12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727 |
- //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // \file
- // This file implements the Sparse Conditional Constant Propagation (SCCP)
- // utility.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/SCCPSolver.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <cassert>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "sccp"
- // The maximum number of range extensions allowed for operations requiring
- // widening.
- static const unsigned MaxNumRangeExtensions = 10;
- /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
- static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
- return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
- MaxNumRangeExtensions);
- }
- namespace {
- // Helper to check if \p LV is either a constant or a constant
- // range with a single element. This should cover exactly the same cases as the
- // old ValueLatticeElement::isConstant() and is intended to be used in the
- // transition to ValueLatticeElement.
- bool isConstant(const ValueLatticeElement &LV) {
- return LV.isConstant() ||
- (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
- }
- // Helper to check if \p LV is either overdefined or a constant range with more
- // than a single element. This should cover exactly the same cases as the old
- // ValueLatticeElement::isOverdefined() and is intended to be used in the
- // transition to ValueLatticeElement.
- bool isOverdefined(const ValueLatticeElement &LV) {
- return !LV.isUnknownOrUndef() && !isConstant(LV);
- }
- } // namespace
- namespace llvm {
- /// Helper class for SCCPSolver. This implements the instruction visitor and
- /// holds all the state.
- class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
- const DataLayout &DL;
- std::function<const TargetLibraryInfo &(Function &)> GetTLI;
- SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
- DenseMap<Value *, ValueLatticeElement>
- ValueState; // The state each value is in.
- /// StructValueState - This maintains ValueState for values that have
- /// StructType, for example for formal arguments, calls, insertelement, etc.
- DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
- /// GlobalValue - If we are tracking any values for the contents of a global
- /// variable, we keep a mapping from the constant accessor to the element of
- /// the global, to the currently known value. If the value becomes
- /// overdefined, it's entry is simply removed from this map.
- DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
- /// TrackedRetVals - If we are tracking arguments into and the return
- /// value out of a function, it will have an entry in this map, indicating
- /// what the known return value for the function is.
- MapVector<Function *, ValueLatticeElement> TrackedRetVals;
- /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
- /// that return multiple values.
- MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
- TrackedMultipleRetVals;
- /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
- /// represented here for efficient lookup.
- SmallPtrSet<Function *, 16> MRVFunctionsTracked;
- /// A list of functions whose return cannot be modified.
- SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
- /// TrackingIncomingArguments - This is the set of functions for whose
- /// arguments we make optimistic assumptions about and try to prove as
- /// constants.
- SmallPtrSet<Function *, 16> TrackingIncomingArguments;
- /// The reason for two worklists is that overdefined is the lowest state
- /// on the lattice, and moving things to overdefined as fast as possible
- /// makes SCCP converge much faster.
- ///
- /// By having a separate worklist, we accomplish this because everything
- /// possibly overdefined will become overdefined at the soonest possible
- /// point.
- SmallVector<Value *, 64> OverdefinedInstWorkList;
- SmallVector<Value *, 64> InstWorkList;
- // The BasicBlock work list
- SmallVector<BasicBlock *, 64> BBWorkList;
- /// KnownFeasibleEdges - Entries in this set are edges which have already had
- /// PHI nodes retriggered.
- using Edge = std::pair<BasicBlock *, BasicBlock *>;
- DenseSet<Edge> KnownFeasibleEdges;
- DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
- DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
- LLVMContext &Ctx;
- private:
- ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
- return dyn_cast_or_null<ConstantInt>(getConstant(IV));
- }
- // pushToWorkList - Helper for markConstant/markOverdefined
- void pushToWorkList(ValueLatticeElement &IV, Value *V);
- // Helper to push \p V to the worklist, after updating it to \p IV. Also
- // prints a debug message with the updated value.
- void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
- // markConstant - Make a value be marked as "constant". If the value
- // is not already a constant, add it to the instruction work list so that
- // the users of the instruction are updated later.
- bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
- bool MayIncludeUndef = false);
- bool markConstant(Value *V, Constant *C) {
- assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
- return markConstant(ValueState[V], V, C);
- }
- // markOverdefined - Make a value be marked as "overdefined". If the
- // value is not already overdefined, add it to the overdefined instruction
- // work list so that the users of the instruction are updated later.
- bool markOverdefined(ValueLatticeElement &IV, Value *V);
- /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
- /// changes.
- bool mergeInValue(ValueLatticeElement &IV, Value *V,
- ValueLatticeElement MergeWithV,
- ValueLatticeElement::MergeOptions Opts = {
- /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
- bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
- ValueLatticeElement::MergeOptions Opts = {
- /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
- assert(!V->getType()->isStructTy() &&
- "non-structs should use markConstant");
- return mergeInValue(ValueState[V], V, MergeWithV, Opts);
- }
- /// getValueState - Return the ValueLatticeElement object that corresponds to
- /// the value. This function handles the case when the value hasn't been seen
- /// yet by properly seeding constants etc.
