI);
- if (!PN) {
- assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
- "If the user is not a PHI node, then it should be in the same "
- "block as, and come after, the original bonus instruction.");
- continue; // Keep using the original bonus instruction.
- }
- // Is this the block-closed SSA form PHI node?
- if (PN->getIncomingBlock(U) == BB)
- continue; // Great, keep using the original bonus instruction.
- // The only other alternative is an "use" when coming from
- // the predecessor block - here we should refer to the cloned bonus instr.
- assert(PN->getIncomingBlock(U) == PredBlock &&
- "Not in block-closed SSA form?");
- U.set(NewBonusInst);
- }
- }
- }
- bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
- Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
- BasicBlock *BB = TI->getParent();
- BasicBlock *Pred = PTI->getParent();
- SmallVector<DominatorTree::UpdateType, 32> Updates;
- // Figure out which 'cases' to copy from SI to PSI.
- std::vector<ValueEqualityComparisonCase> BBCases;
- BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
- std::vector<ValueEqualityComparisonCase> PredCases;
- BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
- // Based on whether the default edge from PTI goes to BB or not, fill in
- // PredCases and PredDefault with the new switch cases we would like to
- // build.
- SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
- // Update the branch weight metadata along the way
- SmallVector<uint64_t, 8> Weights;
- bool PredHasWeights = HasBranchWeights(PTI);
- bool SuccHasWeights = HasBranchWeights(TI);
- if (PredHasWeights) {
- GetBranchWeights(PTI, Weights);
- // branch-weight metadata is inconsistent here.
- if (Weights.size() != 1 + PredCases.size())
- PredHasWeights = SuccHasWeights = false;
- } else if (SuccHasWeights)
- // If there are no predecessor weights but there are successor weights,
- // populate Weights with 1, which will later be scaled to the sum of
- // successor's weights
- Weights.assign(1 + PredCases.size(), 1);
- SmallVector<uint64_t, 8> SuccWeights;
- if (SuccHasWeights) {
- GetBranchWeights(TI, SuccWeights);
- // branch-weight metadata is inconsistent here.
- if (SuccWeights.size() != 1 + BBCases.size())
- PredHasWeights = SuccHasWeights = false;
- } else if (PredHasWeights)
- SuccWeights.assign(1 + BBCases.size(), 1);
- if (PredDefault == BB) {
- // If this is the default destination from PTI, only the edges in TI
- // that don't occur in PTI, or that branch to BB will be activated.
- std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- if (PredCases[i].Dest != BB)
- PTIHandled.insert(PredCases[i].Value);
- else {
- // The default destination is BB, we don't need explicit targets.
- std::swap(PredCases[i], PredCases.back());
- if (PredHasWeights || SuccHasWeights) {
- // Increase weight for the default case.
- Weights[0] += Weights[i + 1];
- std::swap(Weights[i + 1], Weights.back());
- Weights.pop_back();
- }
- PredCases.pop_back();
- --i;
- --e;
- }
- // Reconstruct the new switch statement we will be building.
- if (PredDefault != BBDefault) {
- PredDefault->removePredecessor(Pred);
- if (DTU && PredDefault != BB)
- Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
- PredDefault = BBDefault;
- ++NewSuccessors[BBDefault];
- }
- unsigned CasesFromPred = Weights.size();
- uint64_t ValidTotalSuccWeight = 0;
- for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
- if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
- PredCases.push_back(BBCases[i]);
- ++NewSuccessors[BBCases[i].Dest];
- if (SuccHasWeights || PredHasWeights) {
- // The default weight is at index 0, so weight for the ith case
- // should be at index i+1. Scale the cases from successor by
- // PredDefaultWeight (Weights[0]).
- Weights.push_back(Weights[0] * SuccWeights[i + 1]);
- ValidTotalSuccWeight += SuccWeights[i + 1];
- }
- }
- if (SuccHasWeights || PredHasWeights) {
- ValidTotalSuccWeight += SuccWeights[0];
- // Scale the cases from predecessor by ValidTotalSuccWeight.
- for (unsigned i = 1; i < CasesFromPred; ++i)
- Weights[i] *= ValidTotalSuccWeight;
- // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
- Weights[0] *= SuccWeights[0];
- }
- } else {
- // If this is not the default destination from PSI, only the edges
- // in SI that occur in PSI with a destination of BB will be
- // activated.
- std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
- std::map<ConstantInt *, uint64_t> WeightsForHandled;
- for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
- if (PredCases[i].Dest == BB) {
- PTIHandled.insert(PredCases[i].Value);
- if (PredHasWeights || SuccHasWeights) {
- WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
- std::swap(Weights[i + 1], Weights.back());
- Weights.pop_back();
- }
- std::swap(PredCases[i], PredCases.back());
- PredCases.pop_back();
- --i;
- --e;
- }
- // Okay, now we know which constants were sent to BB from the
- // predecessor. Figure out where they will all go now.
- for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
- if (PTIHandled.count(BBCases[i].Value)) {
- // If this is one we are capable of getting...
- if (PredHasWeights || SuccHasWeights)
- Weights.push_back(WeightsForHandled[BBCases[i].Value]);
- PredCases.push_back(BBCases[i]);
- ++NewSuccessors[BBCases[i].Dest];
- PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
- }
- // If there are any constants vectored to BB that TI doesn't handle,
- // they must go to the default destination of TI.
- for (ConstantInt *I : PTIHandled) {
- if (PredHasWeights || SuccHasWeights)
- Weights.push_back(WeightsForHandled[I]);
- PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
- ++NewSuccessors[BBDefault];
- }
- }
- // Okay, at this point, we know which new successor Pred will get. Make
- // sure we update the number of entries in the PHI nodes for these
- // successors.
- SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
- if (DTU) {
- SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
- Updates.reserve(Updates.size() + NewSuccessors.size());
- }
- for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
- NewSuccessors) {
- for (auto I : seq(0, NewSuccessor.second)) {
- (void)I;
- AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
- }
- if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
- Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
- }
- Builder.SetInsertPoint(PTI);
- // Convert pointer to int before we switch.
- if (CV->getType()->isPointerTy()) {
- CV =
- Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
- }
- // Now that the successors are updated, create the new Switch instruction.
- SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
- NewSI->setDebugLoc(PTI->getDebugLoc());
- for (ValueEqualityComparisonCase &V : PredCases)
- NewSI->addCase(V.Value, V.Dest);
- if (PredHasWeights || SuccHasWeights) {
- // Halve the weights if any of them cannot fit in an uint32_t
- FitWeights(Weights);
- SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
- setBranchWeights(NewSI, MDWeights);
- }
- EraseTerminatorAndDCECond(PTI);
- // Okay, last check. If BB is still a successor of PSI, then we must
- // have an infinite loop case. If so, add an infinitely looping block
- // to handle the case to preserve the behavior of the code.
- BasicBlock *InfLoopBlock = nullptr;
- for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
- if (NewSI->getSuccessor(i) == BB) {
- if (!InfLoopBlock) {
- // Insert it at the end of the function, because it's either code,
- // or it won't matter if it's hot. :)
- InfLoopBlock =
- BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
- BranchInst::Create(InfLoopBlock, InfLoopBlock);
- if (DTU)
- Updates.push_back(
- {DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
- }
- NewSI->setSuccessor(i, InfLoopBlock);
- }
- if (DTU) {
- if (InfLoopBlock)
- Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
- Updates.push_back({DominatorTree::Delete, Pred, BB});
- DTU->applyUpdates(Updates);
- }
- ++NumFoldValueComparisonIntoPredecessors;
- return true;
- }
- /// The specified terminator is a value equality comparison instruction
- /// (either a switch or a branch on "X == c").
- /// See if any of the predecessors of the terminator block are value comparisons
- /// on the same value. If so, and if safe to do so, fold them together.
- bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
- IRBuilder<> &Builder) {
- BasicBlock *BB = TI->getParent();
- Value *CV = isValueEqualityComparison(TI); // CondVal
- assert(CV && "Not a comparison?");
- bool Changed = false;
- SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
- while (!Preds.empty()) {
- BasicBlock *Pred = Preds.pop_back_val();
- Instruction *PTI = Pred->getTerminator();
- // Don't try to fold into itself.
- if (Pred == BB)
- continue;
- // See if the predecessor is a comparison with the same value.
- Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
- if (PCV != CV)
- continue;
- SmallSetVector<BasicBlock *, 4> FailBlocks;
- if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
- for (auto *Succ : FailBlocks) {
- if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
- return false;
- }
- }
- PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
- Changed = true;
- }
- return Changed;
- }
- // If we would need to insert a select that uses the value of this invoke
- // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
- // can't hoist the invoke, as there is nowhere to put the select in this case.
- static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
- Instruction *I1, Instruction *I2) {
- for (BasicBlock *Succ : successors(BB1)) {
- for (const PHINode &PN : Succ->phis()) {
- Value *BB1V = PN.getIncomingValueForBlock(BB1);
- Value *BB2V = PN.getIncomingValueForBlock(BB2);
- if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
- return false;
- }
- }
- }
- return true;
- }
- static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
- /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
- /// in the two blocks up into the branch block. The caller of this function
- /// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
- /// only perform hoisting in case both blocks only contain a terminator. In that
- /// case, only the original BI will be replaced and selects for PHIs are added.
- bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
- const TargetTransformInfo &TTI,
- bool EqTermsOnly) {
- // This does very trivial matching, with limited scanning, to find identical
- // instructions in the two blocks. In particular, we don't want to get into
- // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
- // such, we currently just scan for obviously identical instructions in an
- // identical order.
- BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
- BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
- // If either of the blocks has it's address taken, then we can't do this fold,
- // because the code we'd hoist would no longer run when we jump into the block
- // by it's address.
- if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
- return false;
- BasicBlock::iterator BB1_Itr = BB1->begin();
- BasicBlock::iterator BB2_Itr = BB2->begin();
- Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
- // Skip debug info if it is not identical.
- DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
- DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
- if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
- while (isa<DbgInfoIntrinsic>(I1))
- I1 = &*BB1_Itr++;
- while (isa<DbgInfoIntrinsic>(I2))
- I2 = &*BB2_Itr++;
- }
- // FIXME: Can we define a safety predicate for CallBr?
- if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
- (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
- isa<CallBrInst>(I1))
- return false;
- BasicBlock *BIParent = BI->getParent();
- bool Changed = false;
- auto _ = make_scope_exit([&]() {
- if (Changed)
- ++NumHoistCommonCode;
- });
- // Check if only hoisting terminators is allowed. This does not add new
- // instructions to the hoist location.
- if (EqTermsOnly) {
- // Skip any debug intrinsics, as they are free to hoist.
- auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
- auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
- if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
- return false;
- if (!I1NonDbg->isTerminator())
- return false;
- // Now we know that we only need to hoist debug instrinsics and the
- // terminator. Let the loop below handle those 2 cases.
- }
- do {
- // If we are hoisting the terminator instruction, don't move one (making a
- // broken BB), instead clone it, and remove BI.
- if (I1->isTerminator())
- goto HoistTerminator;
- // If we're going to hoist a call, make sure that the two instructions we're
- // commoning/hoisting are both marked with musttail, or neither of them is
- // marked as such. Otherwise, we might end up in a situation where we hoist
- // from a block where the terminator is a `ret` to a block where the terminator
- // is a `br`, and `musttail` calls expect to be followed by a return.
- auto *C1 = dyn_cast<CallInst>(I1);
- auto *C2 = dyn_cast<CallInst>(I2);
- if (C1 && C2)
- if (C1->isMustTailCall() != C2->isMustTailCall())
- return Changed;
- if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
- return Changed;
- // If any of the two call sites has nomerge attribute, stop hoisting.
- if (const auto *CB1 = dyn_cast<CallBase>(I1))
- if (CB1->cannotMerge())
- return Changed;
- if (const auto *CB2 = dyn_cast<CallBase>(I2))
- if (CB2->cannotMerge())
- return Changed;
- if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
- assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
- // The debug location is an integral part of a debug info intrinsic
- // and can't be separated from it or replaced. Instead of attempting
- // to merge locations, simply hoist both copies of the intrinsic.
- BIParent->getInstList().splice(BI->getIterator(),
- BB1->getInstList(), I1);
- BIParent->getInstList().splice(BI->getIterator(),
- BB2->getInstList(), I2);
- Changed = true;
- } else {
- // For a normal instruction, we just move one to right before the branch,
- // then replace all uses of the other with the first. Finally, we remove
- // the now redundant second instruction.
- BIParent->getInstList().splice(BI->getIterator(),
- BB1->getInstList(), I1);
- if (!I2->use_empty())
- I2->replaceAllUsesWith(I1);
- I1->andIRFlags(I2);
- unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
- LLVMContext::MD_range,
- LLVMContext::MD_fpmath,
- LLVMContext::MD_invariant_load,
- LLVMContext::MD_nonnull,
- LLVMContext::MD_invariant_group,
- LLVMContext::MD_align,
- LLVMContext::MD_dereferenceable,
- LLVMContext::MD_dereferenceable_or_null,
- LLVMContext::MD_mem_parallel_loop_access,
- LLVMContext::MD_access_group,
- LLVMContext::MD_preserve_access_index};
- combineMetadata(I1, I2, KnownIDs, true);
- // I1 and I2 are being combined into a single instruction. Its debug
- // location is the merged locations of the original instructions.
- I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
- I2->eraseFromParent();
- Changed = true;
- }
- ++NumHoistCommonInstrs;
- I1 = &*BB1_Itr++;
- I2 = &*BB2_Itr++;
- // Skip debug info if it is not identical.
- DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
- DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
- if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
- while (isa<DbgInfoIntrinsic>(I1))
- I1 = &*BB1_Itr++;
- while (isa<DbgInfoIntrinsic>(I2))
- I2 = &*BB2_Itr++;
- }
- } while (I1->isIdenticalToWhenDefined(I2));
- return true;
- HoistTerminator:
- // It may not be possible to hoist an invoke.
- // FIXME: Can we define a safety predicate for CallBr?
- if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
- return Changed;
- // TODO: callbr hoisting currently disabled pending further study.
- if (isa<CallBrInst>(I1))
- return Changed;
- for (BasicBlock *Succ : successors(BB1)) {
- for (PHINode &PN : Succ->phis()) {
- Value *BB1V = PN.getIncomingValueForBlock(BB1);
- Value *BB2V = PN.getIncomingValueForBlock(BB2);
- if (BB1V == BB2V)
- continue;
- // Check for passingValueIsAlwaysUndefined here because we would rather
- // eliminate undefined control flow then converting it to a select.
- if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
- passingValueIsAlwaysUndefined(BB2V, &PN))
- return Changed;
- if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
- return Changed;
- if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
- return Changed;
- }
- }
- // Okay, it is safe to hoist the terminator.
- Instruction *NT = I1->clone();
- BIParent->getInstList().insert(BI->getIterator(), NT);
- if (!NT->getType()->isVoidTy()) {
- I1->replaceAllUsesWith(NT);
- I2->replaceAllUsesWith(NT);
- NT->takeName(I1);
- }
- Changed = true;
- ++NumHoistCommonInstrs;
- // Ensure terminator gets a debug location, even an unknown one, in case
- // it involves inlinable calls.
- NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
- // PHIs created below will adopt NT's merged DebugLoc.
- IRBuilder<NoFolder> Builder(NT);
- // Hoisting one of the terminators from our successor is a great thing.
- // Unfortunately, the successors of the if/else blocks may have PHI nodes in
- // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
- // nodes, so we insert select instruction to compute the final result.
- std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
- for (BasicBlock *Succ : successors(BB1)) {
- for (PHINode &PN : Succ->phis()) {
- Value *BB1V = PN.getIncomingValueForBlock(BB1);
- Value *BB2V = PN.getIncomingValueForBlock(BB2);
- if (BB1V == BB2V)
- continue;
- // These values do not agree. Insert a select instruction before NT
- // that determines the right value.
- SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
- if (!SI) {
- // Propagate fast-math-flags from phi node to its replacement select.
- IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
- if (isa<FPMathOperator>(PN))
- Builder.setFastMathFlags(PN.getFastMathFlags());
- SI = cast<SelectInst>(
- Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
- BB1V->getName() + "." + BB2V->getName(), BI));
- }
- // Make the PHI node use the select for all incoming values for BB1/BB2
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
- if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
- PN.setIncomingValue(i, SI);
- }
- }
- SmallVector<DominatorTree::UpdateType, 4> Updates;
- // Update any PHI nodes in our new successors.
- for (BasicBlock *Succ : successors(BB1)) {
- AddPredecessorToBlock(Succ, BIParent, BB1);
- if (DTU)
- Updates.push_back({DominatorTree::Insert, BIParent, Succ});
- }
- if (DTU)
- for (BasicBlock *Succ : successors(BI))
- Updates.push_back({DominatorTree::Delete, BIParent, Succ});
- EraseTerminatorAndDCECond(BI);
- if (DTU)
- DTU->applyUpdates(Updates);
- return Changed;
- }
- // Check lifetime markers.
- static bool isLifeTimeMarker(const Instruction *I) {
- if (auto II = dyn_cast<IntrinsicInst>(I)) {
- switch (II->getIntrinsicID()) {
- default:
- break;
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- return true;
- }
- }
- return false;
- }
- // TODO: Refine this. This should avoid cases like turning constant memcpy sizes
- // into variables.
- static bool replacingOperandWithVariableIsCheap(const Instruction *I,
- int OpIdx) {
- return !isa<IntrinsicInst>(I);
- }
- // All instructions in Insts belong to different blocks that all unconditionally
- // branch to a common successor. Analyze each instruction and return true if it
- // would be possible to sink them into their successor, creating one common
- // instruction instead. For every value that would be required to be provided by
- // PHI node (because an operand varies in each input block), add to PHIOperands.
- static bool canSinkInstructions(
- ArrayRef<Instruction *> Insts,
- DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
- // Prune out obviously bad instructions to move. Each instruction must have
- // exactly zero or one use, and we check later that use is by a single, common
- // PHI instruction in the successor.
- bool HasUse = !Insts.front()->user_empty();
- for (auto *I : Insts) {
- // These instructions may change or break semantics if moved.
- if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
- I->getType()->isTokenTy())
- return false;
- // Do not try to sink an instruction in an infinite loop - it can cause
- // this algorithm to infinite loop.
- if (I->getParent()->getSingleSuccessor() == I->getParent())
- return false;
- // Conservatively return false if I is an inline-asm instruction. Sinking
- // and merging inline-asm instructions can potentially create arguments
- // that cannot satisfy the inline-asm constraints.
- // If the instruction has nomerge attribute, return false.
- if (const auto *C = dyn_cast<CallBase>(I))
- if (C->isInlineAsm() || C->cannotMerge())
- return false;
- // Each instruction must have zero or one use.
- if (HasUse && !I->hasOneUse())
- return false;
- if (!HasUse && !I->user_empty())
- return false;
- }
- const Instruction *I0 = Insts.front();
- for (auto *I : Insts)
- if (!I->isSameOperationAs(I0))
- return false;
- // All instructions in Insts are known to be the same opcode. If they have a
- // use, check that the only user is a PHI or in the same block as the
- // instruction, because if a user is in the same block as an instruction we're
- // contemplating sinking, it must already be determined to be sinkable.
- if (HasUse) {
- auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
- auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
- if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
- auto *U = cast<Instruction>(*I->user_begin());
- return (PNUse &&
- PNUse->getParent() == Succ &&
- PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
- U->getParent() == I->getParent();
- }))
- return false;
- }
- // Because SROA can't handle speculating stores of selects, try not to sink
- // loads, stores or lifetime markers of allocas when we'd have to create a
- // PHI for the address operand. Also, because it is likely that loads or
- // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
- // them.
- // This can cause code churn which can have unintended consequences down
- // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
- // FIXME: This is a workaround for a deficiency in SROA - see
- // https://llvm.org/bugs/show_bug.cgi?id=30188
- if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
- return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
- }))
- return false;
- if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
- return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
- }))
- return false;
- if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
- return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
- }))
- return false;
- // For calls to be sinkable, they must all be indirect, or have same callee.
- // I.e. if we have two direct calls to different callees, we don't want to
- // turn that into an indirect call. Likewise, if we have an indirect call,
- // and a direct call, we don't actually want to have a single indirect call.
- if (isa<CallBase>(I0)) {
- auto IsIndirectCall = [](const Instruction *I) {
- return cast<CallBase>(I)->isIndirectCall();
- };
- bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
- bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
- if (HaveIndirectCalls) {
- if (!AllCallsAreIndirect)
- return false;
- } else {
- // All callees must be identical.
- Value *Callee = nullptr;
- for (const Instruction *I : Insts) {
- Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
- if (!Callee)
- Callee = CurrCallee;
- else if (Callee != CurrCallee)
- return false;
- }
- }
- }
- for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
- Value *Op = I0->getOperand(OI);
- if (Op->getType()->isTokenTy())
- // Don't touch any operand of token type.
- return false;
- auto SameAsI0 = [&I0, OI](const Instruction *I) {
- assert(I->getNumOperands() == I0->getNumOperands());
- return I->getOperand(OI) == I0->getOperand(OI);
- };
- if (!all_of(Insts, SameAsI0)) {
- if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
- !canReplaceOperandWithVariable(I0, OI))
- // We can't create a PHI from this GEP.
- return false;
- for (auto *I : Insts)
- PHIOperands[I].push_back(I->getOperand(OI));
- }
- }
- return true;
- }
- // Assuming canSinkInstructions(Blocks) has returned true, sink the last
- // instruction of every block in Blocks to their common successor, commoning
- // into one instruction.
- static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
- auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
- // canSinkInstructions returning true guarantees that every block has at
- // least one non-terminator instruction.