- ValueLatticeElement &getValueState(Value *V) {
- assert(!V->getType()->isStructTy() && "Should use getStructValueState");
- auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
- ValueLatticeElement &LV = I.first->second;
- if (!I.second)
- return LV; // Common case, already in the map.
- if (auto *C = dyn_cast<Constant>(V))
- LV.markConstant(C); // Constants are constant
- // All others are unknown by default.
- return LV;
- }
- /// getStructValueState - Return the ValueLatticeElement object that
- /// corresponds to the value/field pair. This function handles the case when
- /// the value hasn't been seen yet by properly seeding constants etc.
- ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
- assert(V->getType()->isStructTy() && "Should use getValueState");
- assert(i < cast<StructType>(V->getType())->getNumElements() &&
- "Invalid element #");
- auto I = StructValueState.insert(
- std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
- ValueLatticeElement &LV = I.first->second;
- if (!I.second)
- return LV; // Common case, already in the map.
- if (auto *C = dyn_cast<Constant>(V)) {
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt)
- LV.markOverdefined(); // Unknown sort of constant.
- else if (isa<UndefValue>(Elt))
- ; // Undef values remain unknown.
- else
- LV.markConstant(Elt); // Constants are constant.
- }
- // All others are underdefined by default.
- return LV;
- }
- /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
- /// work list if it is not already executable.
- bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
- // getFeasibleSuccessors - Return a vector of booleans to indicate which
- // successors are reachable from a given terminator instruction.
- void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
- // OperandChangedState - This method is invoked on all of the users of an
- // instruction that was just changed state somehow. Based on this
- // information, we need to update the specified user of this instruction.
- void operandChangedState(Instruction *I) {
- if (BBExecutable.count(I->getParent())) // Inst is executable?
- visit(*I);
- }
- // Add U as additional user of V.
- void addAdditionalUser(Value *V, User *U) {
- auto Iter = AdditionalUsers.insert({V, {}});
- Iter.first->second.insert(U);
- }
- // Mark I's users as changed, including AdditionalUsers.
- void markUsersAsChanged(Value *I) {
- // Functions include their arguments in the use-list. Changed function
- // values mean that the result of the function changed. We only need to
- // update the call sites with the new function result and do not have to
- // propagate the call arguments.
- if (isa<Function>(I)) {
- for (User *U : I->users()) {
- if (auto *CB = dyn_cast<CallBase>(U))
- handleCallResult(*CB);
- }
- } else {
- for (User *U : I->users())
- if (auto *UI = dyn_cast<Instruction>(U))
- operandChangedState(UI);
- }
- auto Iter = AdditionalUsers.find(I);
- if (Iter != AdditionalUsers.end()) {
- // Copy additional users before notifying them of changes, because new
- // users may be added, potentially invalidating the iterator.
- SmallVector<Instruction *, 2> ToNotify;
- for (User *U : Iter->second)
- if (auto *UI = dyn_cast<Instruction>(U))
- ToNotify.push_back(UI);
- for (Instruction *UI : ToNotify)
- operandChangedState(UI);
- }
- }
- void handleCallOverdefined(CallBase &CB);
- void handleCallResult(CallBase &CB);
- void handleCallArguments(CallBase &CB);
- private:
- friend class InstVisitor<SCCPInstVisitor>;
- // visit implementations - Something changed in this instruction. Either an
- // operand made a transition, or the instruction is newly executable. Change
- // the value type of I to reflect these changes if appropriate.
- void visitPHINode(PHINode &I);
- // Terminators
- void visitReturnInst(ReturnInst &I);
- void visitTerminator(Instruction &TI);
- void visitCastInst(CastInst &I);
- void visitSelectInst(SelectInst &I);
- void visitUnaryOperator(Instruction &I);
- void visitBinaryOperator(Instruction &I);
- void visitCmpInst(CmpInst &I);
- void visitExtractValueInst(ExtractValueInst &EVI);
- void visitInsertValueInst(InsertValueInst &IVI);
- void visitCatchSwitchInst(CatchSwitchInst &CPI) {
- markOverdefined(&CPI);
- visitTerminator(CPI);
- }
- // Instructions that cannot be folded away.
- void visitStoreInst(StoreInst &I);
- void visitLoadInst(LoadInst &I);
- void visitGetElementPtrInst(GetElementPtrInst &I);
- void visitInvokeInst(InvokeInst &II) {
- visitCallBase(II);
- visitTerminator(II);
- }
- void visitCallBrInst(CallBrInst &CBI) {
- visitCallBase(CBI);
- visitTerminator(CBI);
- }
- void visitCallBase(CallBase &CB);
- void visitResumeInst(ResumeInst &I) { /*returns void*/
- }
- void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
- }
- void visitFenceInst(FenceInst &I) { /*returns void*/
- }
- void visitInstruction(Instruction &I);
- public:
- void addAnalysis(Function &F, AnalysisResultsForFn A) {
- AnalysisResults.insert({&F, std::move(A)});
- }
- void visitCallInst(CallInst &I) { visitCallBase(I); }
- bool markBlockExecutable(BasicBlock *BB);
- const PredicateBase *getPredicateInfoFor(Instruction *I) {
- auto A = AnalysisResults.find(I->getParent()->getParent());
- if (A == AnalysisResults.end())
- return nullptr;
- return A->second.PredInfo->getPredicateInfoFor(I);
- }
- DomTreeUpdater getDTU(Function &F) {
- auto A = AnalysisResults.find(&F);
- assert(A != AnalysisResults.end() && "Need analysis results for function.");
- return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
- }
- SCCPInstVisitor(const DataLayout &DL,
- std::function<const TargetLibraryInfo &(Function &)> GetTLI,
- LLVMContext &Ctx)
- : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
- void trackValueOfGlobalVariable(GlobalVariable *GV) {
- // We only track the contents of scalar globals.