- SmallVector<Instruction*,4> Insts;
- for (auto *BB : Blocks) {
- Instruction *I = BB->getTerminator();
- do {
- I = I->getPrevNode();
- } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
- if (!isa<DbgInfoIntrinsic>(I))
- Insts.push_back(I);
- }
- // The only checking we need to do now is that all users of all instructions
- // are the same PHI node. canSinkInstructions should have checked this but
- // it is slightly over-aggressive - it gets confused by commutative
- // instructions so double-check it here.
- Instruction *I0 = Insts.front();
- if (!I0->user_empty()) {
- auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
- if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
- auto *U = cast<Instruction>(*I->user_begin());
- return U == PNUse;
- }))
- return false;
- }
- // We don't need to do any more checking here; canSinkInstructions should
- // have done it all for us.
- SmallVector<Value*, 4> NewOperands;
- for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
- // This check is different to that in canSinkInstructions. There, we
- // cared about the global view once simplifycfg (and instcombine) have
- // completed - it takes into account PHIs that become trivially
- // simplifiable. However here we need a more local view; if an operand
- // differs we create a PHI and rely on instcombine to clean up the very
- // small mess we may make.
- bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
- return I->getOperand(O) != I0->getOperand(O);
- });
- if (!NeedPHI) {
- NewOperands.push_back(I0->getOperand(O));
- continue;
- }
- // Create a new PHI in the successor block and populate it.
- auto *Op = I0->getOperand(O);
- assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
- auto *PN = PHINode::Create(Op->getType(), Insts.size(),
- Op->getName() + ".sink", &BBEnd->front());
- for (auto *I : Insts)
- PN->addIncoming(I->getOperand(O), I->getParent());
- NewOperands.push_back(PN);
- }
- // Arbitrarily use I0 as the new "common" instruction; remap its operands
- // and move it to the start of the successor block.
- for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
- I0->getOperandUse(O).set(NewOperands[O]);
- I0->moveBefore(&*BBEnd->getFirstInsertionPt());
- // Update metadata and IR flags, and merge debug locations.
- for (auto *I : Insts)
- if (I != I0) {
- // The debug location for the "common" instruction is the merged locations
- // of all the commoned instructions. We start with the original location
- // of the "common" instruction and iteratively merge each location in the
- // loop below.
- // This is an N-way merge, which will be inefficient if I0 is a CallInst.
- // However, as N-way merge for CallInst is rare, so we use simplified API
- // instead of using complex API for N-way merge.
- I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
- combineMetadataForCSE(I0, I, true);
- I0->andIRFlags(I);
- }
- if (!I0->user_empty()) {
- // canSinkLastInstruction checked that all instructions were used by
- // one and only one PHI node. Find that now, RAUW it to our common
- // instruction and nuke it.
- auto *PN = cast<PHINode>(*I0->user_begin());
- PN->replaceAllUsesWith(I0);
- PN->eraseFromParent();
- }
- // Finally nuke all instructions apart from the common instruction.
- for (auto *I : Insts)
- if (I != I0)
- I->eraseFromParent();
- return true;
- }
- namespace {
- // LockstepReverseIterator - Iterates through instructions
- // in a set of blocks in reverse order from the first non-terminator.
- // For example (assume all blocks have size n):
- // LockstepReverseIterator I([B1, B2, B3]);
- // *I-- = [B1[n], B2[n], B3[n]];
- // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
- // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
- // ...
- class LockstepReverseIterator {
- ArrayRef<BasicBlock*> Blocks;
- SmallVector<Instruction*,4> Insts;
- bool Fail;
- public:
- LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
- reset();
- }
- void reset() {
- Fail = false;
- Insts.clear();
- for (auto *BB : Blocks) {
- Instruction *Inst = BB->getTerminator();
- for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
- Inst = Inst->getPrevNode();
- if (!Inst) {
- // Block wasn't big enough.
- Fail = true;
- return;
- }
- Insts.push_back(Inst);
- }
- }
- bool isValid() const {
- return !Fail;
- }
- void operator--() {
- if (Fail)
- return;
- for (auto *&Inst : Insts) {
- for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
- Inst = Inst->getPrevNode();
- // Already at beginning of block.
- if (!Inst) {
- Fail = true;
- return;
- }
- }
- }
- void operator++() {
- if (Fail)
- return;
- for (auto *&Inst : Insts) {
- for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
- Inst = Inst->getNextNode();
- // Already at end of block.
- if (!Inst) {
- Fail = true;
- return;
- }
- }
- }
- ArrayRef<Instruction*> operator * () const {
- return Insts;
- }
- };
- } // end anonymous namespace
- /// Check whether BB's predecessors end with unconditional branches. If it is
- /// true, sink any common code from the predecessors to BB.
- static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
- DomTreeUpdater *DTU) {
- // We support two situations:
- // (1) all incoming arcs are unconditional
- // (2) there are non-unconditional incoming arcs
- //
- // (2) is very common in switch defaults and
- // else-if patterns;
- //
- // if (a) f(1);
- // else if (b) f(2);
- //
- // produces:
- //
- // [if]
- // / \
- // [f(1)] [if]
- // | | \
- // | | |
- // | [f(2)]|
- // \ | /
- // [ end ]
- //
- // [end] has two unconditional predecessor arcs and one conditional. The
- // conditional refers to the implicit empty 'else' arc. This conditional
- // arc can also be caused by an empty default block in a switch.
- //
- // In this case, we attempt to sink code from all *unconditional* arcs.
- // If we can sink instructions from these arcs (determined during the scan
- // phase below) we insert a common successor for all unconditional arcs and
- // connect that to [end], to enable sinking:
- //
- // [if]
- // / \
- // [x(1)] [if]
- // | | \
- // | | \
- // | [x(2)] |
- // \ / |
- // [sink.split] |
- // \ /
- // [ end ]
- //
- SmallVector<BasicBlock*,4> UnconditionalPreds;
- bool HaveNonUnconditionalPredecessors = false;
- for (auto *PredBB : predecessors(BB)) {
- auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
- if (PredBr && PredBr->isUnconditional())
- UnconditionalPreds.push_back(PredBB);
- else
- HaveNonUnconditionalPredecessors = true;
- }
- if (UnconditionalPreds.size() < 2)
- return false;
- // We take a two-step approach to tail sinking. First we scan from the end of
- // each block upwards in lockstep. If the n'th instruction from the end of each
- // block can be sunk, those instructions are added to ValuesToSink and we
- // carry on. If we can sink an instruction but need to PHI-merge some operands
- // (because they're not identical in each instruction) we add these to
- // PHIOperands.
- int ScanIdx = 0;
- SmallPtrSet<Value*,4> InstructionsToSink;
- DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
- LockstepReverseIterator LRI(UnconditionalPreds);
- while (LRI.isValid() &&
- canSinkInstructions(*LRI, PHIOperands)) {
- LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
- << "\n");
- InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
- ++ScanIdx;
- --LRI;
- }
- // If no instructions can be sunk, early-return.
- if (ScanIdx == 0)
- return false;
- bool followedByDeoptOrUnreachable = IsBlockFollowedByDeoptOrUnreachable(BB);
- if (!followedByDeoptOrUnreachable) {
- // Okay, we *could* sink last ScanIdx instructions. But how many can we
- // actually sink before encountering instruction that is unprofitable to
- // sink?
- auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
- unsigned NumPHIdValues = 0;
- for (auto *I : *LRI)
- for (auto *V : PHIOperands[I]) {
- if (!InstructionsToSink.contains(V))
- ++NumPHIdValues;
- // FIXME: this check is overly optimistic. We may end up not sinking
- // said instruction, due to the very same profitability check.
- // See @creating_too_many_phis in sink-common-code.ll.
- }
- LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
- unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
- if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
- NumPHIInsts++;
- return NumPHIInsts <= 1;
- };
- // We've determined that we are going to sink last ScanIdx instructions,
- // and recorded them in InstructionsToSink. Now, some instructions may be
- // unprofitable to sink. But that determination depends on the instructions
- // that we are going to sink.
- // First, forward scan: find the first instruction unprofitable to sink,
- // recording all the ones that are profitable to sink.
- // FIXME: would it be better, after we detect that not all are profitable.
- // to either record the profitable ones, or erase the unprofitable ones?
- // Maybe we need to choose (at runtime) the one that will touch least
- // instrs?
- LRI.reset();
- int Idx = 0;
- SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
- while (Idx < ScanIdx) {
- if (!ProfitableToSinkInstruction(LRI)) {
- // Too many PHIs would be created.
- LLVM_DEBUG(
- dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
- break;
- }
- InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
- --LRI;
- ++Idx;
- }
- // If no instructions can be sunk, early-return.
- if (Idx == 0)
- return false;
- // Did we determine that (only) some instructions are unprofitable to sink?
- if (Idx < ScanIdx) {
- // Okay, some instructions are unprofitable.
- ScanIdx = Idx;
- InstructionsToSink = InstructionsProfitableToSink;
- // But, that may make other instructions unprofitable, too.
- // So, do a backward scan, do any earlier instructions become
- // unprofitable?
- assert(
- !ProfitableToSinkInstruction(LRI) &&
- "We already know that the last instruction is unprofitable to sink");
- ++LRI;
- --Idx;
- while (Idx >= 0) {
- // If we detect that an instruction becomes unprofitable to sink,
- // all earlier instructions won't be sunk either,
- // so preemptively keep InstructionsProfitableToSink in sync.
- // FIXME: is this the most performant approach?
- for (auto *I : *LRI)
- InstructionsProfitableToSink.erase(I);
- if (!ProfitableToSinkInstruction(LRI)) {
- // Everything starting with this instruction won't be sunk.
- ScanIdx = Idx;
- InstructionsToSink = InstructionsProfitableToSink;
- }
- ++LRI;
- --Idx;
- }
- }
- // If no instructions can be sunk, early-return.
- if (ScanIdx == 0)
- return false;
- }
- bool Changed = false;
- if (HaveNonUnconditionalPredecessors) {
- if (!followedByDeoptOrUnreachable) {
- // It is always legal to sink common instructions from unconditional
- // predecessors. However, if not all predecessors are unconditional,
- // this transformation might be pessimizing. So as a rule of thumb,
- // don't do it unless we'd sink at least one non-speculatable instruction.
- // See https://bugs.llvm.org/show_bug.cgi?id=30244
- LRI.reset();
- int Idx = 0;
- bool Profitable = false;
- while (Idx < ScanIdx) {
- if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
- Profitable = true;
- break;
- }
- --LRI;
- ++Idx;
- }
- if (!Profitable)
- return false;
- }
- LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
- // We have a conditional edge and we're going to sink some instructions.
- // Insert a new block postdominating all blocks we're going to sink from.
- if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
- // Edges couldn't be split.
- return false;
- Changed = true;
- }
- // Now that we've analyzed all potential sinking candidates, perform the
- // actual sink. We iteratively sink the last non-terminator of the source
- // blocks into their common successor unless doing so would require too
- // many PHI instructions to be generated (currently only one PHI is allowed
- // per sunk instruction).
- //
- // We can use InstructionsToSink to discount values needing PHI-merging that will
- // actually be sunk in a later iteration. This allows us to be more
- // aggressive in what we sink. This does allow a false positive where we
- // sink presuming a later value will also be sunk, but stop half way through
- // and never actually sink it which means we produce more PHIs than intended.
- // This is unlikely in practice though.
- int SinkIdx = 0;
- for (; SinkIdx != ScanIdx; ++SinkIdx) {
- LLVM_DEBUG(dbgs() << "SINK: Sink: "
- << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
- << "\n");
- // Because we've sunk every instruction in turn, the current instruction to
- // sink is always at index 0.
- LRI.reset();
- if (!sinkLastInstruction(UnconditionalPreds)) {
- LLVM_DEBUG(
- dbgs()
- << "SINK: stopping here, failed to actually sink instruction!\n");
- break;
- }
- NumSinkCommonInstrs++;
- Changed = true;
- }
- if (SinkIdx != 0)
- ++NumSinkCommonCode;
- return Changed;
- }
- /// Determine if we can hoist sink a sole store instruction out of a
- /// conditional block.
- ///
- /// We are looking for code like the following:
- /// BrBB:
- /// store i32 %add, i32* %arrayidx2
- /// ... // No other stores or function calls (we could be calling a memory
- /// ... // function).
- /// %cmp = icmp ult %x, %y
- /// br i1 %cmp, label %EndBB, label %ThenBB
- /// ThenBB:
- /// store i32 %add5, i32* %arrayidx2
- /// br label EndBB
- /// EndBB:
- /// ...
- /// We are going to transform this into:
- /// BrBB:
- /// store i32 %add, i32* %arrayidx2
- /// ... //
- /// %cmp = icmp ult %x, %y
- /// %add.add5 = select i1 %cmp, i32 %add, %add5
- /// store i32 %add.add5, i32* %arrayidx2
- /// ...
- ///
- /// \return The pointer to the value of the previous store if the store can be
- /// hoisted into the predecessor block. 0 otherwise.
- static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
- BasicBlock *StoreBB, BasicBlock *EndBB) {
- StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
- if (!StoreToHoist)
- return nullptr;
- // Volatile or atomic.
- if (!StoreToHoist->isSimple())
- return nullptr;
- Value *StorePtr = StoreToHoist->getPointerOperand();
- Type *StoreTy = StoreToHoist->getValueOperand()->getType();
- // Look for a store to the same pointer in BrBB.
- unsigned MaxNumInstToLookAt = 9;
- // Skip pseudo probe intrinsic calls which are not really killing any memory
- // accesses.
- for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
- if (!MaxNumInstToLookAt)
- break;
- --MaxNumInstToLookAt;
- // Could be calling an instruction that affects memory like free().
- if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
- return nullptr;
- if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
- // Found the previous store to same location and type. Make sure it is
- // simple, to avoid introducing a spurious non-atomic write after an
- // atomic write.
- if (SI->getPointerOperand() == StorePtr &&
- SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
- // Found the previous store, return its value operand.
- return SI->getValueOperand();
- return nullptr; // Unknown store.
- }
- if (auto *LI = dyn_cast<LoadInst>(&CurI)) {
- if (LI->getPointerOperand() == StorePtr && LI->getType() == StoreTy &&
- LI->isSimple()) {
- // Local objects (created by an `alloca` instruction) are always
- // writable, so once we are past a read from a location it is valid to
- // also write to that same location.
- // If the address of the local object never escapes the function, that
- // means it's never concurrently read or written, hence moving the store
- // from under the condition will not introduce a data race.
- auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(StorePtr));
- if (AI && !PointerMayBeCaptured(AI, false, true))
- // Found a previous load, return it.
- return LI;
- }
- // The load didn't work out, but we may still find a store.
- }
- }
- return nullptr;
- }
- /// Estimate the cost of the insertion(s) and check that the PHI nodes can be
- /// converted to selects.
- static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
- BasicBlock *EndBB,
- unsigned &SpeculatedInstructions,
- InstructionCost &Cost,
- const TargetTransformInfo &TTI) {
- TargetTransformInfo::TargetCostKind CostKind =
- BB->getParent()->hasMinSize()
- ? TargetTransformInfo::TCK_CodeSize
- : TargetTransformInfo::TCK_SizeAndLatency;
- bool HaveRewritablePHIs = false;
- for (PHINode &PN : EndBB->phis()) {
- Value *OrigV = PN.getIncomingValueForBlock(BB);
- Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
- // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
- // Skip PHIs which are trivial.
- if (ThenV == OrigV)
- continue;
- Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
- CmpInst::BAD_ICMP_PREDICATE, CostKind);
- // Don't convert to selects if we could remove undefined behavior instead.
- if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
- passingValueIsAlwaysUndefined(ThenV, &PN))
- return false;
- HaveRewritablePHIs = true;
- ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
- ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
- if (!OrigCE && !ThenCE)
- continue; // Known safe and cheap.
- if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
- (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
- return false;
- InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
- InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
- InstructionCost MaxCost =
- 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
- if (OrigCost + ThenCost > MaxCost)
- return false;
- // Account for the cost of an unfolded ConstantExpr which could end up
- // getting expanded into Instructions.
- // FIXME: This doesn't account for how many operations are combined in the
- // constant expression.
- ++SpeculatedInstructions;
- if (SpeculatedInstructions > 1)
- return false;
- }
- return HaveRewritablePHIs;
- }
- /// Speculate a conditional basic block flattening the CFG.
- ///
- /// Note that this is a very risky transform currently. Speculating
- /// instructions like this is most often not desirable. Instead, there is an MI
- /// pass which can do it with full awareness of the resource constraints.
- /// However, some cases are "obvious" and we should do directly. An example of
- /// this is speculating a single, reasonably cheap instruction.
- ///
- /// There is only one distinct advantage to flattening the CFG at the IR level:
- /// it makes very common but simplistic optimizations such as are common in
- /// instcombine and the DAG combiner more powerful by removing CFG edges and
- /// modeling their effects with easier to reason about SSA value graphs.
- ///
- ///
- /// An illustration of this transform is turning this IR:
- /// \code
- /// BB:
- /// %cmp = icmp ult %x, %y
- /// br i1 %cmp, label %EndBB, label %ThenBB
- /// ThenBB:
- /// %sub = sub %x, %y
- /// br label BB2
- /// EndBB:
- /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
- /// ...
- /// \endcode
- ///
- /// Into this IR:
- /// \code
- /// BB:
- /// %cmp = icmp ult %x, %y
- /// %sub = sub %x, %y
- /// %cond = select i1 %cmp, 0, %sub
- /// ...
- /// \endcode
- ///
- /// \returns true if the conditional block is removed.
- bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
- const TargetTransformInfo &TTI) {
- // Be conservative for now. FP select instruction can often be expensive.
- Value *BrCond = BI->getCondition();
- if (isa<FCmpInst>(BrCond))
- return false;
- BasicBlock *BB = BI->getParent();
- BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
- InstructionCost Budget =
- PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
- // If ThenBB is actually on the false edge of the conditional branch, remember
- // to swap the select operands later.
- bool Invert = false;
- if (ThenBB != BI->getSuccessor(0)) {
- assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
- Invert = true;
- }
- assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
- // If the branch is non-unpredictable, and is predicted to *not* branch to
- // the `then` block, then avoid speculating it.
- if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
- uint64_t TWeight, FWeight;
- if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
- uint64_t EndWeight = Invert ? TWeight : FWeight;
- BranchProbability BIEndProb =
- BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
- BranchProbability Likely = TTI.getPredictableBranchThreshold();
- if (BIEndProb >= Likely)
- return false;
- }
- }
- // Keep a count of how many times instructions are used within ThenBB when
- // they are candidates for sinking into ThenBB. Specifically:
- // - They are defined in BB, and
- // - They have no side effects, and
- // - All of their uses are in ThenBB.
- SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
- SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
- unsigned SpeculatedInstructions = 0;
- Value *SpeculatedStoreValue = nullptr;
- StoreInst *SpeculatedStore = nullptr;
- for (BasicBlock::iterator BBI = ThenBB->begin(),
- BBE = std::prev(ThenBB->end());
- BBI != BBE; ++BBI) {
- Instruction *I = &*BBI;
- // Skip debug info.
- if (isa<DbgInfoIntrinsic>(I)) {
- SpeculatedDbgIntrinsics.push_back(I);
- continue;
- }
- // Skip pseudo probes. The consequence is we lose track of the branch
- // probability for ThenBB, which is fine since the optimization here takes
- // place regardless of the branch probability.
- if (isa<PseudoProbeInst>(I)) {
- // The probe should be deleted so that it will not be over-counted when
- // the samples collected on the non-conditional path are counted towards
- // the conditional path. We leave it for the counts inference algorithm to
- // figure out a proper count for an unknown probe.
- SpeculatedDbgIntrinsics.push_back(I);
- continue;
- }
- // Only speculatively execute a single instruction (not counting the
- // terminator) for now.
- ++SpeculatedInstructions;
- if (SpeculatedInstructions > 1)
- return false;
- // Don't hoist the instruction if it's unsafe or expensive.
- if (!isSafeToSpeculativelyExecute(I) &&
- !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
- I, BB, ThenBB, EndBB))))
- return false;
- if (!SpeculatedStoreValue &&
- computeSpeculationCost(I, TTI) >
- PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
- return false;
- // Store the store speculation candidate.
- if (SpeculatedStoreValue)
- SpeculatedStore = cast<StoreInst>(I);
- // Do not hoist the instruction if any of its operands are defined but not
- // used in BB. The transformation will prevent the operand from
- // being sunk into the use block.
- for (Use &Op : I->operands()) {
- Instruction *OpI = dyn_cast<Instruction>(Op);
- if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
- continue; // Not a candidate for sinking.
- ++SinkCandidateUseCounts[OpI];
- }
- }
- // Consider any sink candidates which are only used in ThenBB as costs for
- // speculation. Note, while we iterate over a DenseMap here, we are summing
- // and so iteration order isn't significant.
- for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
- I = SinkCandidateUseCounts.begin(),
- E = SinkCandidateUseCounts.end();
- I != E; ++I)
- if (I->first->hasNUses(I->second)) {
- ++SpeculatedInstructions;
- if (SpeculatedInstructions > 1)
- return false;
- }
- // Check that we can insert the selects and that it's not too expensive to do
- // so.
- bool Convert = SpeculatedStore != nullptr;
- InstructionCost Cost = 0;
- Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
- SpeculatedInstructions,
- Cost, TTI);
- if (!Convert || Cost > Budget)
- return false;
- // If we get here, we can hoist the instruction and if-convert.
- LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
- // Insert a select of the value of the speculated store.
- if (SpeculatedStoreValue) {
- IRBuilder<NoFolder> Builder(BI);
- Value *TrueV = SpeculatedStore->getValueOperand();
- Value *FalseV = SpeculatedStoreValue;
- if (Invert)
- std::swap(TrueV, FalseV);
- Value *S = Builder.CreateSelect(
- BrCond, TrueV, FalseV, "spec.store.select", BI);
- SpeculatedStore->setOperand(0, S);
- SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
- SpeculatedStore->getDebugLoc());
- }
- // Metadata can be dependent on the condition we are hoisting above.
- // Conservatively strip all metadata on the instruction. Drop the debug loc
- // to avoid making it appear as if the condition is a constant, which would
- // be misleading while debugging.
- // Similarly strip attributes that maybe dependent on condition we are
- // hoisting above.
- for (auto &I : *ThenBB) {
- if (!SpeculatedStoreValue || &I != SpeculatedStore)
- I.setDebugLoc(DebugLoc());
- I.dropUndefImplyingAttrsAndUnknownMetadata();
- }
- // Hoist the instructions.
- BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
- ThenBB->begin(), std::prev(ThenBB->end()));
- // Insert selects and rewrite the PHI operands.
- IRBuilder<NoFolder> Builder(BI);
- for (PHINode &PN : EndBB->phis()) {
- unsigned OrigI = PN.getBasicBlockIndex(BB);
- unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
- Value *OrigV = PN.getIncomingValue(OrigI);
- Value *ThenV = PN.getIncomingValue(ThenI);
- // Skip PHIs which are trivial.
- if (OrigV == ThenV)
- continue;
- // Create a select whose true value is the speculatively executed value and
- // false value is the pre-existing value. Swap them if the branch
- // destinations were inverted.
- Value *TrueV = ThenV, *FalseV = OrigV;
- if (Invert)
- std::swap(TrueV, FalseV);
- Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
- PN.setIncomingValue(OrigI, V);
- PN.setIncomingValue(ThenI, V);
- }
- // Remove speculated dbg intrinsics.
- // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
- // dbg value for the different flows and inserting it after the select.
- for (Instruction *I : SpeculatedDbgIntrinsics)
- I->eraseFromParent();
- ++NumSpeculations;
- return true;
- }
- /// Return true if we can thread a branch across this block.
- static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
- int Size = 0;
- SmallPtrSet<const Value *, 32> EphValues;
- auto IsEphemeral = [&](const Instruction *I) {
- if (isa<AssumeInst>(I))
- return true;
- return !I->mayHaveSideEffects() && !I->isTerminator() &&
- all_of(I->users(),
- [&](const User *U) { return EphValues.count(U); });
- };
- // Walk the loop in reverse so that we can identify ephemeral values properly
- // (values only feeding assumes).
- for (Instruction &I : reverse(BB->instructionsWithoutDebug(false))) {
- // Can't fold blocks that contain noduplicate or convergent calls.
- if (CallInst *CI = dyn_cast<CallInst>(&I))
- if (CI->cannotDuplicate() || CI->isConvergent())
- return false;
- // Ignore ephemeral values which are deleted during codegen.
- if (IsEphemeral(&I))
- EphValues.insert(&I);
- // We will delete Phis while threading, so Phis should not be accounted in
- // block's size.
- else if (!isa<PHINode>(I)) {
- if (Size++ > MaxSmallBlockSize)
- return false; // Don't clone large BB's.
- }
- // We can only support instructions that do not define values that are
- // live outside of the current basic block.
- for (User *U : I.users()) {
- Instruction *UI = cast<Instruction>(U);
- if (UI->getParent() != BB || isa<PHINode>(UI))
- return false;
- }
- // Looks ok, continue checking.
- }
- return true;
- }
- /// If we have a conditional branch on a PHI node value that is defined in the
- /// same block as the branch and if any PHI entries are constants, thread edges
- /// corresponding to that entry to be branches to their ultimate destination.
- static Optional<bool> FoldCondBranchOnPHIImpl(BranchInst *BI,
- DomTreeUpdater *DTU,
- const DataLayout &DL,
- AssumptionCache *AC) {
- BasicBlock *BB = BI->getParent();
- PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
- // NOTE: we currently cannot transform this case if the PHI node is used
- // outside of the block.
- if (!PN || PN->getParent() != BB || !PN->hasOneUse())
- return false;
- // Degenerate case of a single entry PHI.
- if (PN->getNumIncomingValues() == 1) {
- FoldSingleEntryPHINodes(PN->getParent());
- return true;
- }
- // Now we know that this block has multiple preds and two succs.
- if (!BlockIsSimpleEnoughToThreadThrough(BB))
- return false;
- // Okay, this is a simple enough basic block. See if any phi values are
- // constants.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
- if (!CB || !CB->getType()->isIntegerTy(1))
- continue;
- // Okay, we now know that all edges from PredBB should be revectored to
- // branch to RealDest.
- BasicBlock *PredBB = PN->getIncomingBlock(i);
- BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
- if (RealDest == BB)
- continue; // Skip self loops.
- // Skip if the predecessor's terminator is an indirect branch.
- if (isa<IndirectBrInst>(PredBB->getTerminator()))
- continue;
- SmallVector<DominatorTree::UpdateType, 3> Updates;
- // The dest block might have PHI nodes, other predecessors and other
- // difficult cases. Instead of being smart about this, just insert a new
- // block that jumps to the destination block, effectively splitting
- // the edge we are about to create.
- BasicBlock *EdgeBB =
- BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
- RealDest->getParent(), RealDest);
- BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
- if (DTU)
- Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
- CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
- // Update PHI nodes.
- AddPredecessorToBlock(RealDest, EdgeBB, BB);
- // BB may have instructions that are being threaded over. Clone these
- // instructions into EdgeBB. We know that there will be no uses of the
- // cloned instructions outside of EdgeBB.
- BasicBlock::iterator InsertPt = EdgeBB->begin();
- DenseMap<Value *, Value *> TranslateMap; // Track translated values.
- for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
- if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
- TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
- continue;
- }
- // Clone the instruction.
- Instruction *N = BBI->clone();
- if (BBI->hasName())
- N->setName(BBI->getName() + ".c");
- // Update operands due to translation.
- for (Use &Op : N->operands()) {
- DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
- if (PI != TranslateMap.end())
- Op = PI->second;
- }
- // Check for trivial simplification.
- if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
- if (!BBI->use_empty())
- TranslateMap[&*BBI] = V;
- if (!N->mayHaveSideEffects()) {
- N->deleteValue(); // Instruction folded away, don't need actual inst
- N = nullptr;
- }
- } else {
- if (!BBI->use_empty())
- TranslateMap[&*BBI] = N;
- }
- if (N) {
- // Insert the new instruction into its new home.
- EdgeBB->getInstList().insert(InsertPt, N);
- // Register the new instruction with the assumption cache if necessary.
- if (auto *Assume = dyn_cast<AssumeInst>(N))
- if (AC)
- AC->registerAssumption(Assume);
- }
- }
- // Loop over all of the edges from PredBB to BB, changing them to branch
- // to EdgeBB instead.
- Instruction *PredBBTI = PredBB->getTerminator();
- for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
- if (PredBBTI->getSuccessor(i) == BB) {
- BB->removePredecessor(PredBB);
- PredBBTI->setSuccessor(i, EdgeBB);
- }
- if (DTU) {
- Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
- Updates.push_back({DominatorTree::Delete, PredBB, BB});
- DTU->applyUpdates(Updates);
- }
- // Signal repeat, simplifying any other constants.
- return None;
- }
- return false;
- }
- static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
- const DataLayout &DL, AssumptionCache *AC) {
- Optional<bool> Result;
- bool EverChanged = false;
- do {
- // Note that None means "we changed things, but recurse further."
- Result = FoldCondBranchOnPHIImpl(BI, DTU, DL, AC);
- EverChanged |= Result == None || *Result;
- } while (Result == None);
- return EverChanged;
- }
- /// Given a BB that starts with the specified two-entry PHI node,
- /// see if we can eliminate it.
- static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
- DomTreeUpdater *DTU, const DataLayout &DL) {
- // Ok, this is a two entry PHI node. Check to see if this is a simple "if
- // statement", which has a very simple dominance structure. Basically, we
- // are trying to find the condition that is being branched on, which
- // subsequently causes this merge to happen. We really want control
- // dependence information for this check, but simplifycfg can't keep it up
- // to date, and this catches most of the cases we care about anyway.
- BasicBlock *BB = PN->getParent();
- BasicBlock *IfTrue, *IfFalse;
- BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
- if (!DomBI)
- return false;
- Value *IfCond = DomBI->getCondition();
- // Don't bother if the branch will be constant folded trivially.
- if (isa<ConstantInt>(IfCond))
- return false;
- BasicBlock *DomBlock = DomBI->getParent();
- SmallVector<BasicBlock *, 2> IfBlocks;
- llvm::copy_if(
- PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
- return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
- });
- assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
- "Will have either one or two blocks to speculate.");
- // If the branch is non-unpredictable, see if we either predictably jump to
- // the merge bb (if we have only a single 'then' block), or if we predictably
- // jump to one specific 'then' block (if we have two of them).
- // It isn't beneficial to speculatively execute the code
- // from the block that we know is predictably not entered.
- if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
- uint64_t TWeight, FWeight;
- if (DomBI->extractProfMetadata(TWeight, FWeight) &&
- (TWeight + FWeight) != 0) {
- BranchProbability BITrueProb =
- BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
- BranchProbability Likely = TTI.getPredictableBranchThreshold();
- BranchProbability BIFalseProb = BITrueProb.getCompl();
- if (IfBlocks.size() == 1) {
- BranchProbability BIBBProb =
- DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
- if (BIBBProb >= Likely)
- return false;
- } else {
- if (BITrueProb >= Likely || BIFalseProb >= Likely)
- return false;
- }
- }
- }
- // Don't try to fold an unreachable block. For example, the phi node itself
- // can't be the candidate if-condition for a select that we want to form.
- if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
- if (IfCondPhiInst->getParent() == BB)
- return false;
- // Okay, we found that we can merge this two-entry phi node into a select.
- // Doing so would require us to fold *all* two entry phi nodes in this block.
- // At some point this becomes non-profitable (particularly if the target
- // doesn't support cmov's). Only do this transformation if there are two or
- // fewer PHI nodes in this block.
- unsigned NumPhis = 0;
- for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
- if (NumPhis > 2)
- return false;
- // Loop over the PHI's seeing if we can promote them all to select
- // instructions. While we are at it, keep track of the instructions
- // that need to be moved to the dominating block.
- SmallPtrSet<Instruction *, 4> AggressiveInsts;
- InstructionCost Cost = 0;
- InstructionCost Budget =
- TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
- bool Changed = false;
- for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
- PHINode *PN = cast<PHINode>(II++);
- if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
- PN->replaceAllUsesWith(V);
- PN->eraseFromParent();
- Changed = true;
- continue;
- }
- if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
- Cost, Budget, TTI) ||
- !dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
- Cost, Budget, TTI))
- return Changed;
- }
- // If we folded the first phi, PN dangles at this point. Refresh it. If
- // we ran out of PHIs then we simplified them all.
- PN = dyn_cast<PHINode>(BB->begin());
- if (!PN)
- return true;
- // Return true if at least one of these is a 'not', and another is either
- // a 'not' too, or a constant.
- auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
- if (!match(V0, m_Not(m_Value())))
- std::swap(V0, V1);
- auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
- return match(V0, m_Not(m_Value())) && match(V1, Invertible);
- };
- // Don't fold i1 branches on PHIs which contain binary operators or
- // (possibly inverted) select form of or/ands, unless one of
- // the incoming values is an 'not' and another one is freely invertible.
- // These can often be turned into switches and other things.
- auto IsBinOpOrAnd = [](Value *V) {
- return match(
- V, m_CombineOr(
- m_BinOp(),
- m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
- m_Select(m_Value(), m_Value(), m_ImmConstant()))));
- };
- if (PN->getType()->isIntegerTy(1) &&
- (IsBinOpOrAnd(PN->getIncomingValue(0)) ||
- IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
- !CanHoistNotFromBothValues(PN->getIncomingValue(0),
- PN->getIncomingValue(1)))
- return Changed;
- // If all PHI nodes are promotable, check to make sure that all instructions
- // in the predecessor blocks can be promoted as well. If not, we won't be able
- // to get rid of the control flow, so it's not worth promoting to select
- // instructions.
- for (BasicBlock *IfBlock : IfBlocks)
- for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
- if (!AggressiveInsts.count(&*I) && !I->isDebugOrPseudoInst()) {
- // This is not an aggressive instruction that we can promote.
- // Because of this, we won't be able to get rid of the control flow, so
- // the xform is not worth it.
- return Changed;
- }
- // If either of the blocks has it's address taken, we can't do this fold.
- if (any_of(IfBlocks,
- [](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
- return Changed;
- LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
- << " T: " << IfTrue->getName()
- << " F: " << IfFalse->getName() << "\n");
- // If we can still promote the PHI nodes after this gauntlet of tests,
- // do all of the PHI's now.
- // Move all 'aggressive' instructions, which are defined in the
- // conditional parts of the if's up to the dominating block.
- for (BasicBlock *IfBlock : IfBlocks)
- hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
- IRBuilder<NoFolder> Builder(DomBI);
- // Propagate fast-math-flags from phi nodes to replacement selects.
- IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
- while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
- if (isa<FPMathOperator>(PN))
- Builder.setFastMathFlags(PN->getFastMathFlags());
- // Change the PHI node into a select instruction.
- Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
- Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
- Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
- PN->replaceAllUsesWith(Sel);
- Sel->takeName(PN);
- PN->eraseFromParent();
- }
- // At this point, all IfBlocks are empty, so our if statement
- // has been flattened. Change DomBlock to jump directly to our new block to
- // avoid other simplifycfg's kicking in on the diamond.
- Builder.CreateBr(BB);
- SmallVector<DominatorTree::UpdateType, 3> Updates;
- if (DTU) {
- Updates.push_back({DominatorTree::Insert, DomBlock, BB});
- for (auto *Successor : successors(DomBlock))
- Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
- }
- DomBI->eraseFromParent();
- if (DTU)
- DTU->applyUpdates(Updates);
- return true;
- }
- static Value *createLogicalOp(IRBuilderBase &Builder,
- Instruction::BinaryOps Opc, Value *LHS,
- Value *RHS, const Twine &Name = "") {
- // Try to relax logical op to binary op.
- if (impliesPoison(RHS, LHS))
- return Builder.CreateBinOp(Opc, LHS, RHS, Name);
- if (Opc == Instruction::And)
- return Builder.CreateLogicalAnd(LHS, RHS, Name);
- if (Opc == Instruction::Or)
- return Builder.CreateLogicalOr(LHS, RHS, Name);
- llvm_unreachable("Invalid logical opcode");
- }
- /// Return true if either PBI or BI has branch weight available, and store
- /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
- /// not have branch weight, use 1:1 as its weight.
- static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
- uint64_t &PredTrueWeight,
- uint64_t &PredFalseWeight,
- uint64_t &SuccTrueWeight,
- uint64_t &SuccFalseWeight) {
- bool PredHasWeights =
- PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
- bool SuccHasWeights =
- BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
- if (PredHasWeights || SuccHasWeights) {
- if (!PredHasWeights)
- PredTrueWeight = PredFalseWeight = 1;
- if (!SuccHasWeights)
- SuccTrueWeight = SuccFalseWeight = 1;
- return true;
- } else {
- return false;
- }
- }
- /// Determine if the two branches share a common destination and deduce a glue
- /// that joins the branches' conditions to arrive at the common destination if
- /// that would be profitable.
- static Optional<std::pair<Instruction::BinaryOps, bool>>
- shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
- const TargetTransformInfo *TTI) {
- assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
- "Both blocks must end with a conditional branches.");
- assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
- "PredBB must be a predecessor of BB.");
- // We have the potential to fold the conditions together, but if the
- // predecessor branch is predictable, we may not want to merge them.
- uint64_t PTWeight, PFWeight;
- BranchProbability PBITrueProb, Likely;
- if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
- PBI->extractProfMetadata(PTWeight, PFWeight) &&
- (PTWeight + PFWeight) != 0) {
- PBITrueProb =
- BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
- Likely = TTI->getPredictableBranchThreshold();
- }
- if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
- // Speculate the 2nd condition unless the 1st is probably true.
- if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
- return {{Instruction::Or, false}};
- } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
- // Speculate the 2nd condition unless the 1st is probably false.
- if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
- return {{Instruction::And, false}};
- } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
- // Speculate the 2nd condition unless the 1st is probably true.
- if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
- return {{Instruction::And, true}};
- } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
- // Speculate the 2nd condition unless the 1st is probably false.
- if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
- return {{Instruction::Or, true}};
- }
- return None;
- }
- static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
- DomTreeUpdater *DTU,
- MemorySSAUpdater *MSSAU,
- const TargetTransformInfo *TTI) {
- BasicBlock *BB = BI->getParent();
- BasicBlock *PredBlock = PBI->getParent();
- // Determine if the two branches share a common destination.
- Instruction::BinaryOps Opc;
- bool InvertPredCond;
- std::tie(Opc, InvertPredCond) =
- *shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
- LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
- IRBuilder<> Builder(PBI);
- // The builder is used to create instructions to eliminate the branch in BB.
- // If BB's terminator has !annotation metadata, add it to the new
- // instructions.
- Builder.CollectMetadataToCopy(BB->getTerminator(),
- {LLVMContext::MD_annotation});
- // If we need to invert the condition in the pred block to match, do so now.
- if (InvertPredCond) {
- Value *NewCond = PBI->getCondition();
- if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
- CmpInst *CI = cast<CmpInst>(NewCond);
- CI->setPredicate(CI->getInversePredicate());
- } else {
- NewCond =
- Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
- }
- PBI->setCondition(NewCond);
- PBI->swapSuccessors();
- }
- BasicBlock *UniqueSucc =
- PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
- // Before cloning instructions, notify the successor basic block that it
- // is about to have a new predecessor. This will update PHI nodes,
- // which will allow us to update live-out uses of bonus instructions.
- AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
- // Try to update branch weights.
- uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
- if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
- SuccTrueWeight, SuccFalseWeight)) {
- SmallVector<uint64_t, 8> NewWeights;
- if (PBI->getSuccessor(0) == BB) {
- // PBI: br i1 %x, BB, FalseDest
- // BI: br i1 %y, UniqueSucc, FalseDest
- // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
- NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
- // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
- // TrueWeight for PBI * FalseWeight for BI.
- // We assume that total weights of a BranchInst can fit into 32 bits.
- // Therefore, we will not have overflow using 64-bit arithmetic.
- NewWeights.push_back(PredFalseWeight *
- (SuccFalseWeight + SuccTrueWeight) +
- PredTrueWeight * SuccFalseWeight);
- } else {
- // PBI: br i1 %x, TrueDest, BB
- // BI: br i1 %y, TrueDest, UniqueSucc
- // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
- // FalseWeight for PBI * TrueWeight for BI.
- NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
- PredFalseWeight * SuccTrueWeight);
- // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
- NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
- }
- // Halve the weights if any of them cannot fit in an uint32_t
- FitWeights(NewWeights);
- SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
- setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
- // TODO: If BB is reachable from all paths through PredBlock, then we
- // could replace PBI's branch probabilities with BI's.
- } else
- PBI->setMetadata(LLVMContext::MD_prof, nullptr);
- // Now, update the CFG.
- PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
- if (DTU)
- DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
- {DominatorTree::Delete, PredBlock, BB}});
- // If BI was a loop latch, it may have had associated loop metadata.
- // We need to copy it to the new latch, that is, PBI.
- if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
- PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
- ValueToValueMapTy VMap; // maps original values to cloned values
- CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
- // Now that the Cond was cloned into the predecessor basic block,
- // or/and the two conditions together.
- Value *BICond = VMap[BI->getCondition()];
- PBI->setCondition(
- createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
- // Copy any debug value intrinsics into the end of PredBlock.
- for (Instruction &I : *BB) {
- if (isa<DbgInfoIntrinsic>(I)) {
- Instruction *NewI = I.clone();
- RemapInstruction(NewI, VMap,
- RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
- NewI->insertBefore(PBI);
- }
- }
- ++NumFoldBranchToCommonDest;
- return true;
- }
- /// Return if an instruction's type or any of its operands' types are a vector
- /// type.
- static bool isVectorOp(Instruction &I) {
- return I.getType()->isVectorTy() || any_of(I.operands(), [](Use &U) {
- return U->getType()->isVectorTy();
- });
- }
- /// If this basic block is simple enough, and if a predecessor branches to us
- /// and one of our successors, fold the block into the predecessor and use
- /// logical operations to pick the right destination.
- bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
- MemorySSAUpdater *MSSAU,
- const TargetTransformInfo *TTI,
- unsigned BonusInstThreshold) {
- // If this block ends with an unconditional branch,
- // let SpeculativelyExecuteBB() deal with it.
- if (!BI->isConditional())
- return false;
- BasicBlock *BB = BI->getParent();
- TargetTransformInfo::TargetCostKind CostKind =
- BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
- : TargetTransformInfo::TCK_SizeAndLatency;
- Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
- if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
- Cond->getParent() != BB || !Cond->hasOneUse())
- return false;
- // Cond is known to be a compare or binary operator. Check to make sure that
- // neither operand is a potentially-trapping constant expression.
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
- if (CE->canTrap())
- return false;
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
- if (CE->canTrap())
- return false;
- // Finally, don't infinitely unroll conditional loops.
- if (is_contained(successors(BB), BB))
- return false;
- // With which predecessors will we want to deal with?
- SmallVector<BasicBlock *, 8> Preds;
- for (BasicBlock *PredBlock : predecessors(BB)) {
- BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
- // Check that we have two conditional branches. If there is a PHI node in
- // the common successor, verify that the same value flows in from both
- // blocks.
- if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
- continue;
- // Determine if the two branches share a common destination.
- Instruction::BinaryOps Opc;
- bool InvertPredCond;
- if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
- std::tie(Opc, InvertPredCond) = *Recipe;
- else
- continue;
- // Check the cost of inserting the necessary logic before performing the
- // transformation.
- if (TTI) {
- Type *Ty = BI->getCondition()->getType();
- InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
- if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
- !isa<CmpInst>(PBI->getCondition())))
- Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
- if (Cost > BranchFoldThreshold)
- continue;
- }
- // Ok, we do want to deal with this predecessor. Record it.
- Preds.emplace_back(PredBlock);
- }
- // If there aren't any predecessors into which we can fold,
- // don't bother checking the cost.
- if (Preds.empty())
- return false;
- // Only allow this transformation if computing the condition doesn't involve
- // too many instructions and these involved instructions can be executed
- // unconditionally. We denote all involved instructions except the condition
- // as "bonus instructions", and only allow this transformation when the
- // number of the bonus instructions we'll need to create when cloning into
- // each predecessor does not exceed a certain threshold.
- unsigned NumBonusInsts = 0;
- bool SawVectorOp = false;
- const unsigned PredCount = Preds.size();
- for (Instruction &I : *BB) {
- // Don't check the branch condition comparison itself.
- if (&I == Cond)
- continue;
- // Ignore dbg intrinsics, and the terminator.
- if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
- continue;
- // I must be safe to execute unconditionally.
- if (!isSafeToSpeculativelyExecute(&I))
- return false;
- SawVectorOp |= isVectorOp(I);
- // Account for the cost of duplicating this instruction into each
- // predecessor. Ignore free instructions.
- if (!TTI ||
- TTI->getUserCost(&I, CostKind) != TargetTransformInfo::TCC_Free) {
- NumBonusInsts += PredCount;
- // Early exits once we reach the limit.
- if (NumBonusInsts >
- BonusInstThreshold * BranchFoldToCommonDestVectorMultiplier)
- return false;
- }
- auto IsBCSSAUse = [BB, &I](Use &U) {
- auto *UI = cast<Instruction>(U.getUser());
- if (auto *PN = dyn_cast<PHINode>(UI))
- return PN->getIncomingBlock(U) == BB;
- return UI->getParent() == BB && I.comesBefore(UI);
- };
- // Does this instruction require rewriting of uses?
- if (!all_of(I.uses(), IsBCSSAUse))
- return false;
- }
- if (NumBonusInsts >
- BonusInstThreshold *
- (SawVectorOp ? BranchFoldToCommonDestVectorMultiplier : 1))
- return false;
- // Ok, we have the budget. Perform the transformation.
- for (BasicBlock *PredBlock : Preds) {
- auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
- return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
- }
- return false;
- }
- // If there is only one store in BB1 and BB2, return it, otherwise return
- // nullptr.
- static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
- StoreInst *S = nullptr;
- for (auto *BB : {BB1, BB2}) {
- if (!BB)
- continue;
- for (auto &I : *BB)
- if (auto *SI = dyn_cast<StoreInst>(&I)) {
- if (S)
- // Multiple stores seen.
- return nullptr;
- else
- S = SI;
- }
- }
- return S;
- }
- static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
- Value *AlternativeV = nullptr) {
- // PHI is going to be a PHI node that allows the value V that is defined in
- // BB to be referenced in BB's only successor.
- //
- // If AlternativeV is nullptr, the only value we care about in PHI is V. It
- // doesn't matter to us what the other operand is (it'll never get used). We
- // could just create a new PHI with an undef incoming value, but that could
- // increase register pressure if EarlyCSE/InstCombine can't fold it with some
- // other PHI. So here we directly look for some PHI in BB's successor with V
- // as an incoming operand. If we find one, we use it, else we create a new
- // one.
- //
- // If AlternativeV is not nullptr, we care about both incoming values in PHI.
- // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
- // where OtherBB is the single other predecessor of BB's only successor.
- PHINode *PHI = nullptr;
- BasicBlock *Succ = BB->getSingleSuccessor();
- for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
- if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
- PHI = cast<PHINode>(I);
- if (!AlternativeV)
- break;
- assert(Succ->hasNPredecessors(2));
- auto PredI = pred_begin(Succ);
- BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
- if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
- break;
- PHI = nullptr;
- }
- if (PHI)
- return PHI;
- // If V is not an instruction defined in BB, just return it.
- if (!AlternativeV &&
- (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
- return V;
- PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
- PHI->addIncoming(V, BB);
- for (BasicBlock *PredBB : predecessors(Succ))
- if (PredBB != BB)
- PHI->addIncoming(
- AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
- return PHI;
- }
- static bool mergeConditionalStoreToAddress(
- BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
- BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
- DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
- // For every pointer, there must be exactly two stores, one coming from
- // PTB or PFB, and the other from QTB or QFB. We don't support more than one
- // store (to any address) in PTB,PFB or QTB,QFB.
- // FIXME: We could relax this restriction with a bit more work and performance
- // testing.
- StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
- StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
- if (!PStore || !QStore)
- return false;
- // Now check the stores are compatible.
- if (!QStore->isUnordered() || !PStore->isUnordered())
- return false;
- // Check that sinking the store won't cause program behavior changes. Sinking
- // the store out of the Q blocks won't change any behavior as we're sinking
- // from a block to its unconditional successor. But we're moving a store from
- // the P blocks down through the middle block (QBI) and past both QFB and QTB.
- // So we need to check that there are no aliasing loads or stores in
- // QBI, QTB and QFB. We also need to check there are no conflicting memory
- // operations between PStore and the end of its parent block.
- //
- // The ideal way to do this is to query AliasAnalysis, but we don't
- // preserve AA currently so that is dangerous. Be super safe and just
- // check there are no other memory operations at all.
- for (auto &I : *QFB->getSinglePredecessor())
- if (I.mayReadOrWriteMemory())
- return false;
- for (auto &I : *QFB)
- if (&I != QStore && I.mayReadOrWriteMemory())
- return false;
- if (QTB)
- for (auto &I : *QTB)
- if (&I != QStore && I.mayReadOrWriteMemory())
- return false;
- for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
- I != E; ++I)
- if (&*I != PStore && I->mayReadOrWriteMemory())
- return false;
- // If we're not in aggressive mode, we only optimize if we have some
- // confidence that by optimizing we'll allow P and/or Q to be if-converted.
- auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
- if (!BB)
- return true;
- // Heuristic: if the block can be if-converted/phi-folded and the
- // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
- // thread this store.
- InstructionCost Cost = 0;
- InstructionCost Budget =
- PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
- for (auto &I : BB->instructionsWithoutDebug(false)) {
- // Consider terminator instruction to be free.
- if (I.isTerminator())
- continue;
- // If this is one the stores that we want to speculate out of this BB,
- // then don't count it's cost, consider it to be free.
- if (auto *S = dyn_cast<StoreInst>(&I))
- if (llvm::find(FreeStores, S))
- continue;
- // Else, we have a white-list of instructions that we are ak speculating.
- if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
- return false; // Not in white-list - not worthwhile folding.
- // And finally, if this is a non-free instruction that we are okay
- // speculating, ensure that we consider the speculation budget.
- Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
- if (Cost > Budget)
- return false; // Eagerly refuse to fold as soon as we're out of budget.
- }
- assert(Cost <= Budget &&
- "When we run out of budget we will eagerly return from within the "
- "per-instruction loop.");
- return true;
- };
- const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
- if (!MergeCondStoresAggressively &&
- (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
- !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
- return false;
- // If PostBB has more than two predecessors, we need to split it so we can
- // sink the store.
- if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
- // We know that QFB's only successor is PostBB. And QFB has a single
- // predecessor. If QTB exists, then its only successor is also PostBB.
- // If QTB does not exist, then QFB's only predecessor has a conditional
- // branch to QFB and PostBB.
- BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
- BasicBlock *NewBB =
- SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
- if (!NewBB)
- return false;
- PostBB = NewBB;
- }
- // OK, we're going to sink the stores to PostBB. The store has to be
- // conditional though, so first create the predicate.
- Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
- ->getCondition();
- Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
- ->getCondition();
- Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
- PStore->getParent());
- Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
- QStore->getParent(), PPHI);
- IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
- Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
- Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
- if (InvertPCond)
- PPred = QB.CreateNot(PPred);
- if (InvertQCond)
- QPred = QB.CreateNot(QPred);
- Value *CombinedPred = QB.CreateOr(PPred, QPred);
- auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
- /*Unreachable=*/false,
- /*BranchWeights=*/nullptr, DTU);
- QB.SetInsertPoint(T);
- StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
- SI->setAAMetadata(PStore->getAAMetadata().merge(QStore->getAAMetadata()));
- // Choose the minimum alignment. If we could prove both stores execute, we
- // could use biggest one. In this case, though, we only know that one of the
- // stores executes. And we don't know it's safe to take the alignment from a
- // store that doesn't execute.
- SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
- QStore->eraseFromParent();
- PStore->eraseFromParent();
- return true;
- }
- static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
- DomTreeUpdater *DTU, const DataLayout &DL,
- const TargetTransformInfo &TTI) {
- // The intention here is to find diamonds or triangles (see below) where each
- // conditional block contains a store to the same address. Both of these
- // stores are conditional, so they can't be unconditionally sunk. But it may
- // be profitable to speculatively sink the stores into one merged store at the
- // end, and predicate the merged store on the union of the two conditions of
- // PBI and QBI.
- //
- // This can reduce the number of stores executed if both of the conditions are
- // true, and can allow the blocks to become small enough to be if-converted.
- // This optimization will also chain, so that ladders of test-and-set
- // sequences can be if-converted away.
- //
- // We only deal with simple diamonds or triangles:
- //
- // PBI or PBI or a combination of the two
- // / \ | \
- // PTB PFB | PFB
- // \ / | /
- // QBI QBI
- // / \ | \
- // QTB QFB | QFB
- // \ / | /
- // PostBB PostBB
- //
- // We model triangles as a type of diamond with a nullptr "true" block.
- // Triangles are canonicalized so that the fallthrough edge is represented by
- // a true condition, as in the diagram above.
- BasicBlock *PTB = PBI->getSuccessor(0);
- BasicBlock *PFB = PBI->getSuccessor(1);
- BasicBlock *QTB = QBI->getSuccessor(0);
- BasicBlock *QFB = QBI->getSuccessor(1);
- BasicBlock *PostBB = QFB->getSingleSuccessor();
- // Make sure we have a good guess for PostBB. If QTB's only successor is
- // QFB, then QFB is a better PostBB.
- if (QTB->getSingleSuccessor() == QFB)
- PostBB = QFB;
- // If we couldn't find a good PostBB, stop.
- if (!PostBB)
- return false;
- bool InvertPCond = false, InvertQCond = false;
- // Canonicalize fallthroughs to the true branches.
- if (PFB == QBI->getParent()) {
- std::swap(PFB, PTB);
- InvertPCond = true;
- }
- if (QFB == PostBB) {
- std::swap(QFB, QTB);
- InvertQCond = true;
- }
- // From this point on we can assume PTB or QTB may be fallthroughs but PFB
- // and QFB may not. Model fallthroughs as a nullptr block.
- if (PTB == QBI->getParent())
- PTB = nullptr;
- if (QTB == PostBB)
- QTB = nullptr;
- // Legality bailouts. We must have at least the non-fallthrough blocks and
- // the post-dominating block, and the non-fallthroughs must only have one
- // predecessor.
- auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
- return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
- };
- if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
- !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
- return false;
- if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
- (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
- return false;
- if (!QBI->getParent()->hasNUses(2))
- return false;
- // OK, this is a sequence of two diamonds or triangles.
- // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
- SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
- for (auto *BB : {PTB, PFB}) {
- if (!BB)
- continue;
- for (auto &I : *BB)
- if (StoreInst *SI = dyn_cast<StoreInst>(&I))
- PStoreAddresses.insert(SI->getPointerOperand());
- }
- for (auto *BB : {QTB, QFB}) {
- if (!BB)
- continue;
- for (auto &I : *BB)
- if (StoreInst *SI = dyn_cast<StoreInst>(&I))
- QStoreAddresses.insert(SI->getPointerOperand());
- }
- set_intersect(PStoreAddresses, QStoreAddresses);
- // set_intersect mutates PStoreAddresses in place. Rename it here to make it
- // clear what it contains.
- auto &CommonAddresses = PStoreAddresses;
- bool Changed = false;
- for (auto *Address : CommonAddresses)
- Changed |=
- mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
- InvertPCond, InvertQCond, DTU, DL, TTI);
- return Changed;
- }
- /// If the previous block ended with a widenable branch, determine if reusing
- /// the target block is profitable and legal. This will have the effect of
- /// "widening" PBI, but doesn't require us to reason about hosting safety.
- static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
- DomTreeUpdater *DTU) {
- // TODO: This can be generalized in two important ways:
- // 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
- // values from the PBI edge.
- // 2) We can sink side effecting instructions into BI's fallthrough
- // successor provided they doesn't contribute to computation of
- // BI's condition.
- Value *CondWB, *WC;
- BasicBlock *IfTrueBB, *IfFalseBB;
- if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
- IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
- return false;
- if (!IfFalseBB->phis().empty())
- return false; // TODO
- // Use lambda to lazily compute expensive condition after cheap ones.
- auto NoSideEffects = [](BasicBlock &BB) {
- return llvm::none_of(BB, [](const Instruction &I) {
- return I.mayWriteToMemory() || I.mayHaveSideEffects();
- });
- };
- if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
- BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
- NoSideEffects(*BI->getParent())) {
- auto *OldSuccessor = BI->getSuccessor(1);
- OldSuccessor->removePredecessor(BI->getParent());
- BI->setSuccessor(1, IfFalseBB);
- if (DTU)
- DTU->applyUpdates(
- {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
- {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
- return true;
- }
- if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
- BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
- NoSideEffects(*BI->getParent())) {
- auto *OldSuccessor = BI->getSuccessor(0);
- OldSuccessor->removePredecessor(BI->getParent());
- BI->setSuccessor(0, IfFalseBB);
- if (DTU)
- DTU->applyUpdates(
- {{DominatorTree::Insert, BI->getParent(), IfFalseBB},
- {DominatorTree::Delete, BI->getParent(), OldSuccessor}});
- return true;
- }
- return false;
- }
- /// If we have a conditional branch as a predecessor of another block,
- /// this function tries to simplify it. We know
- /// that PBI and BI are both conditional branches, and BI is in one of the
- /// successor blocks of PBI - PBI branches to BI.
- static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
- DomTreeUpdater *DTU,
- const DataLayout &DL,
- const TargetTransformInfo &TTI) {
- assert(PBI->isConditional() && BI->isConditional());
- BasicBlock *BB = BI->getParent();
- // If this block ends with a branch instruction, and if there is a
- // predecessor that ends on a branch of the same condition, make
- // this conditional branch redundant.
- if (PBI->getCondition() == BI->getCondition() &&
- PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
- // Okay, the outcome of this conditional branch is statically
- // knowable. If this block had a single pred, handle specially.
- if (BB->getSinglePredecessor()) {
- // Turn this into a branch on constant.
- bool CondIsTrue = PBI->getSuccessor(0) == BB;
- BI->setCondition(
- ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
- return true; // Nuke the branch on constant.
- }
- // Otherwise, if there are multiple predecessors, insert a PHI that merges
- // in the constant and simplify the block result. Subsequent passes of
- // simplifycfg will thread the block.
- if (BlockIsSimpleEnoughToThreadThrough(BB)) {
- pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
- PHINode *NewPN = PHINode::Create(
- Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
- BI->getCondition()->getName() + ".pr", &BB->front());
- // Okay, we're going to insert the PHI node. Since PBI is not the only
- // predecessor, compute the PHI'd conditional value for all of the preds.
- // Any predecessor where the condition is not computable we keep symbolic.
- for (pred_iterator PI = PB; PI != PE; ++PI) {
- BasicBlock *P = *PI;
- if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
- PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
- PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
- bool CondIsTrue = PBI->getSuccessor(0) == BB;
- NewPN->addIncoming(
- ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
- P);
- } else {
- NewPN->addIncoming(BI->getCondition(), P);
- }
- }
- BI->setCondition(NewPN);
- return true;
- }
- }
- // If the previous block ended with a widenable branch, determine if reusing
- // the target block is profitable and legal. This will have the effect of
- // "widening" PBI, but doesn't require us to reason about hosting safety.
- if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
- return true;
- if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
- if (CE->canTrap())
- return false;
- // If both branches are conditional and both contain stores to the same
- // address, remove the stores from the conditionals and create a conditional
- // merged store at the end.
- if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
- return true;
- // If this is a conditional branch in an empty block, and if any
- // predecessors are a conditional branch to one of our destinations,
- // fold the conditions into logical ops and one cond br.
- // Ignore dbg intrinsics.
- if (&*BB->instructionsWithoutDebug(false).begin() != BI)
- return false;
- int PBIOp, BIOp;
- if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
- PBIOp = 0;
- BIOp = 0;
- } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
- PBIOp = 0;
- BIOp = 1;
- } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
- PBIOp = 1;
- BIOp = 0;
- } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
- PBIOp = 1;
- BIOp = 1;
- } else {
- return false;
- }
- // Check to make sure that the other destination of this branch
- // isn't BB itself. If so, this is an infinite loop that will
- // keep getting unwound.
- if (PBI->getSuccessor(PBIOp) == BB)
- return false;
- // Do not perform this transformation if it would require
- // insertion of a large number of select instructions. For targets
- // without predication/cmovs, this is a big pessimization.
- // Also do not perform this transformation if any phi node in the common
- // destination block can trap when reached by BB or PBB (PR17073). In that
- // case, it would be unsafe to hoist the operation into a select instruction.
- BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
- BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
- unsigned NumPhis = 0;
- for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
- ++II, ++NumPhis) {
- if (NumPhis > 2) // Disable this xform.
- return false;
- PHINode *PN = cast<PHINode>(II);
- Value *BIV = PN->getIncomingValueForBlock(BB);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
- if (CE->canTrap())
- return false;
- unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
- Value *PBIV = PN->getIncomingValue(PBBIdx);
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
- if (CE->canTrap())
- return false;
- }
- // Finally, if everything is ok, fold the branches to logical ops.
- BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
- LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
- << "AND: " << *BI->getParent());
- SmallVector<DominatorTree::UpdateType, 5> Updates;
- // If OtherDest *is* BB, then BB is a basic block with a single conditional
- // branch in it, where one edge (OtherDest) goes back to itself but the other
- // exits. We don't *know* that the program avoids the infinite loop
- // (even though that seems likely). If we do this xform naively, we'll end up
- // recursively unpeeling the loop. Since we know that (after the xform is
- // done) that the block *is* infinite if reached, we just make it an obviously
- // infinite loop with no cond branch.
- if (OtherDest == BB) {
- // Insert it at the end of the function, because it's either code,
- // or it won't matter if it's hot. :)
- BasicBlock *InfLoopBlock =
- BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
- BranchInst::Create(InfLoopBlock, InfLoopBlock);
- if (DTU)
- Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
- OtherDest = InfLoopBlock;
- }
- LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
- // BI may have other predecessors. Because of this, we leave
- // it alone, but modify PBI.
- // Make sure we get to CommonDest on True&True directions.
- Value *PBICond = PBI->getCondition();
- IRBuilder<NoFolder> Builder(PBI);
- if (PBIOp)
- PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
- Value *BICond = BI->getCondition();
- if (BIOp)
- BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
- // Merge the conditions.
- Value *Cond =
- createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
- // Modify PBI to branch on the new condition to the new dests.
- PBI->setCondition(Cond);
- PBI->setSuccessor(0, CommonDest);
- PBI->setSuccessor(1, OtherDest);
- if (DTU) {
- Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
- Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
- DTU->applyUpdates(Updates);
- }
- // Update branch weight for PBI.
- uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
- uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
- bool HasWeights =
- extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
- SuccTrueWeight, SuccFalseWeight);
- if (HasWeights) {
- PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
- PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
- SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
- SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
- // The weight to CommonDest should be PredCommon * SuccTotal +
- // PredOther * SuccCommon.
- // The weight to OtherDest should be PredOther * SuccOther.
- uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
- PredOther * SuccCommon,
- PredOther * SuccOther};
- // Halve the weights if any of them cannot fit in an uint32_t
- FitWeights(NewWeights);
- setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
- }
- // OtherDest may have phi nodes. If so, add an entry from PBI's
- // block that are identical to the entries for BI's block.
- AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
- // We know that the CommonDest already had an edge from PBI to
- // it. If it has PHIs though, the PHIs may have different
- // entries for BB and PBI's BB. If so, insert a select to make
- // them agree.
- for (PHINode &PN : CommonDest->phis()) {
- Value *BIV = PN.getIncomingValueForBlock(BB);
- unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
- Value *PBIV = PN.getIncomingValue(PBBIdx);
- if (BIV != PBIV) {
- // Insert a select in PBI to pick the right value.
- SelectInst *NV = cast<SelectInst>(
- Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
- PN.setIncomingValue(PBBIdx, NV);
- // Although the select has the same condition as PBI, the original branch
- // weights for PBI do not apply to the new select because the select's
- // 'logical' edges are incoming edges of the phi that is eliminated, not
- // the outgoing edges of PBI.
- if (HasWeights) {
- uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
- uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
- uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
- uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
- // The weight to PredCommonDest should be PredCommon * SuccTotal.
- // The weight to PredOtherDest should be PredOther * SuccCommon.
- uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
- PredOther * SuccCommon};
- FitWeights(NewWeights);
- setBranchWeights(NV, NewWeights[0], NewWeights[1]);
- }
- }
- }
- LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
- LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
- // This basic block is probably dead. We know it has at least
- // one fewer predecessor.
- return true;
- }
- // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
- // true or to FalseBB if Cond is false.
- // Takes care of updating the successors and removing the old terminator.
- // Also makes sure not to introduce new successors by assuming that edges to
- // non-successor TrueBBs and FalseBBs aren't reachable.
- bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
- Value *Cond, BasicBlock *TrueBB,
- BasicBlock *FalseBB,
- uint32_t TrueWeight,
- uint32_t FalseWeight) {
- auto *BB = OldTerm->getParent();
- // Remove any superfluous successor edges from the CFG.
- // First, figure out which successors to preserve.
- // If TrueBB and FalseBB are equal, only try to preserve one copy of that
- // successor.
- BasicBlock *KeepEdge1 = TrueBB;
- BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
- SmallSetVector<BasicBlock *, 2> RemovedSuccessors;
- // Then remove the rest.
- for (BasicBlock *Succ : successors(OldTerm)) {
- // Make sure only to keep exactly one copy of each edge.
- if (Succ == KeepEdge1)
- KeepEdge1 = nullptr;
- else if (Succ == KeepEdge2)
- KeepEdge2 = nullptr;
- else {
- Succ->removePredecessor(BB,
- /*KeepOneInputPHIs=*/true);
- if (Succ != TrueBB && Succ != FalseBB)
- RemovedSuccessors.insert(Succ);
- }
- }
- IRBuilder<> Builder(OldTerm);
- Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
- // Insert an appropriate new terminator.
- if (!KeepEdge1 && !KeepEdge2) {
- if (TrueBB == FalseBB) {
- // We were only looking for one successor, and it was present.
- // Create an unconditional branch to it.
- Builder.CreateBr(TrueBB);
- } else {
- // We found both of the successors we were looking for.
- // Create a conditional branch sharing the condition of the select.
- BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
- if (TrueWeight != FalseWeight)
- setBranchWeights(NewBI, TrueWeight, FalseWeight);
- }
- } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
- // Neither of the selected blocks were successors, so this
- // terminator must be unreachable.
- new UnreachableInst(OldTerm->getContext(), OldTerm);
- } else {
- // One of the selected values was a successor, but the other wasn't.
- // Insert an unconditional branch to the one that was found;
- // the edge to the one that wasn't must be unreachable.
- if (!KeepEdge1) {
- // Only TrueBB was found.
- Builder.CreateBr(TrueBB);
- } else {
- // Only FalseBB was found.
- Builder.CreateBr(FalseBB);
- }
- }
- EraseTerminatorAndDCECond(OldTerm);
- if (DTU) {
- SmallVector<DominatorTree::UpdateType, 2> Updates;
- Updates.reserve(RemovedSuccessors.size());
- for (auto *RemovedSuccessor : RemovedSuccessors)
- Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
- DTU->applyUpdates(Updates);
- }
- return true;
- }
- // Replaces
- // (switch (select cond, X, Y)) on constant X, Y
- // with a branch - conditional if X and Y lead to distinct BBs,
- // unconditional otherwise.
- bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
- SelectInst *Select) {
- // Check for constant integer values in the select.
- ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
- ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
- if (!TrueVal || !FalseVal)
- return false;
- // Find the relevant condition and destinations.
- Value *Condition = Select->getCondition();
- BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
- BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
- // Get weight for TrueBB and FalseBB.
- uint32_t TrueWeight = 0, FalseWeight = 0;
- SmallVector<uint64_t, 8> Weights;
- bool HasWeights = HasBranchWeights(SI);
- if (HasWeights) {
- GetBranchWeights(SI, Weights);
- if (Weights.size() == 1 + SI->getNumCases()) {
- TrueWeight =
- (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
- FalseWeight =
- (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
- }
- }
- // Perform the actual simplification.
- return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
- FalseWeight);
- }
- // Replaces
- // (indirectbr (select cond, blockaddress(@fn, BlockA),
- // blockaddress(@fn, BlockB)))
- // with
- // (br cond, BlockA, BlockB).
- bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
- SelectInst *SI) {
- // Check that both operands of the select are block addresses.
- BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
- BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
- if (!TBA || !FBA)
- return false;
- // Extract the actual blocks.
- BasicBlock *TrueBB = TBA->getBasicBlock();
- BasicBlock *FalseBB = FBA->getBasicBlock();
- // Perform the actual simplification.
- return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
- 0);
- }
- /// This is called when we find an icmp instruction
- /// (a seteq/setne with a constant) as the only instruction in a
- /// block that ends with an uncond branch. We are looking for a very specific
- /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
- /// this case, we merge the first two "or's of icmp" into a switch, but then the
- /// default value goes to an uncond block with a seteq in it, we get something
- /// like:
- ///
- /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
- /// DEFAULT:
- /// %tmp = icmp eq i8 %A, 92
- /// br label %end
- /// end:
- /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
- ///
- /// We prefer to split the edge to 'end' so that there is a true/false entry to
- /// the PHI, merging the third icmp into the switch.
- bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
- ICmpInst *ICI, IRBuilder<> &Builder) {
- BasicBlock *BB = ICI->getParent();
- // If the block has any PHIs in it or the icmp has multiple uses, it is too
- // complex.
- if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
- return false;
- Value *V = ICI->getOperand(0);
- ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
- // The pattern we're looking for is where our only predecessor is a switch on
- // 'V' and this block is the default case for the switch. In this case we can
- // fold the compared value into the switch to simplify things.
- BasicBlock *Pred = BB->getSinglePredecessor();
- if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
- return false;
- SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
- if (SI->getCondition() != V)
- return false;
- // If BB is reachable on a non-default case, then we simply know the value of
- // V in this block. Substitute it and constant fold the icmp instruction
- // away.
- if (SI->getDefaultDest() != BB) {
- ConstantInt *VVal = SI->findCaseDest(BB);
- assert(VVal && "Should have a unique destination value");
- ICI->setOperand(0, VVal);
- if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
- ICI->replaceAllUsesWith(V);
- ICI->eraseFromParent();
- }
- // BB is now empty, so it is likely to simplify away.
- return requestResimplify();
- }
- // Ok, the block is reachable from the default dest. If the constant we're
- // comparing exists in one of the other edges, then we can constant fold ICI
- // and zap it.
- if (SI->findCaseValue(Cst) != SI->case_default()) {
- Value *V;
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- V = ConstantInt::getFalse(BB->getContext());
- else
- V = ConstantInt::getTrue(BB->getContext());
- ICI->replaceAllUsesWith(V);
- ICI->eraseFromParent();
- // BB is now empty, so it is likely to simplify away.
- return requestResimplify();
- }
- // The use of the icmp has to be in the 'end' block, by the only PHI node in
- // the block.
- BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
- PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
- if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
- isa<PHINode>(++BasicBlock::iterator(PHIUse)))
- return false;
- // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
- // true in the PHI.
- Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
- Constant *NewCst = ConstantInt::getFalse(BB->getContext());
- if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
- std::swap(DefaultCst, NewCst);
- // Replace ICI (which is used by the PHI for the default value) with true or
- // false depending on if it is EQ or NE.
- ICI->replaceAllUsesWith(DefaultCst);
- ICI->eraseFromParent();
- SmallVector<DominatorTree::UpdateType, 2> Updates;
- // Okay, the switch goes to this block on a default value. Add an edge from
- // the switch to the merge point on the compared value.
- BasicBlock *NewBB =
- BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
- {
- SwitchInstProfUpdateWrapper SIW(*SI);
- auto W0 = SIW.getSuccessorWeight(0);
- SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
- if (W0) {
- NewW = ((uint64_t(*W0) + 1) >> 1);
- SIW.setSuccessorWeight(0, *NewW);
- }
- SIW.addCase(Cst, NewBB, NewW);
- if (DTU)
- Updates.push_back({DominatorTree::Insert, Pred, NewBB});
- }
- // NewBB branches to the phi block, add the uncond branch and the phi entry.
- Builder.SetInsertPoint(NewBB);
- Builder.SetCurrentDebugLocation(SI->getDebugLoc());
- Builder.CreateBr(SuccBlock);
- PHIUse->addIncoming(NewCst, NewBB);
- if (DTU) {
- Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
- DTU->applyUpdates(Updates);
- }
- return true;
- }
- /// The specified branch is a conditional branch.
- /// Check to see if it is branching on an or/and chain of icmp instructions, and
- /// fold it into a switch instruction if so.
- bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
- IRBuilder<> &Builder,
- const DataLayout &DL) {
- Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
- if (!Cond)
- return false;
- // Change br (X == 0 | X == 1), T, F into a switch instruction.
- // If this is a bunch of seteq's or'd together, or if it's a bunch of
- // 'setne's and'ed together, collect them.
- // Try to gather values from a chain of and/or to be turned into a switch
- ConstantComparesGatherer ConstantCompare(Cond, DL);
- // Unpack the result
- SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
- Value *CompVal = ConstantCompare.CompValue;
- unsigned UsedICmps = ConstantCompare.UsedICmps;
- Value *ExtraCase = ConstantCompare.Extra;
- // If we didn't have a multiply compared value, fail.
- if (!CompVal)
- return false;
- // Avoid turning single icmps into a switch.
- if (UsedICmps <= 1)
- return false;
- bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
- // There might be duplicate constants in the list, which the switch
- // instruction can't handle, remove them now.
- array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
- Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
- // If Extra was used, we require at least two switch values to do the
- // transformation. A switch with one value is just a conditional branch.
- if (ExtraCase && Values.size() < 2)
- return false;
- // TODO: Preserve branch weight metadata, similarly to how
- // FoldValueComparisonIntoPredecessors preserves it.
- // Figure out which block is which destination.
- BasicBlock *DefaultBB = BI->getSuccessor(1);
- BasicBlock *EdgeBB = BI->getSuccessor(0);
- if (!TrueWhenEqual)
- std::swap(DefaultBB, EdgeBB);
- BasicBlock *BB = BI->getParent();
- LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
- << " cases into SWITCH. BB is:\n"
- << *BB);
- SmallVector<DominatorTree::UpdateType, 2> Updates;
- // If there are any extra values that couldn't be folded into the switch
- // then we evaluate them with an explicit branch first. Split the block
- // right before the condbr to handle it.
- if (ExtraCase) {
- BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
- /*MSSAU=*/nullptr, "switch.early.test");
- // Remove the uncond branch added to the old block.
- Instruction *OldTI = BB->getTerminator();
- Builder.SetInsertPoint(OldTI);
- // There can be an unintended UB if extra values are Poison. Before the
- // transformation, extra values may not be evaluated according to the
- // condition, and it will not raise UB. But after transformation, we are
- // evaluating extra values before checking the condition, and it will raise
- // UB. It can be solved by adding freeze instruction to extra values.
- AssumptionCache *AC = Options.AC;
- if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
- ExtraCase = Builder.CreateFreeze(ExtraCase);
- if (TrueWhenEqual)
- Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
- else
- Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
- OldTI->eraseFromParent();
- if (DTU)
- Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
- // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
- // for the edge we just added.
- AddPredecessorToBlock(EdgeBB, BB, NewBB);
- LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
- << "\nEXTRABB = " << *BB);
- BB = NewBB;
- }
- Builder.SetInsertPoint(BI);
- // Convert pointer to int before we switch.
- if (CompVal->getType()->isPointerTy()) {
- CompVal = Builder.CreatePtrToInt(
- CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
- }
- // Create the new switch instruction now.
- SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
- // Add all of the 'cases' to the switch instruction.
- for (unsigned i = 0, e = Values.size(); i != e; ++i)
- New->addCase(Values[i], EdgeBB);
- // We added edges from PI to the EdgeBB. As such, if there were any
- // PHI nodes in EdgeBB, they need entries to be added corresponding to
- // the number of edges added.
- for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
- PHINode *PN = cast<PHINode>(BBI);
- Value *InVal = PN->getIncomingValueForBlock(BB);
- for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
- PN->addIncoming(InVal, BB);
- }
- // Erase the old branch instruction.
- EraseTerminatorAndDCECond(BI);
- if (DTU)
- DTU->applyUpdates(Updates);
- LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
- return true;
- }
- bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
- if (isa<PHINode>(RI->getValue()))
- return simplifyCommonResume(RI);
- else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
- RI->getValue() == RI->getParent()->getFirstNonPHI())
- // The resume must unwind the exception that caused control to branch here.
- return simplifySingleResume(RI);
- return false;
- }
- // Check if cleanup block is empty
- static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
- for (Instruction &I : R) {
- auto *II = dyn_cast<IntrinsicInst>(&I);
- if (!II)
- return false;
- Intrinsic::ID IntrinsicID = II->getIntrinsicID();
- switch (IntrinsicID) {
- case Intrinsic::dbg_declare:
- case Intrinsic::dbg_value:
- case Intrinsic::dbg_label:
- case Intrinsic::lifetime_end:
- break;
- default:
- return false;
- }
- }
- return true;
- }
- // Simplify resume that is shared by several landing pads (phi of landing pad).
- bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
- BasicBlock *BB = RI->getParent();
- // Check that there are no other instructions except for debug and lifetime
- // intrinsics between the phi's and resume instruction.
- if (!isCleanupBlockEmpty(
- make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
- return false;
- SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
- auto *PhiLPInst = cast<PHINode>(RI->getValue());
- // Check incoming blocks to see if any of them are trivial.
- for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
- Idx++) {
- auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
- auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
- // If the block has other successors, we can not delete it because
- // it has other dependents.
- if (IncomingBB->getUniqueSuccessor() != BB)
- continue;
- auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
- // Not the landing pad that caused the control to branch here.
- if (IncomingValue != LandingPad)
- continue;
- if (isCleanupBlockEmpty(
- make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
- TrivialUnwindBlocks.insert(IncomingBB);
- }
- // If no trivial unwind blocks, don't do any simplifications.
- if (TrivialUnwindBlocks.empty())
- return false;
- // Turn all invokes that unwind here into calls.
- for (auto *TrivialBB : TrivialUnwindBlocks) {
- // Blocks that will be simplified should be removed from the phi node.
- // Note there could be multiple edges to the resume block, and we need
- // to remove them all.
- while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
- BB->removePredecessor(TrivialBB, true);
- for (BasicBlock *Pred :
- llvm::make_early_inc_range(predecessors(TrivialBB))) {
- removeUnwindEdge(Pred, DTU);
- ++NumInvokes;
- }
- // In each SimplifyCFG run, only the current processed block can be erased.
- // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
- // of erasing TrivialBB, we only remove the branch to the common resume
- // block so that we can later erase the resume block since it has no
- // predecessors.
- TrivialBB->getTerminator()->eraseFromParent();
- new UnreachableInst(RI->getContext(), TrivialBB);
- if (DTU)
- DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
- }
- // Delete the resume block if all its predecessors have been removed.
- if (pred_empty(BB))
- DeleteDeadBlock(BB, DTU);
- return !TrivialUnwindBlocks.empty();
- }
- // Simplify resume that is only used by a single (non-phi) landing pad.
- bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
- BasicBlock *BB = RI->getParent();
- auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
- assert(RI->getValue() == LPInst &&
- "Resume must unwind the exception that caused control to here");
- // Check that there are no other instructions except for debug intrinsics.
- if (!isCleanupBlockEmpty(
- make_range<Instruction *>(LPInst->getNextNode(), RI)))
- return false;
- // Turn all invokes that unwind here into calls and delete the basic block.
- for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
- removeUnwindEdge(Pred, DTU);
- ++NumInvokes;
- }
- // The landingpad is now unreachable. Zap it.
- DeleteDeadBlock(BB, DTU);
- return true;
- }
- static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
- // If this is a trivial cleanup pad that executes no instructions, it can be
- // eliminated. If the cleanup pad continues to the caller, any predecessor
- // that is an EH pad will be updated to continue to the caller and any
- // predecessor that terminates with an invoke instruction will have its invoke
- // instruction converted to a call instruction. If the cleanup pad being
- // simplified does not continue to the caller, each predecessor will be
- // updated to continue to the unwind destination of the cleanup pad being
- // simplified.
- BasicBlock *BB = RI->getParent();
- CleanupPadInst *CPInst = RI->getCleanupPad();
- if (CPInst->getParent() != BB)
- // This isn't an empty cleanup.
- return false;
- // We cannot kill the pad if it has multiple uses. This typically arises
- // from unreachable basic blocks.
- if (!CPInst->hasOneUse())
- return false;
- // Check that there are no other instructions except for benign intrinsics.
- if (!isCleanupBlockEmpty(
- make_range<Instruction *>(CPInst->getNextNode(), RI)))
- return false;
- // If the cleanup return we are simplifying unwinds to the caller, this will
- // set UnwindDest to nullptr.
- BasicBlock *UnwindDest = RI->getUnwindDest();
- Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
- // We're about to remove BB from the control flow. Before we do, sink any
- // PHINodes into the unwind destination. Doing this before changing the
- // control flow avoids some potentially slow checks, since we can currently
- // be certain that UnwindDest and BB have no common predecessors (since they
- // are both EH pads).
- if (UnwindDest) {
- // First, go through the PHI nodes in UnwindDest and update any nodes that
- // reference the block we are removing
- for (PHINode &DestPN : UnwindDest->phis()) {
- int Idx = DestPN.getBasicBlockIndex(BB);
- // Since BB unwinds to UnwindDest, it has to be in the PHI node.
- assert(Idx != -1);
- // This PHI node has an incoming value that corresponds to a control
- // path through the cleanup pad we are removing. If the incoming
- // value is in the cleanup pad, it must be a PHINode (because we
- // verified above that the block is otherwise empty). Otherwise, the
- // value is either a constant or a value that dominates the cleanup
- // pad being removed.
- //
- // Because BB and UnwindDest are both EH pads, all of their
- // predecessors must unwind to these blocks, and since no instruction
- // can have multiple unwind destinations, there will be no overlap in
- // incoming blocks between SrcPN and DestPN.
- Value *SrcVal = DestPN.getIncomingValue(Idx);
- PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
- bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
- for (auto *Pred : predecessors(BB)) {
- Value *Incoming =
- NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
- DestPN.addIncoming(Incoming, Pred);
- }
- }
- // Sink any remaining PHI nodes directly into UnwindDest.
- Instruction *InsertPt = DestEHPad;
- for (PHINode &PN : make_early_inc_range(BB->phis())) {
- if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
- // If the PHI node has no uses or all of its uses are in this basic
- // block (meaning they are debug or lifetime intrinsics), just leave
- // it. It will be erased when we erase BB below.
- continue;
- // Otherwise, sink this PHI node into UnwindDest.
- // Any predecessors to UnwindDest which are not already represented
- // must be back edges which inherit the value from the path through
- // BB. In this case, the PHI value must reference itself.
- for (auto *pred : predecessors(UnwindDest))
- if (pred != BB)
- PN.addIncoming(&PN, pred);
- PN.moveBefore(InsertPt);
- // Also, add a dummy incoming value for the original BB itself,
- // so that the PHI is well-formed until we drop said predecessor.
- PN.addIncoming(UndefValue::get(PN.getType()), BB);
- }
- }
- std::vector<DominatorTree::UpdateType> Updates;
- // We use make_early_inc_range here because we will remove all predecessors.
- for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
- if (UnwindDest == nullptr) {
- if (DTU) {
- DTU->applyUpdates(Updates);
- Updates.clear();
- }
- removeUnwindEdge(PredBB, DTU);
- ++NumInvokes;
- } else {
- BB->removePredecessor(PredBB);
- Instruction *TI = PredBB->getTerminator();
- TI->replaceUsesOfWith(BB, UnwindDest);
- if (DTU) {
- Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
- Updates.push_back({DominatorTree::Delete, PredBB, BB});
- }
- }
- }
- if (DTU)
- DTU->applyUpdates(Updates);
- DeleteDeadBlock(BB, DTU);
- return true;
- }
- // Try to merge two cleanuppads together.
- static bool mergeCleanupPad(CleanupReturnInst *RI) {
- // Skip any cleanuprets which unwind to caller, there is nothing to merge
- // with.
- BasicBlock *UnwindDest = RI->getUnwindDest();
- if (!UnwindDest)
- return false;
- // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
- // be safe to merge without code duplication.
- if (UnwindDest->getSinglePredecessor() != RI->getParent())
- return false;
- // Verify that our cleanuppad's unwind destination is another cleanuppad.
- auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
- if (!SuccessorCleanupPad)
- return false;
- CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
- // Replace any uses of the successor cleanupad with the predecessor pad
- // The only cleanuppad uses should be this cleanupret, it's cleanupret and
- // funclet bundle operands.
- SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
- // Remove the old cleanuppad.
- SuccessorCleanupPad->eraseFromParent();
- // Now, we simply replace the cleanupret with a branch to the unwind
- // destination.
- BranchInst::Create(UnwindDest, RI->getParent());
- RI->eraseFromParent();
- return true;
- }
- bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
- // It is possible to transiantly have an undef cleanuppad operand because we
- // have deleted some, but not all, dead blocks.
- // Eventually, this block will be deleted.
- if (isa<UndefValue>(RI->getOperand(0)))
- return false;
- if (mergeCleanupPad(RI))
- return true;
- if (removeEmptyCleanup(RI, DTU))
- return true;
- return false;
- }
- // WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
- bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
- BasicBlock *BB = UI->getParent();
- bool Changed = false;
- // If there are any instructions immediately before the unreachable that can
- // be removed, do so.
- while (UI->getIterator() != BB->begin()) {
- BasicBlock::iterator BBI = UI->getIterator();
- --BBI;
- if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
- break; // Can not drop any more instructions. We're done here.
- // Otherwise, this instruction can be freely erased,
- // even if it is not side-effect free.
- // Note that deleting EH's here is in fact okay, although it involves a bit
- // of subtle reasoning. If this inst is an EH, all the predecessors of this
- // block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
- // and we can therefore guarantee this block will be erased.
- // Delete this instruction (any uses are guaranteed to be dead)
- BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
- BBI->eraseFromParent();
- Changed = true;
- }
- // If the unreachable instruction is the first in the block, take a gander
- // at all of the predecessors of this instruction, and simplify them.
- if (&BB->front() != UI)
- return Changed;
- std::vector<DominatorTree::UpdateType> Updates;
- SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
- for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
- auto *Predecessor = Preds[i];
- Instruction *TI = Predecessor->getTerminator();
- IRBuilder<> Builder(TI);
- if (auto *BI = dyn_cast<BranchInst>(TI)) {
- // We could either have a proper unconditional branch,
- // or a degenerate conditional branch with matching destinations.
- if (all_of(BI->successors(),
- [BB](auto *Successor) { return Successor == BB; })) {
- new UnreachableInst(TI->getContext(), TI);
- TI->eraseFromParent();
- Changed = true;
- } else {
- assert(BI->isConditional() && "Can't get here with an uncond branch.");
- Value* Cond = BI->getCondition();
- assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
- "The destinations are guaranteed to be different here.");
- if (BI->getSuccessor(0) == BB) {
- Builder.CreateAssumption(Builder.CreateNot(Cond));
- Builder.CreateBr(BI->getSuccessor(1));
- } else {
- assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
- Builder.CreateAssumption(Cond);
- Builder.CreateBr(BI->getSuccessor(0));
- }
- EraseTerminatorAndDCECond(BI);
- Changed = true;
- }
- if (DTU)
- Updates.push_back({DominatorTree::Delete, Predecessor, BB});
- } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
- SwitchInstProfUpdateWrapper SU(*SI);
- for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
- if (i->getCaseSuccessor() != BB) {
- ++i;
- continue;
- }
- BB->removePredecessor(SU->getParent());
- i = SU.removeCase(i);
- e = SU->case_end();
- Changed = true;
- }
- // Note that the default destination can't be removed!
- if (DTU && SI->getDefaultDest() != BB)
- Updates.push_back({DominatorTree::Delete, Predecessor, BB});
- } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
- if (II->getUnwindDest() == BB) {
- if (DTU) {
- DTU->applyUpdates(Updates);
- Updates.clear();
- }
- removeUnwindEdge(TI->getParent(), DTU);
- Changed = true;
- }
- } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
- if (CSI->getUnwindDest() == BB) {
- if (DTU) {
- DTU->applyUpdates(Updates);
- Updates.clear();
- }
- removeUnwindEdge(TI->getParent(), DTU);
- Changed = true;
- continue;
- }
- for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
- E = CSI->handler_end();
- I != E; ++I) {
- if (*I == BB) {
- CSI->removeHandler(I);
- --I;
- --E;
- Changed = true;
- }
- }
- if (DTU)
- Updates.push_back({DominatorTree::Delete, Predecessor, BB});
- if (CSI->getNumHandlers() == 0) {
- if (CSI->hasUnwindDest()) {
- // Redirect all predecessors of the block containing CatchSwitchInst
- // to instead branch to the CatchSwitchInst's unwind destination.
- if (DTU) {
- for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
- Updates.push_back({DominatorTree::Insert,
- PredecessorOfPredecessor,
- CSI->getUnwindDest()});
- Updates.push_back({DominatorTree::Delete,
- PredecessorOfPredecessor, Predecessor});
- }
- }
- Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
- } else {
- // Rewrite all preds to unwind to caller (or from invoke to call).
- if (DTU) {
- DTU->applyUpdates(Updates);
- Updates.clear();
- }
- SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
- for (BasicBlock *EHPred : EHPreds)
- removeUnwindEdge(EHPred, DTU);
- }
- // The catchswitch is no longer reachable.
- new UnreachableInst(CSI->getContext(), CSI);
- CSI->eraseFromParent();
- Changed = true;
- }
- } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
- (void)CRI;
- assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
- "Expected to always have an unwind to BB.");
- if (DTU)
- Updates.push_back({DominatorTree::Delete, Predecessor, BB});
- new UnreachableInst(TI->getContext(), TI);
- TI->eraseFromParent();
- Changed = true;
- }
- }
- if (DTU)
- DTU->applyUpdates(Updates);
- // If this block is now dead, remove it.
- if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
- DeleteDeadBlock(BB, DTU);
- return true;
- }
- return Changed;
- }
- static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
- assert(Cases.size() >= 1);
- array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
- for (size_t I = 1, E = Cases.size(); I != E; ++I) {
- if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
- return false;
- }
- return true;
- }
- static void createUnreachableSwitchDefault(SwitchInst *Switch,
- DomTreeUpdater *DTU) {
- LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
- auto *BB = Switch->getParent();
- auto *OrigDefaultBlock = Switch->getDefaultDest();
- OrigDefaultBlock->removePredecessor(BB);
- BasicBlock *NewDefaultBlock = BasicBlock::Create(
- BB->getContext(), BB->getName() + ".unreachabledefault", BB->getParent(),
- OrigDefaultBlock);
- new UnreachableInst(Switch->getContext(), NewDefaultBlock);
- Switch->setDefaultDest(&*NewDefaultBlock);
- if (DTU) {
- SmallVector<DominatorTree::UpdateType, 2> Updates;
- Updates.push_back({DominatorTree::Insert, BB, &*NewDefaultBlock});
- if (!is_contained(successors(BB), OrigDefaultBlock))
- Updates.push_back({DominatorTree::Delete, BB, &*OrigDefaultBlock});
- DTU->applyUpdates(Updates);
- }
- }
- /// Turn a switch with two reachable destinations into an integer range
- /// comparison and branch.
- bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
- IRBuilder<> &Builder) {
- assert(SI->getNumCases() > 1 && "Degenerate switch?");
- bool HasDefault =
- !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
- auto *BB = SI->getParent();
- // Partition the cases into two sets with different destinations.
- BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
- BasicBlock *DestB = nullptr;
- SmallVector<ConstantInt *, 16> CasesA;
- SmallVector<ConstantInt *, 16> CasesB;
- for (auto Case : SI->cases()) {
- BasicBlock *Dest = Case.getCaseSuccessor();
- if (!DestA)
- DestA = Dest;
- if (Dest == DestA) {
- CasesA.push_back(Case.getCaseValue());
- continue;
- }
- if (!DestB)
- DestB = Dest;
- if (Dest == DestB) {
- CasesB.push_back(Case.getCaseValue());
- continue;
- }
- return false; // More than two destinations.
- }
- assert(DestA && DestB &&
- "Single-destination switch should have been folded.");
- assert(DestA != DestB);
- assert(DestB != SI->getDefaultDest());
- assert(!CasesB.empty() && "There must be non-default cases.");
- assert(!CasesA.empty() || HasDefault);
- // Figure out if one of the sets of cases form a contiguous range.
- SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
- BasicBlock *ContiguousDest = nullptr;
- BasicBlock *OtherDest = nullptr;
- if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
- ContiguousCases = &CasesA;
- ContiguousDest = DestA;
- OtherDest = DestB;
- } else if (CasesAreContiguous(CasesB)) {
- ContiguousCases = &CasesB;
- ContiguousDest = DestB;
- OtherDest = DestA;
- } else
- return false;
- // Start building the compare and branch.
- Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
- Constant *NumCases =
- ConstantInt::get(Offset->getType(), ContiguousCases->size());
- Value *Sub = SI->getCondition();
- if (!Offset->isNullValue())
- Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
- Value *Cmp;
- // If NumCases overflowed, then all possible values jump to the successor.
- if (NumCases->isNullValue() && !ContiguousCases->empty())
- Cmp = ConstantInt::getTrue(SI->getContext());
- else
- Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
- BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
- // Update weight for the newly-created conditional branch.
- if (HasBranchWeights(SI)) {
- SmallVector<uint64_t, 8> Weights;
- GetBranchWeights(SI, Weights);
- if (Weights.size() == 1 + SI->getNumCases()) {
- uint64_t TrueWeight = 0;
- uint64_t FalseWeight = 0;
- for (size_t I = 0, E = Weights.size(); I != E; ++I) {
- if (SI->getSuccessor(I) == ContiguousDest)
- TrueWeight += Weights[I];
- else
- FalseWeight += Weights[I];
- }
- while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
- TrueWeight /= 2;
- FalseWeight /= 2;
- }
- setBranchWeights(NewBI, TrueWeight, FalseWeight);
- }
- }
- // Prune obsolete incoming values off the successors' PHI nodes.
- for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
- unsigned PreviousEdges = ContiguousCases->size();
- if (ContiguousDest == SI->getDefaultDest())
- ++PreviousEdges;
- for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
- cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
- }
- for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
- unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
- if (OtherDest == SI->getDefaultDest())
- ++PreviousEdges;
- for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
- cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
- }
- // Clean up the default block - it may have phis or other instructions before
- // the unreachable terminator.
- if (!HasDefault)
- createUnreachableSwitchDefault(SI, DTU);
- auto *UnreachableDefault = SI->getDefaultDest();
- // Drop the switch.
- SI->eraseFromParent();
- if (!HasDefault && DTU)
- DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
- return true;
- }
- /// Compute masked bits for the condition of a switch
- /// and use it to remove dead cases.
- static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
- AssumptionCache *AC,
- const DataLayout &DL) {
- Value *Cond = SI->getCondition();
- KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
- // We can also eliminate cases by determining that their values are outside of
- // the limited range of the condition based on how many significant (non-sign)
- // bits are in the condition value.
- unsigned MaxSignificantBitsInCond =
- ComputeMaxSignificantBits(Cond, DL, 0, AC, SI);
- // Gather dead cases.
- SmallVector<ConstantInt *, 8> DeadCases;
- SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
- SmallVector<BasicBlock *, 8> UniqueSuccessors;
- for (auto &Case : SI->cases()) {
- auto *Successor = Case.getCaseSuccessor();
- if (DTU) {
- if (!NumPerSuccessorCases.count(Successor))
- UniqueSuccessors.push_back(Successor);
- ++NumPerSuccessorCases[Successor];
- }
- const APInt &CaseVal = Case.getCaseValue()->getValue();
- if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
- (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
- DeadCases.push_back(Case.getCaseValue());
- if (DTU)
- --NumPerSuccessorCases[Successor];
- LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
- << " is dead.\n");
- }
- }
- // If we can prove that the cases must cover all possible values, the
- // default destination becomes dead and we can remove it. If we know some
- // of the bits in the value, we can use that to more precisely compute the
- // number of possible unique case values.
- bool HasDefault =
- !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
- const unsigned NumUnknownBits =
- Known.getBitWidth() - (Known.Zero | Known.One).countPopulation();
- assert(NumUnknownBits <= Known.getBitWidth());
- if (HasDefault && DeadCases.empty() &&
- NumUnknownBits < 64 /* avoid overflow */ &&
- SI->getNumCases() == (1ULL << NumUnknownBits)) {
- createUnreachableSwitchDefault(SI, DTU);
- return true;
- }
- if (DeadCases.empty())
- return false;
- SwitchInstProfUpdateWrapper SIW(*SI);
- for (ConstantInt *DeadCase : DeadCases) {
- SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
- assert(CaseI != SI->case_default() &&
- "Case was not found. Probably mistake in DeadCases forming.");
- // Prune unused values from PHI nodes.
- CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
- SIW.removeCase(CaseI);
- }
- if (DTU) {
- std::vector<DominatorTree::UpdateType> Updates;
- for (auto *Successor : UniqueSuccessors)
- if (NumPerSuccessorCases[Successor] == 0)
- Updates.push_back({DominatorTree::Delete, SI->getParent(), Successor});
- DTU->applyUpdates(Updates);
- }
- return true;
- }
- /// If BB would be eligible for simplification by
- /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
- /// by an unconditional branch), look at the phi node for BB in the successor
- /// block and see if the incoming value is equal to CaseValue. If so, return
- /// the phi node, and set PhiIndex to BB's index in the phi node.
- static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
- BasicBlock *BB, int *PhiIndex) {
- if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
- return nullptr; // BB must be empty to be a candidate for simplification.
- if (!BB->getSinglePredecessor())
- return nullptr; // BB must be dominated by the switch.
- BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
- if (!Branch || !Branch->isUnconditional())
- return nullptr; // Terminator must be unconditional branch.
- BasicBlock *Succ = Branch->getSuccessor(0);
- for (PHINode &PHI : Succ->phis()) {
- int Idx = PHI.getBasicBlockIndex(BB);
- assert(Idx >= 0 && "PHI has no entry for predecessor?");
- Value *InValue = PHI.getIncomingValue(Idx);
- if (InValue != CaseValue)
- continue;
- *PhiIndex = Idx;
- return &PHI;
- }
- return nullptr;
- }
- /// Try to forward the condition of a switch instruction to a phi node
- /// dominated by the switch, if that would mean that some of the destination
- /// blocks of the switch can be folded away. Return true if a change is made.
- static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
- using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
- ForwardingNodesMap ForwardingNodes;
- BasicBlock *SwitchBlock = SI->getParent();
- bool Changed = false;
- for (auto &Case : SI->cases()) {
- ConstantInt *CaseValue = Case.getCaseValue();
- BasicBlock *CaseDest = Case.getCaseSuccessor();
- // Replace phi operands in successor blocks that are using the constant case
- // value rather than the switch condition variable:
- // switchbb:
- // switch i32 %x, label %default [
- // i32 17, label %succ
- // ...
- // succ:
- // %r = phi i32 ... [ 17, %switchbb ] ...
- // -->
- // %r = phi i32 ... [ %x, %switchbb ] ...
- for (PHINode &Phi : CaseDest->phis()) {
- // This only works if there is exactly 1 incoming edge from the switch to
- // a phi. If there is >1, that means multiple cases of the switch map to 1
- // value in the phi, and that phi value is not the switch condition. Thus,
- // this transform would not make sense (the phi would be invalid because
- // a phi can't have different incoming values from the same block).
- int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
- if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
- count(Phi.blocks(), SwitchBlock) == 1) {
- Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
- Changed = true;
- }
- }
- // Collect phi nodes that are indirectly using this switch's case constants.
- int PhiIdx;
- if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
- ForwardingNodes[Phi].push_back(PhiIdx);
- }
- for (auto &ForwardingNode : ForwardingNodes) {
- PHINode *Phi = ForwardingNode.first;
- SmallVectorImpl<int> &Indexes = ForwardingNode.second;
- if (Indexes.size() < 2)
- continue;
- for (int Index : Indexes)
- Phi->setIncomingValue(Index, SI->getCondition());
- Changed = true;
- }
- return Changed;
- }
- /// Return true if the backend will be able to handle
- /// initializing an array of constants like C.
- static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
- if (C->isThreadDependent())
- return false;
- if (C->isDLLImportDependent())
- return false;
- if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
- !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
- !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
- return false;
- if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- // Pointer casts and in-bounds GEPs will not prohibit the backend from
- // materializing the array of constants.
- Constant *StrippedC = cast<Constant>(CE->stripInBoundsConstantOffsets());
- if (StrippedC == C || !ValidLookupTableConstant(StrippedC, TTI))
- return false;
- }
- if (!TTI.shouldBuildLookupTablesForConstant(C))
- return false;
- return true;
- }
- /// If V is a Constant, return it. Otherwise, try to look up
- /// its constant value in ConstantPool, returning 0 if it's not there.
- static Constant *
- LookupConstant(Value *V,
- const SmallDenseMap<Value *, Constant *> &ConstantPool) {
- if (Constant *C = dyn_cast<Constant>(V))
- return C;
- return ConstantPool.lookup(V);
- }
- /// Try to fold instruction I into a constant. This works for
- /// simple instructions such as binary operations where both operands are
- /// constant or can be replaced by constants from the ConstantPool. Returns the
- /// resulting constant on success, 0 otherwise.
- static Constant *
- ConstantFold(Instruction *I, const DataLayout &DL,
- const SmallDenseMap<Value *, Constant *> &ConstantPool) {
- if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
- Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
- if (!A)
- return nullptr;
- if (A->isAllOnesValue())
- return LookupConstant(Select->getTrueValue(), ConstantPool);
- if (A->isNullValue())
- return LookupConstant(Select->getFalseValue(), ConstantPool);
- return nullptr;
- }
- SmallVector<Constant *, 4> COps;
- for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
- if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
- COps.push_back(A);
- else
- return nullptr;
- }
- if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
- return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
- COps[1], DL);
- }
- return ConstantFoldInstOperands(I, COps, DL);
- }
- /// Try to determine the resulting constant values in phi nodes
- /// at the common destination basic block, *CommonDest, for one of the case
- /// destionations CaseDest corresponding to value CaseVal (0 for the default
- /// case), of a switch instruction SI.
- static bool
- GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
- BasicBlock **CommonDest,
- SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
- const DataLayout &DL, const TargetTransformInfo &TTI) {
- // The block from which we enter the common destination.
- BasicBlock *Pred = SI->getParent();
- // If CaseDest is empty except for some side-effect free instructions through
- // which we can constant-propagate the CaseVal, continue to its successor.
- SmallDenseMap<Value *, Constant *> ConstantPool;
- ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
- for (Instruction &I : CaseDest->instructionsWithoutDebug(false)) {
- if (I.isTerminator()) {
- // If the terminator is a simple branch, continue to the next block.
- if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
- return false;
- Pred = CaseDest;
- CaseDest = I.getSuccessor(0);
- } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
- // Instruction is side-effect free and constant.
- // If the instruction has uses outside this block or a phi node slot for
- // the block, it is not safe to bypass the instruction since it would then
- // no longer dominate all its uses.
- for (auto &Use : I.uses()) {
- User *User = Use.getUser();
- if (Instruction *I = dyn_cast<Instruction>(User))
- if (I->getParent() == CaseDest)
- continue;
- if (PHINode *Phi = dyn_cast<PHINode>(User))
- if (Phi->getIncomingBlock(Use) == CaseDest)
- continue;
- return false;
- }
- ConstantPool.insert(std::make_pair(&I, C));
- } else {
- break;
- }
- }
- // If we did not have a CommonDest before, use the current one.
- if (!*CommonDest)
- *CommonDest = CaseDest;
- // If the destination isn't the common one, abort.
- if (CaseDest != *CommonDest)
- return false;
- // Get the values for this case from phi nodes in the destination block.
- for (PHINode &PHI : (*CommonDest)->phis()) {
- int Idx = PHI.getBasicBlockIndex(Pred);
- if (Idx == -1)
- continue;
- Constant *ConstVal =
- LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
- if (!ConstVal)
- return false;
- // Be conservative about which kinds of constants we support.
- if (!ValidLookupTableConstant(ConstVal, TTI))
- return false;
- Res.push_back(std::make_pair(&PHI, ConstVal));
- }
- return Res.size() > 0;
- }
- // Helper function used to add CaseVal to the list of cases that generate
- // Result. Returns the updated number of cases that generate this result.
- static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
- SwitchCaseResultVectorTy &UniqueResults,
- Constant *Result) {
- for (auto &I : UniqueResults) {
- if (I.first == Result) {
- I.second.push_back(CaseVal);
- return I.second.size();
- }
- }
- UniqueResults.push_back(
- std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
- return 1;
- }
- // Helper function that initializes a map containing
- // results for the PHI node of the common destination block for a switch
- // instruction. Returns false if multiple PHI nodes have been found or if
- // there is not a common destination block for the switch.
- static bool
- InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
- SwitchCaseResultVectorTy &UniqueResults,
- Constant *&DefaultResult, const DataLayout &DL,
- const TargetTransformInfo &TTI,
- uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
- for (auto &I : SI->cases()) {
- ConstantInt *CaseVal = I.getCaseValue();
- // Resulting value at phi nodes for this case value.
- SwitchCaseResultsTy Results;
- if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
- DL, TTI))
- return false;
- // Only one value per case is permitted.
- if (Results.size() > 1)
- return false;
- // Add the case->result mapping to UniqueResults.
- const uintptr_t NumCasesForResult =
- MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
- // Early out if there are too many cases for this result.
- if (NumCasesForResult > MaxCasesPerResult)
- return false;
- // Early out if there are too many unique results.
- if (UniqueResults.size() > MaxUniqueResults)
- return false;
- // Check the PHI consistency.
- if (!PHI)
- PHI = Results[0].first;
- else if (PHI != Results[0].first)
- return false;
- }
- // Find the default result value.
- SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
- BasicBlock *DefaultDest = SI->getDefaultDest();
- GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
- DL, TTI);
- // If the default value is not found abort unless the default destination
- // is unreachable.
- DefaultResult =
- DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
- if ((!DefaultResult &&
- !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
- return false;
- return true;
- }
- // Helper function that checks if it is possible to transform a switch with only
- // two cases (or two cases + default) that produces a result into a select.
- // Example:
- // switch (a) {
- // case 10: %0 = icmp eq i32 %a, 10
- // return 10; %1 = select i1 %0, i32 10, i32 4
- // case 20: ----> %2 = icmp eq i32 %a, 20
- // return 2; %3 = select i1 %2, i32 2, i32 %1
- // default:
- // return 4;
- // }
- static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
- Constant *DefaultResult, Value *Condition,
- IRBuilder<> &Builder) {
- // If we are selecting between only two cases transform into a simple
- // select or a two-way select if default is possible.
- if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
- ResultVector[1].second.size() == 1) {
- ConstantInt *const FirstCase = ResultVector[0].second[0];
- ConstantInt *const SecondCase = ResultVector[1].second[0];
- bool DefaultCanTrigger = DefaultResult;
- Value *SelectValue = ResultVector[1].first;
- if (DefaultCanTrigger) {
- Value *const ValueCompare =
- Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
- SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
- DefaultResult, "switch.select");
- }
- Value *const ValueCompare =
- Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
- return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
- SelectValue, "switch.select");
- }
- // Handle the degenerate case where two cases have the same value.
- if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
- DefaultResult) {
- Value *Cmp1 = Builder.CreateICmpEQ(
- Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
- Value *Cmp2 = Builder.CreateICmpEQ(
- Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
- Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
- return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
- }
- return nullptr;
- }
- // Helper function to cleanup a switch instruction that has been converted into
- // a select, fixing up PHI nodes and basic blocks.
- static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
- Value *SelectValue,
- IRBuilder<> &Builder,
- DomTreeUpdater *DTU) {
- std::vector<DominatorTree::UpdateType> Updates;
- BasicBlock *SelectBB = SI->getParent();
- BasicBlock *DestBB = PHI->getParent();
- if (DTU && !is_contained(predecessors(DestBB), SelectBB))
- Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
- Builder.CreateBr(DestBB);
- // Remove the switch.
- while (PHI->getBasicBlockIndex(SelectBB) >= 0)
- PHI->removeIncomingValue(SelectBB);
- PHI->addIncoming(SelectValue, SelectBB);
- SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
- for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
- BasicBlock *Succ = SI->getSuccessor(i);
- if (Succ == DestBB)
- continue;
- Succ->removePredecessor(SelectBB);
- if (DTU && RemovedSuccessors.insert(Succ).second)
- Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
- }
- SI->eraseFromParent();
- if (DTU)
- DTU->applyUpdates(Updates);
- }
- /// If the switch is only used to initialize one or more
- /// phi nodes in a common successor block with only two different
- /// constant values, replace the switch with select.
- static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
- DomTreeUpdater *DTU, const DataLayout &DL,
- const TargetTransformInfo &TTI) {
- Value *const Cond = SI->getCondition();
- PHINode *PHI = nullptr;
- BasicBlock *CommonDest = nullptr;
- Constant *DefaultResult;
- SwitchCaseResultVectorTy UniqueResults;
- // Collect all the cases that will deliver the same value from the switch.
- if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
- DL, TTI, /*MaxUniqueResults*/2,
- /*MaxCasesPerResult*/2))
- return false;
- assert(PHI != nullptr && "PHI for value select not found");
- Builder.SetInsertPoint(SI);
- Value *SelectValue =
- ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
- if (SelectValue) {
- RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
- return true;
- }
- // The switch couldn't be converted into a select.
- return false;
- }
- namespace {
- /// This class represents a lookup table that can be used to replace a switch.
- class SwitchLookupTable {
- public:
- /// Create a lookup table to use as a switch replacement with the contents
- /// of Values, using DefaultValue to fill any holes in the table.
- SwitchLookupTable(
- Module &M, uint64_t TableSize, ConstantInt *Offset,
- const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
- Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
- /// Build instructions with Builder to retrieve the value at
- /// the position given by Index in the lookup table.
- Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
- /// Return true if a table with TableSize elements of
- /// type ElementType would fit in a target-legal register.
- static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
- Type *ElementType);
- private:
- // Depending on the contents of the table, it can be represented in
- // different ways.
- enum {
- // For tables where each element contains the same value, we just have to
- // store that single value and return it for each lookup.
- SingleValueKind,
- // For tables where there is a linear relationship between table index
- // and values. We calculate the result with a simple multiplication
- // and addition instead of a table lookup.
- LinearMapKind,
- // For small tables with integer elements, we can pack them into a bitmap
- // that fits into a target-legal register. Values are retrieved by
- // shift and mask operations.
- BitMapKind,
- // The table is stored as an array of values. Values are retrieved by load
- // instructions from the table.
- ArrayKind
- } Kind;
- // For SingleValueKind, this is the single value.
- Constant *SingleValue = nullptr;
- // For BitMapKind, this is the bitmap.
- ConstantInt *BitMap = nullptr;
- IntegerType *BitMapElementTy = nullptr;
- // For LinearMapKind, these are the constants used to derive the value.
- ConstantInt *LinearOffset = nullptr;
- ConstantInt *LinearMultiplier = nullptr;
- // For ArrayKind, this is the array.
- GlobalVariable *Array = nullptr;
- };
- } // end anonymous namespace
- SwitchLookupTable::SwitchLookupTable(
- Module &M, uint64_t TableSize, ConstantInt *Offset,
- const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
- Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
- assert(Values.size() && "Can't build lookup table without values!");
- assert(TableSize >= Values.size() && "Can't fit values in table!");
- // If all values in the table are equal, this is that value.
- SingleValue = Values.begin()->second;
- Type *ValueType = Values.begin()->second->getType();
- // Build up the table contents.
- SmallVector<Constant *, 64> TableContents(TableSize);
- for (size_t I = 0, E = Values.size(); I != E; ++I) {
- ConstantInt *CaseVal = Values[I].first;
- Constant *CaseRes = Values[I].second;
- assert(CaseRes->getType() == ValueType);
- uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
- TableContents[Idx] = CaseRes;
- if (CaseRes != SingleValue)
- SingleValue = nullptr;
- }
- // Fill in any holes in the table with the default result.
- if (Values.size() < TableSize) {
- assert(DefaultValue &&
- "Need a default value to fill the lookup table holes.");
- assert(DefaultValue->getType() == ValueType);
- for (uint64_t I = 0; I < TableSize; ++I) {
- if (!TableContents[I])
- TableContents[I] = DefaultValue;
- }
- if (DefaultValue != SingleValue)
- SingleValue = nullptr;
- }
- // If each element in the table contains the same value, we only need to store
- // that single value.
- if (SingleValue) {
- Kind = SingleValueKind;
- return;
- }
- // Check if we can derive the value with a linear transformation from the
- // table index.
- if (isa<IntegerType>(ValueType)) {
- bool LinearMappingPossible = true;
- APInt PrevVal;
- APInt DistToPrev;
- assert(TableSize >= 2 && "Should be a SingleValue table.");
- // Check if there is the same distance between two consecutive values.
- for (uint64_t I = 0; I < TableSize; ++I) {
- ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
- if (!ConstVal) {
- // This is an undef. We could deal with it, but undefs in lookup tables
- // are very seldom. It's probably not worth the additional complexity.
- LinearMappingPossible = false;
- break;
- }
- const APInt &Val = ConstVal->getValue();
- if (I != 0) {
- APInt Dist = Val - PrevVal;
- if (I == 1) {
- DistToPrev = Dist;
- } else if (Dist != DistToPrev) {
- LinearMappingPossible = false;
- break;
- }
- }
- PrevVal = Val;
- }
- if (LinearMappingPossible) {
- LinearOffset = cast<ConstantInt>(TableContents[0]);
- LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
- Kind = LinearMapKind;
- ++NumLinearMaps;
- return;
- }
- }
- // If the type is integer and the table fits in a register, build a bitmap.
- if (WouldFitInRegister(DL, TableSize, ValueType)) {
- IntegerType *IT = cast<IntegerType>(ValueType);
- APInt TableInt(TableSize * IT->getBitWidth(), 0);
- for (uint64_t I = TableSize; I > 0; --I) {
- TableInt <<= IT->getBitWidth();
- // Insert values into the bitmap. Undef values are set to zero.
- if (!isa<UndefValue>(TableContents[I - 1])) {
- ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
- TableInt |= Val->getValue().zext(TableInt.getBitWidth());
- }
- }
- BitMap = ConstantInt::get(M.getContext(), TableInt);
- BitMapElementTy = IT;
- Kind = BitMapKind;
- ++NumBitMaps;
- return;
- }
- // Store the table in an array.
- ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
- Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
- Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
- GlobalVariable::PrivateLinkage, Initializer,
- "switch.table." + FuncName);
- Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
- // Set the alignment to that of an array items. We will be only loading one
- // value out of it.
- Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
- Kind = ArrayKind;
- }
- Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
- switch (Kind) {
- case SingleValueKind:
- return SingleValue;
- case LinearMapKind: {
- // Derive the result value from the input value.
- Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
- false, "switch.idx.cast");
- if (!LinearMultiplier->isOne())
- Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
- if (!LinearOffset->isZero())
- Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
- return Result;
- }
- case BitMapKind: {
- // Type of the bitmap (e.g. i59).
- IntegerType *MapTy = BitMap->getType();
- // Cast Index to the same type as the bitmap.
- // Note: The Index is <= the number of elements in the table, so
- // truncating it to the width of the bitmask is safe.
- Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
- // Multiply the shift amount by the element width.
- ShiftAmt = Builder.CreateMul(
- ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
- "switch.shiftamt");
- // Shift down.
- Value *DownShifted =
- Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
- // Mask off.
- return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
- }
- case ArrayKind: {
- // Make sure the table index will not overflow when treated as signed.
- IntegerType *IT = cast<IntegerType>(Index->getType());
- uint64_t TableSize =
- Array->getInitializer()->getType()->getArrayNumElements();
- if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
- Index = Builder.CreateZExt(
- Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
- "switch.tableidx.zext");
- Value *GEPIndices[] = {Builder.getInt32(0), Index};
- Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
- GEPIndices, "switch.gep");
- return Builder.CreateLoad(
- cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
- "switch.load");
- }
- }
- llvm_unreachable("Unknown lookup table kind!");
- }
- bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
- uint64_t TableSize,
- Type *ElementType) {
- auto *IT = dyn_cast<IntegerType>(ElementType);
- if (!IT)
- return false;
- // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
- // are <= 15, we could try to narrow the type.
- // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
- if (TableSize >= UINT_MAX / IT->getBitWidth())
- return false;
- return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
- }
- static bool isTypeLegalForLookupTable(Type *Ty, const TargetTransformInfo &TTI,
- const DataLayout &DL) {
- // Allow any legal type.
- if (TTI.isTypeLegal(Ty))
- return true;
- auto *IT = dyn_cast<IntegerType>(Ty);
- if (!IT)
- return false;
- // Also allow power of 2 integer types that have at least 8 bits and fit in
- // a register. These types are common in frontend languages and targets
- // usually support loads of these types.
- // TODO: We could relax this to any integer that fits in a register and rely
- // on ABI alignment and padding in the table to allow the load to be widened.
- // Or we could widen the constants and truncate the load.
- unsigned BitWidth = IT->getBitWidth();
- return BitWidth >= 8 && isPowerOf2_32(BitWidth) &&
- DL.fitsInLegalInteger(IT->getBitWidth());
- }
- /// Determine whether a lookup table should be built for this switch, based on
- /// the number of cases, size of the table, and the types of the results.
- // TODO: We could support larger than legal types by limiting based on the
- // number of loads required and/or table size. If the constants are small we
- // could use smaller table entries and extend after the load.
- static bool
- ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
- const TargetTransformInfo &TTI, const DataLayout &DL,
- const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
- if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
- return false; // TableSize overflowed, or mul below might overflow.
- bool AllTablesFitInRegister = true;
- bool HasIllegalType = false;
- for (const auto &I : ResultTypes) {
- Type *Ty = I.second;
- // Saturate this flag to true.
- HasIllegalType = HasIllegalType || !isTypeLegalForLookupTable(Ty, TTI, DL);
- // Saturate this flag to false.
- AllTablesFitInRegister =
- AllTablesFitInRegister &&
- SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
- // If both flags saturate, we're done. NOTE: This *only* works with
- // saturating flags, and all flags have to saturate first due to the
- // non-deterministic behavior of iterating over a dense map.
- if (HasIllegalType && !AllTablesFitInRegister)
- break;
- }
- // If each table would fit in a register, we should build it anyway.
- if (AllTablesFitInRegister)
- return true;
- // Don't build a table that doesn't fit in-register if it has illegal types.
- if (HasIllegalType)
- return false;
- // The table density should be at least 40%. This is the same criterion as for
- // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
- // FIXME: Find the best cut-off.
- return SI->getNumCases() * 10 >= TableSize * 4;
- }
- /// Try to reuse the switch table index compare. Following pattern:
- /// \code
- /// if (idx < tablesize)
- /// r = table[idx]; // table does not contain default_value
- /// else
- /// r = default_value;
- /// if (r != default_value)
- /// ...
- /// \endcode
- /// Is optimized to:
- /// \code
- /// cond = idx < tablesize;
- /// if (cond)
- /// r = table[idx];
- /// else
- /// r = default_value;
- /// if (cond)
- /// ...
- /// \endcode
- /// Jump threading will then eliminate the second if(cond).
- static void reuseTableCompare(
- User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
- Constant *DefaultValue,
- const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
- ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
- if (!CmpInst)
- return;
- // We require that the compare is in the same block as the phi so that jump
- // threading can do its work afterwards.
- if (CmpInst->getParent() != PhiBlock)
- return;
- Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
- if (!CmpOp1)
- return;
- Value *RangeCmp = RangeCheckBranch->getCondition();
- Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
- Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
- // Check if the compare with the default value is constant true or false.
- Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
- DefaultValue, CmpOp1, true);
- if (DefaultConst != TrueConst && DefaultConst != FalseConst)
- return;
- // Check if the compare with the case values is distinct from the default
- // compare result.
- for (auto ValuePair : Values) {
- Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
- ValuePair.second, CmpOp1, true);
- if (!CaseConst || CaseConst == DefaultConst ||
- (CaseConst != TrueConst && CaseConst != FalseConst))
- return;
- }
- // Check if the branch instruction dominates the phi node. It's a simple
- // dominance check, but sufficient for our needs.
- // Although this check is invariant in the calling loops, it's better to do it
- // at this late stage. Practically we do it at most once for a switch.
- BasicBlock *BranchBlock = RangeCheckBranch->getParent();
- for (BasicBlock *Pred : predecessors(PhiBlock)) {
- if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
- return;
- }
- if (DefaultConst == FalseConst) {
- // The compare yields the same result. We can replace it.
- CmpInst->replaceAllUsesWith(RangeCmp);
- ++NumTableCmpReuses;
- } else {
- // The compare yields the same result, just inverted. We can replace it.
- Value *InvertedTableCmp = BinaryOperator::CreateXor(
- RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
- RangeCheckBranch);
- CmpInst->replaceAllUsesWith(InvertedTableCmp);
- ++NumTableCmpReuses;
- }
- }
- /// If the switch is only used to initialize one or more phi nodes in a common
- /// successor block with different constant values, replace the switch with
- /// lookup tables.
- static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
- DomTreeUpdater *DTU, const DataLayout &DL,
- const TargetTransformInfo &TTI) {
- assert(SI->getNumCases() > 1 && "Degenerate switch?");
- BasicBlock *BB = SI->getParent();
- Function *Fn = BB->getParent();
- // Only build lookup table when we have a target that supports it or the
- // attribute is not set.
- if (!TTI.shouldBuildLookupTables() ||
- (Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
- return false;
- // FIXME: If the switch is too sparse for a lookup table, perhaps we could
- // split off a dense part and build a lookup table for that.
- // FIXME: This creates arrays of GEPs to constant strings, which means each
- // GEP needs a runtime relocation in PIC code. We should just build one big
- // string and lookup indices into that.
- // Ignore switches with less than three cases. Lookup tables will not make
- // them faster, so we don't analyze them.
- if (SI->getNumCases() < 3)
- return false;
- // Figure out the corresponding result for each case value and phi node in the
- // common destination, as well as the min and max case values.
- assert(!SI->cases().empty());
- SwitchInst::CaseIt CI = SI->case_begin();
- ConstantInt *MinCaseVal = CI->getCaseValue();
- ConstantInt *MaxCaseVal = CI->getCaseValue();
- BasicBlock *CommonDest = nullptr;
- using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
- SmallDenseMap<PHINode *, ResultListTy> ResultLists;
- SmallDenseMap<PHINode *, Constant *> DefaultResults;
- SmallDenseMap<PHINode *, Type *> ResultTypes;
- SmallVector<PHINode *, 4> PHIs;
- for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
- ConstantInt *CaseVal = CI->getCaseValue();
- if (CaseVal->getValue().slt(MinCaseVal->getValue()))
- MinCaseVal = CaseVal;
- if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
- MaxCaseVal = CaseVal;
- // Resulting value at phi nodes for this case value.
- using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
- ResultsTy Results;
- if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
- Results, DL, TTI))
- return false;
- // Append the result from this case to the list for each phi.
- for (const auto &I : Results) {
- PHINode *PHI = I.first;
- Constant *Value = I.second;
- if (!ResultLists.count(PHI))
- PHIs.push_back(PHI);
- ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
- }
- }
- // Keep track of the result types.
- for (PHINode *PHI : PHIs) {
- ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
- }
- uint64_t NumResults = ResultLists[PHIs[0]].size();
- APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
- uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
- bool TableHasHoles = (NumResults < TableSize);
- // If the table has holes, we need a constant result for the default case
- // or a bitmask that fits in a register.
- SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
- bool HasDefaultResults =
- GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
- DefaultResultsList, DL, TTI);
- bool NeedMask = (TableHasHoles && !HasDefaultResults);
- if (NeedMask) {
- // As an extra penalty for the validity test we require more cases.
- if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
- return false;
- if (!DL.fitsInLegalInteger(TableSize))
- return false;
- }
- for (const auto &I : DefaultResultsList) {
- PHINode *PHI = I.first;
- Constant *Result = I.second;
- DefaultResults[PHI] = Result;
- }
- if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
- return false;
- std::vector<DominatorTree::UpdateType> Updates;
- // Create the BB that does the lookups.
- Module &Mod = *CommonDest->getParent()->getParent();
- BasicBlock *LookupBB = BasicBlock::Create(
- Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
- // Compute the table index value.
- Builder.SetInsertPoint(SI);
- Value *TableIndex;
- if (MinCaseVal->isNullValue())
- TableIndex = SI->getCondition();
- else
- TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
- "switch.tableidx");
- // Compute the maximum table size representable by the integer type we are
- // switching upon.
- unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
- uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
- assert(MaxTableSize >= TableSize &&
- "It is impossible for a switch to have more entries than the max "
- "representable value of its input integer type's size.");
- // If the default destination is unreachable, or if the lookup table covers
- // all values of the conditional variable, branch directly to the lookup table
- // BB. Otherwise, check that the condition is within the case range.
- const bool DefaultIsReachable =
- !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
- const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
- BranchInst *RangeCheckBranch = nullptr;
- if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
- Builder.CreateBr(LookupBB);
- if (DTU)
- Updates.push_back({DominatorTree::Insert, BB, LookupBB});
- // Note: We call removeProdecessor later since we need to be able to get the
- // PHI value for the default case in case we're using a bit mask.
- } else {
- Value *Cmp = Builder.CreateICmpULT(
- TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
- RangeCheckBranch =
- Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
- if (DTU)
- Updates.push_back({DominatorTree::Insert, BB, LookupBB});
- }
- // Populate the BB that does the lookups.
- Builder.SetInsertPoint(LookupBB);
- if (NeedMask) {
- // Before doing the lookup, we do the hole check. The LookupBB is therefore
- // re-purposed to do the hole check, and we create a new LookupBB.
- BasicBlock *MaskBB = LookupBB;
- MaskBB->setName("switch.hole_check");
- LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
- CommonDest->getParent(), CommonDest);
- // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
- // unnecessary illegal types.
- uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
- APInt MaskInt(TableSizePowOf2, 0);
- APInt One(TableSizePowOf2, 1);
- // Build bitmask; fill in a 1 bit for every case.
- const ResultListTy &ResultList = ResultLists[PHIs[0]];
- for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
- uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
- .getLimitedValue();
- MaskInt |= One << Idx;
- }
- ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
- // Get the TableIndex'th bit of the bitmask.
- // If this bit is 0 (meaning hole) jump to the default destination,
- // else continue with table lookup.
- IntegerType *MapTy = TableMask->getType();
- Value *MaskIndex =
- Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
- Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
- Value *LoBit = Builder.CreateTrunc(
- Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
- Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
- if (DTU) {
- Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
- Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
- }
- Builder.SetInsertPoint(LookupBB);
- AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
- }
- if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
- // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
- // do not delete PHINodes here.
- SI->getDefaultDest()->removePredecessor(BB,
- /*KeepOneInputPHIs=*/true);
- if (DTU)
- Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
- }
- for (PHINode *PHI : PHIs) {
- const ResultListTy &ResultList = ResultLists[PHI];
- // If using a bitmask, use any value to fill the lookup table holes.
- Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
- StringRef FuncName = Fn->getName();
- SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
- FuncName);
- Value *Result = Table.BuildLookup(TableIndex, Builder);
- // Do a small peephole optimization: re-use the switch table compare if
- // possible.
- if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
- BasicBlock *PhiBlock = PHI->getParent();
- // Search for compare instructions which use the phi.
- for (auto *User : PHI->users()) {
- reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
- }
- }
- PHI->addIncoming(Result, LookupBB);
- }
- Builder.CreateBr(CommonDest);
- if (DTU)
- Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
- // Remove the switch.
- SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
- for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
- BasicBlock *Succ = SI->getSuccessor(i);
- if (Succ == SI->getDefaultDest())
- continue;
- Succ->removePredecessor(BB);
- if (DTU && RemovedSuccessors.insert(Succ).second)
- Updates.push_back({DominatorTree::Delete, BB, Succ});
- }
- SI->eraseFromParent();
- if (DTU)
- DTU->applyUpdates(Updates);
- ++NumLookupTables;
- if (NeedMask)
- ++NumLookupTablesHoles;
- return true;
- }
- static bool isSwitchDense(ArrayRef<int64_t> Values) {
- // See also SelectionDAGBuilder::isDense(), which this function was based on.
- uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
- uint64_t Range = Diff + 1;
- uint64_t NumCases = Values.size();
- // 40% is the default density for building a jump table in optsize/minsize mode.
- uint64_t MinDensity = 40;
- return NumCases * 100 >= Range * MinDensity;
- }
- /// Try to transform a switch that has "holes" in it to a contiguous sequence
- /// of cases.
- ///
- /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
- /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
- ///
- /// This converts a sparse switch into a dense switch which allows better
- /// lowering and could also allow transforming into a lookup table.
- static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
- const DataLayout &DL,
- const TargetTransformInfo &TTI) {
- auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
- if (CondTy->getIntegerBitWidth() > 64 ||
- !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
- return false;
- // Only bother with this optimization if there are more than 3 switch cases;
- // SDAG will only bother creating jump tables for 4 or more cases.
- if (SI->getNumCases() < 4)
- return false;
- // This transform is agnostic to the signedness of the input or case values. We
- // can treat the case values as signed or unsigned. We can optimize more common
- // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
- // as signed.
- SmallVector<int64_t,4> Values;
- for (auto &C : SI->cases())
- Values.push_back(C.getCaseValue()->getValue().getSExtValue());
- llvm::sort(Values);
- // If the switch is already dense, there's nothing useful to do here.
- if (isSwitchDense(Values))
- return false;
- // First, transform the values such that they start at zero and ascend.
- int64_t Base = Values[0];
- for (auto &V : Values)
- V -= (uint64_t)(Base);
- // Now we have signed numbers that have been shifted so that, given enough
- // precision, there are no negative values. Since the rest of the transform
- // is bitwise only, we switch now to an unsigned representation.
- // This transform can be done speculatively because it is so cheap - it
- // results in a single rotate operation being inserted.
- // FIXME: It's possible that optimizing a switch on powers of two might also
- // be beneficial - flag values are often powers of two and we could use a CLZ
- // as the key function.
- // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
- // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
- // less than 64.
- unsigned Shift = 64;
- for (auto &V : Values)
- Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
- assert(Shift < 64);
- if (Shift > 0)
- for (auto &V : Values)
- V = (int64_t)((uint64_t)V >> Shift);
- if (!isSwitchDense(Values))
- // Transform didn't create a dense switch.
- return false;
- // The obvious transform is to shift the switch condition right and emit a
- // check that the condition actually cleanly divided by GCD, i.e.
- // C & (1 << Shift - 1) == 0
- // inserting a new CFG edge to handle the case where it didn't divide cleanly.
- //
- // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
- // shift and puts the shifted-off bits in the uppermost bits. If any of these
- // are nonzero then the switch condition will be very large and will hit the
- // default case.
- auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
- Builder.SetInsertPoint(SI);
- auto *ShiftC = ConstantInt::get(Ty, Shift);
- auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
- auto *LShr = Builder.CreateLShr(Sub, ShiftC);
- auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
- auto *Rot = Builder.CreateOr(LShr, Shl);
- SI->replaceUsesOfWith(SI->getCondition(), Rot);
- for (auto Case : SI->cases()) {
- auto *Orig = Case.getCaseValue();
- auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
- Case.setValue(
- cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
- }
- return true;
- }
- bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
- BasicBlock *BB = SI->getParent();
- if (isValueEqualityComparison(SI)) {
- // If we only have one predecessor, and if it is a branch on this value,
- // see if that predecessor totally determines the outcome of this switch.
- if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
- if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
- return requestResimplify();
- Value *Cond = SI->getCondition();
- if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
- if (SimplifySwitchOnSelect(SI, Select))
- return requestResimplify();
- // If the block only contains the switch, see if we can fold the block
- // away into any preds.
- if (SI == &*BB->instructionsWithoutDebug(false).begin())
- if (FoldValueComparisonIntoPredecessors(SI, Builder))
- return requestResimplify();
- }
- // Try to transform the switch into an icmp and a branch.
- // The conversion from switch to comparison may lose information on
- // impossible switch values, so disable it early in the pipeline.
- if (Options.ConvertSwitchRangeToICmp && TurnSwitchRangeIntoICmp(SI, Builder))
- return requestResimplify();
- // Remove unreachable cases.
- if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
- return requestResimplify();
- if (switchToSelect(SI, Builder, DTU, DL, TTI))
- return requestResimplify();
- if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
- return requestResimplify();
- // The conversion from switch to lookup tables results in difficult-to-analyze
- // code and makes pruning branches much harder. This is a problem if the
- // switch expression itself can still be restricted as a result of inlining or
- // CVP. Therefore, only apply this transformation during late stages of the
- // optimisation pipeline.
- if (Options.ConvertSwitchToLookupTable &&
- SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
- return requestResimplify();
- if (ReduceSwitchRange(SI, Builder, DL, TTI))
- return requestResimplify();
- return false;
- }
- bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
- BasicBlock *BB = IBI->getParent();
- bool Changed = false;
- // Eliminate redundant destinations.
- SmallPtrSet<Value *, 8> Succs;
- SmallSetVector<BasicBlock *, 8> RemovedSuccs;
- for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
- BasicBlock *Dest = IBI->getDestination(i);
- if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
- if (!Dest->hasAddressTaken())
- RemovedSuccs.insert(Dest);
- Dest->removePredecessor(BB);
- IBI->removeDestination(i);
- --i;
- --e;
- Changed = true;
- }
- }
- if (DTU) {
- std::vector<DominatorTree::UpdateType> Updates;
- Updates.reserve(RemovedSuccs.size());
- for (auto *RemovedSucc : RemovedSuccs)
- Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
- DTU->applyUpdates(Updates);
- }
- if (IBI->getNumDestinations() == 0) {
- // If the indirectbr has no successors, change it to unreachable.
- new UnreachableInst(IBI->getContext(), IBI);
- EraseTerminatorAndDCECond(IBI);
- return true;
- }
- if (IBI->getNumDestinations() == 1) {
- // If the indirectbr has one successor, change it to a direct branch.
- BranchInst::Create(IBI->getDestination(0), IBI);
- EraseTerminatorAndDCECond(IBI);
- return true;
- }
- if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
- if (SimplifyIndirectBrOnSelect(IBI, SI))
- return requestResimplify();
- }
- return Changed;
- }
- /// Given an block with only a single landing pad and a unconditional branch
- /// try to find another basic block which this one can be merged with. This
- /// handles cases where we have multiple invokes with unique landing pads, but
- /// a shared handler.
- ///
- /// We specifically choose to not worry about merging non-empty blocks
- /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
- /// practice, the optimizer produces empty landing pad blocks quite frequently
- /// when dealing with exception dense code. (see: instcombine, gvn, if-else
- /// sinking in this file)
- ///
- /// This is primarily a code size optimization. We need to avoid performing
- /// any transform which might inhibit optimization (such as our ability to
- /// specialize a particular handler via tail commoning). We do this by not
- /// merging any blocks which require us to introduce a phi. Since the same
- /// values are flowing through both blocks, we don't lose any ability to
- /// specialize. If anything, we make such specialization more likely.
- ///
- /// TODO - This transformation could remove entries from a phi in the target
- /// block when the inputs in the phi are the same for the two blocks being
- /// merged. In some cases, this could result in removal of the PHI entirely.
- static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
- BasicBlock *BB, DomTreeUpdater *DTU) {
- auto Succ = BB->getUniqueSuccessor();
- assert(Succ);
- // If there's a phi in the successor block, we'd likely have to introduce
- // a phi into the merged landing pad block.
- if (isa<PHINode>(*Succ->begin()))
- return false;
- for (BasicBlock *OtherPred : predecessors(Succ)) {
- if (BB == OtherPred)
- continue;
- BasicBlock::iterator I = OtherPred->begin();
- LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
- if (!LPad2 || !LPad2->isIdenticalTo(LPad))
- continue;
- for (++I; isa<DbgInfoIntrinsic>(I); ++I)
- ;
- BranchInst *BI2 = dyn_cast<BranchInst>(I);
- if (!BI2 || !BI2->isIdenticalTo(BI))
- continue;
- std::vector<DominatorTree::UpdateType> Updates;
- // We've found an identical block. Update our predecessors to take that
- // path instead and make ourselves dead.
- SmallSetVector<BasicBlock *, 16> UniquePreds(pred_begin(BB), pred_end(BB));
- for (BasicBlock *Pred : UniquePreds) {
- InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
- assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
- "unexpected successor");
- II->setUnwindDest(OtherPred);
- if (DTU) {
- Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
- Updates.push_back({DominatorTree::Delete, Pred, BB});
- }
- }
- // The debug info in OtherPred doesn't cover the merged control flow that
- // used to go through BB. We need to delete it or update it.
- for (Instruction &Inst : llvm::make_early_inc_range(*OtherPred))
- if (isa<DbgInfoIntrinsic>(Inst))
- Inst.eraseFromParent();
- SmallSetVector<BasicBlock *, 16> UniqueSuccs(succ_begin(BB), succ_end(BB));
- for (BasicBlock *Succ : UniqueSuccs) {
- Succ->removePredecessor(BB);
- if (DTU)
- Updates.push_back({DominatorTree::Delete, BB, Succ});
- }
- IRBuilder<> Builder(BI);
- Builder.CreateUnreachable();
- BI->eraseFromParent();
- if (DTU)
- DTU->applyUpdates(Updates);
- return true;
- }
- return false;
- }
- bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
- return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
- : simplifyCondBranch(Branch, Builder);
- }
- bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
- IRBuilder<> &Builder) {
- BasicBlock *BB = BI->getParent();
- BasicBlock *Succ = BI->getSuccessor(0);
- // If the Terminator is the only non-phi instruction, simplify the block.
- // If LoopHeader is provided, check if the block or its successor is a loop
- // header. (This is for early invocations before loop simplify and
- // vectorization to keep canonical loop forms for nested loops. These blocks
- // can be eliminated when the pass is invoked later in the back-end.)
- // Note that if BB has only one predecessor then we do not introduce new
- // backedge, so we can eliminate BB.
- bool NeedCanonicalLoop =
- Options.NeedCanonicalLoop &&
- (!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
- (is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
- BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
- if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
- !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
- return true;
- // If the only instruction in the block is a seteq/setne comparison against a
- // constant, try to simplify the block.
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
- if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
- for (++I; isa<DbgInfoIntrinsic>(I); ++I)
- ;
- if (I->isTerminator() &&
- tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
- return true;
- }
- // See if we can merge an empty landing pad block with another which is
- // equivalent.
- if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
- for (++I; isa<DbgInfoIntrinsic>(I); ++I)
- ;
- if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
- return true;
- }
- // If this basic block is ONLY a compare and a branch, and if a predecessor
- // branches to us and our successor, fold the comparison into the
- // predecessor and use logical operations to update the incoming value
- // for PHI nodes in common successor.
- if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
- Options.BonusInstThreshold))
- return requestResimplify();
- return false;
- }
- static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
- BasicBlock *PredPred = nullptr;
- for (auto *P : predecessors(BB)) {
- BasicBlock *PPred = P->getSinglePredecessor();
- if (!PPred || (PredPred && PredPred != PPred))
- return nullptr;
- PredPred = PPred;
- }
- return PredPred;
- }
- bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
- assert(
- !isa<ConstantInt>(BI->getCondition()) &&
- BI->getSuccessor(0) != BI->getSuccessor(1) &&
- "Tautological conditional branch should have been eliminated already.");
- BasicBlock *BB = BI->getParent();
- if (!Options.SimplifyCondBranch)
- return false;
- // Conditional branch
- if (isValueEqualityComparison(BI)) {
- // If we only have one predecessor, and if it is a branch on this value,
- // see if that predecessor totally determines the outcome of this
- // switch.
- if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
- if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
- return requestResimplify();
- // This block must be empty, except for the setcond inst, if it exists.
- // Ignore dbg and pseudo intrinsics.
- auto I = BB->instructionsWithoutDebug(true).begin();
- if (&*I == BI) {
- if (FoldValueComparisonIntoPredecessors(BI, Builder))
- return requestResimplify();
- } else if (&*I == cast<Instruction>(BI->getCondition())) {
- ++I;
- if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
- return requestResimplify();
- }
- }
- // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
- if (SimplifyBranchOnICmpChain(BI, Builder, DL))
- return true;
- // If this basic block has dominating predecessor blocks and the dominating
- // blocks' conditions imply BI's condition, we know the direction of BI.
- Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
- if (Imp) {
- // Turn this into a branch on constant.
- auto *OldCond = BI->getCondition();
- ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
- : ConstantInt::getFalse(BB->getContext());
- BI->setCondition(TorF);
- RecursivelyDeleteTriviallyDeadInstructions(OldCond);
- return requestResimplify();
- }
- // If this basic block is ONLY a compare and a branch, and if a predecessor
- // branches to us and one of our successors, fold the comparison into the
- // predecessor and use logical operations to pick the right destination.
- if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
- Options.BonusInstThreshold))
- return requestResimplify();
- // We have a conditional branch to two blocks that are only reachable
- // from BI. We know that the condbr dominates the two blocks, so see if
- // there is any identical code in the "then" and "else" blocks. If so, we
- // can hoist it up to the branching block.
- if (BI->getSuccessor(0)->getSinglePredecessor()) {
- if (BI->getSuccessor(1)->getSinglePredecessor()) {
- if (HoistCommon &&
- HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
- return requestResimplify();
- } else {
- // If Successor #1 has multiple preds, we may be able to conditionally
- // execute Successor #0 if it branches to Successor #1.
- Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
- if (Succ0TI->getNumSuccessors() == 1 &&
- Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
- if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
- return requestResimplify();
- }
- } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
- // If Successor #0 has multiple preds, we may be able to conditionally
- // execute Successor #1 if it branches to Successor #0.
- Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
- if (Succ1TI->getNumSuccessors() == 1 &&
- Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
- if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
- return requestResimplify();
- }
- // If this is a branch on a phi node in the current block, thread control
- // through this block if any PHI node entries are constants.
- if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
- if (PN->getParent() == BI->getParent())
- if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
- return requestResimplify();
- // Scan predecessor blocks for conditional branches.
- for (BasicBlock *Pred : predecessors(BB))
- if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
- if (PBI != BI && PBI->isConditional())
- if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
- return requestResimplify();
- // Look for diamond patterns.
- if (MergeCondStores)
- if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
- if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
- if (PBI != BI && PBI->isConditional())
- if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
- return requestResimplify();
- return false;
- }
- /// Check if passing a value to an instruction will cause undefined behavior.
- static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
- Constant *C = dyn_cast<Constant>(V);
- if (!C)
- return false;
- if (I->use_empty())
- return false;
- if (C->isNullValue() || isa<UndefValue>(C)) {
- // Only look at the first use, avoid hurting compile time with long uselists
- auto *Use = cast<Instruction>(*I->user_begin());
- // Bail out if Use is not in the same BB as I or Use == I or Use comes
- // before I in the block. The latter two can be the case if Use is a PHI
- // node.
- if (Use->getParent() != I->getParent() || Use == I || Use->comesBefore(I))
- return false;
- // Now make sure that there are no instructions in between that can alter
- // control flow (eg. calls)
- auto InstrRange =
- make_range(std::next(I->getIterator()), Use->getIterator());
- if (any_of(InstrRange, [](Instruction &I) {
- return !isGuaranteedToTransferExecutionToSuccessor(&I);
- }))
- return false;
- // Look through GEPs. A load from a GEP derived from NULL is still undefined
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
- if (GEP->getPointerOperand() == I) {
- if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
- PtrValueMayBeModified = true;
- return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
- }
- // Look through bitcasts.
- if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
- return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
- // Load from null is undefined.
- if (LoadInst *LI = dyn_cast<LoadInst>(Use))
- if (!LI->isVolatile())
- return !NullPointerIsDefined(LI->getFunction(),
- LI->getPointerAddressSpace());
- // Store to null is undefined.
- if (StoreInst *SI = dyn_cast<StoreInst>(Use))
- if (!SI->isVolatile())
- return (!NullPointerIsDefined(SI->getFunction(),
- SI->getPointerAddressSpace())) &&
- SI->getPointerOperand() == I;
- if (auto *CB = dyn_cast<CallBase>(Use)) {
- if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
- return false;
- // A call to null is undefined.
- if (CB->getCalledOperand() == I)
- return true;
- if (C->isNullValue()) {
- for (const llvm::Use &Arg : CB->args())
- if (Arg == I) {
- unsigned ArgIdx = CB->getArgOperandNo(&Arg);
- if (CB->isPassingUndefUB(ArgIdx) &&
- CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
- // Passing null to a nonnnull+noundef argument is undefined.
- return !PtrValueMayBeModified;
- }
- }
- } else if (isa<UndefValue>(C)) {
- // Passing undef to a noundef argument is undefined.
- for (const llvm::Use &Arg : CB->args())
- if (Arg == I) {
- unsigned ArgIdx = CB->getArgOperandNo(&Arg);
- if (CB->isPassingUndefUB(ArgIdx)) {
- // Passing undef to a noundef argument is undefined.
- return true;
- }
- }
- }
- }
- }
- return false;
- }
- /// If BB has an incoming value that will always trigger undefined behavior
- /// (eg. null pointer dereference), remove the branch leading here.
- static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
- DomTreeUpdater *DTU) {
- for (PHINode &PHI : BB->phis())
- for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
- if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
- BasicBlock *Predecessor = PHI.getIncomingBlock(i);
- Instruction *T = Predecessor->getTerminator();
- IRBuilder<> Builder(T);
- if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
- BB->removePredecessor(Predecessor);
- // Turn uncoditional branches into unreachables and remove the dead
- // destination from conditional branches.
- if (BI->isUnconditional())
- Builder.CreateUnreachable();
- else {
- // Preserve guarding condition in assume, because it might not be
- // inferrable from any dominating condition.
- Value *Cond = BI->getCondition();
- if (BI->getSuccessor(0) == BB)
- Builder.CreateAssumption(Builder.CreateNot(Cond));
- else
- Builder.CreateAssumption(Cond);
- Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
- : BI->getSuccessor(0));
- }
- BI->eraseFromParent();
- if (DTU)
- DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
- return true;
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
- // Redirect all branches leading to UB into
- // a newly created unreachable block.
- BasicBlock *Unreachable = BasicBlock::Create(
- Predecessor->getContext(), "unreachable", BB->getParent(), BB);
- Builder.SetInsertPoint(Unreachable);
- // The new block contains only one instruction: Unreachable
- Builder.CreateUnreachable();
- for (auto &Case : SI->cases())
- if (Case.getCaseSuccessor() == BB) {
- BB->removePredecessor(Predecessor);
- Case.setSuccessor(Unreachable);
- }
- if (SI->getDefaultDest() == BB) {
- BB->removePredecessor(Predecessor);
- SI->setDefaultDest(Unreachable);
- }
- if (DTU)
- DTU->applyUpdates(
- { { DominatorTree::Insert, Predecessor, Unreachable },
- { DominatorTree::Delete, Predecessor, BB } });
- return true;
- }
- }
- return false;
- }
- bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
- bool Changed = false;
- assert(BB && BB->getParent() && "Block not embedded in function!");
- assert(BB->getTerminator() && "Degenerate basic block encountered!");
- // Remove basic blocks that have no predecessors (except the entry block)...
- // or that just have themself as a predecessor. These are unreachable.
- if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
- BB->getSinglePredecessor() == BB) {
- LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
- DeleteDeadBlock(BB, DTU);
- return true;
- }
- // Check to see if we can constant propagate this terminator instruction
- // away...
- Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
- /*TLI=*/nullptr, DTU);
- // Check for and eliminate duplicate PHI nodes in this block.
- Changed |= EliminateDuplicatePHINodes(BB);
- // Check for and remove branches that will always cause undefined behavior.
- if (removeUndefIntroducingPredecessor(BB, DTU))
- return requestResimplify();
- // Merge basic blocks into their predecessor if there is only one distinct
- // pred, and if there is only one distinct successor of the predecessor, and
- // if there are no PHI nodes.
- if (MergeBlockIntoPredecessor(BB, DTU))
- return true;
- if (SinkCommon && Options.SinkCommonInsts)
- if (SinkCommonCodeFromPredecessors(BB, DTU)) {
- // SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
- // so we may now how duplicate PHI's.
- // Let's rerun EliminateDuplicatePHINodes() first,
- // before FoldTwoEntryPHINode() potentially converts them into select's,
- // after which we'd need a whole EarlyCSE pass run to cleanup them.
- return true;
- }
- IRBuilder<> Builder(BB);
- if (Options.FoldTwoEntryPHINode) {
- // If there is a trivial two-entry PHI node in this basic block, and we can
- // eliminate it, do so now.
- if (auto *PN = dyn_cast<PHINode>(BB->begin()))
- if (PN->getNumIncomingValues() == 2)
- if (FoldTwoEntryPHINode(PN, TTI, DTU, DL))
- return true;
- }
- Instruction *Terminator = BB->getTerminator();
- Builder.SetInsertPoint(Terminator);
- switch (Terminator->getOpcode()) {
- case Instruction::Br:
- Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
- break;
- case Instruction::Resume:
- Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
- break;
- case Instruction::CleanupRet:
- Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
- break;
- case Instruction::Switch:
- Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
- break;
- case Instruction::Unreachable:
- Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
- break;
- case Instruction::IndirectBr:
- Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
- break;
- }
- return Changed;
- }
- bool SimplifyCFGOpt::run(BasicBlock *BB) {
- bool Changed = false;
- // Repeated simplify BB as long as resimplification is requested.
- do {
- Resimplify = false;
- // Perform one round of simplifcation. Resimplify flag will be set if
- // another iteration is requested.
- Changed |= simplifyOnce(BB);
- } while (Resimplify);
- return Changed;
- }
- bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
- DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
- ArrayRef<WeakVH> LoopHeaders) {
- return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
- Options)
- .run(BB);
- }
|