- if (GV->getValueType()->isSingleValueType()) {
- ValueLatticeElement &IV = TrackedGlobals[GV];
- if (!isa<UndefValue>(GV->getInitializer()))
- IV.markConstant(GV->getInitializer());
- }
- }
- void addTrackedFunction(Function *F) {
- // Add an entry, F -> undef.
- if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
- MRVFunctionsTracked.insert(F);
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- TrackedMultipleRetVals.insert(
- std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
- } else if (!F->getReturnType()->isVoidTy())
- TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
- }
- void addToMustPreserveReturnsInFunctions(Function *F) {
- MustPreserveReturnsInFunctions.insert(F);
- }
- bool mustPreserveReturn(Function *F) {
- return MustPreserveReturnsInFunctions.count(F);
- }
- void addArgumentTrackedFunction(Function *F) {
- TrackingIncomingArguments.insert(F);
- }
- bool isArgumentTrackedFunction(Function *F) {
- return TrackingIncomingArguments.count(F);
- }
- void solve();
- bool resolvedUndefsIn(Function &F);
- bool isBlockExecutable(BasicBlock *BB) const {
- return BBExecutable.count(BB);
- }
- bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
- std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
- std::vector<ValueLatticeElement> StructValues;
- auto *STy = dyn_cast<StructType>(V->getType());
- assert(STy && "getStructLatticeValueFor() can be called only on structs");
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- auto I = StructValueState.find(std::make_pair(V, i));
- assert(I != StructValueState.end() && "Value not in valuemap!");
- StructValues.push_back(I->second);
- }
- return StructValues;
- }
- void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
- const ValueLatticeElement &getLatticeValueFor(Value *V) const {
- assert(!V->getType()->isStructTy() &&
- "Should use getStructLatticeValueFor");
- DenseMap<Value *, ValueLatticeElement>::const_iterator I =
- ValueState.find(V);
- assert(I != ValueState.end() &&
- "V not found in ValueState nor Paramstate map!");
- return I->second;
- }
- const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
- return TrackedRetVals;
- }
- const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
- return TrackedGlobals;
- }
- const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
- return MRVFunctionsTracked;
- }
- void markOverdefined(Value *V) {
- if (auto *STy = dyn_cast<StructType>(V->getType()))
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- markOverdefined(getStructValueState(V, i), V);
- else
- markOverdefined(ValueState[V], V);
- }
- bool isStructLatticeConstant(Function *F, StructType *STy);
- Constant *getConstant(const ValueLatticeElement &LV) const;
- SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
- return TrackingIncomingArguments;
- }
- void markArgInFuncSpecialization(Function *F, Argument *A, Constant *C);
- void markFunctionUnreachable(Function *F) {
- for (auto &BB : *F)
- BBExecutable.erase(&BB);
- }
- };
- } // namespace llvm
- bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
- if (!BBExecutable.insert(BB).second)
- return false;
- LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
- BBWorkList.push_back(BB); // Add the block to the work list!
- return true;
- }
- void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
- if (IV.isOverdefined())
- return OverdefinedInstWorkList.push_back(V);
- InstWorkList.push_back(V);
- }
- void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
- LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
- pushToWorkList(IV, V);
- }
- bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
- Constant *C, bool MayIncludeUndef) {
- if (!IV.markConstant(C, MayIncludeUndef))
- return false;
- LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
- pushToWorkList(IV, V);
- return true;
- }
- bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
- if (!IV.markOverdefined())
- return false;
- LLVM_DEBUG(dbgs() << "markOverdefined: ";
- if (auto *F = dyn_cast<Function>(V)) dbgs()
- << "Function '" << F->getName() << "'\n";
- else dbgs() << *V << '\n');
- // Only instructions go on the work list
- pushToWorkList(IV, V);
- return true;
- }
- bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
- assert(It != TrackedMultipleRetVals.end());
- ValueLatticeElement LV = It->second;
- if (!isConstant(LV))
- return false;
- }
- return true;
- }
- Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const {
- if (LV.isConstant())
- return LV.getConstant();
- if (LV.isConstantRange()) {
- const auto &CR = LV.getConstantRange();
- if (CR.getSingleElement())
- return ConstantInt::get(Ctx, *CR.getSingleElement());
- }
- return nullptr;
- }
- void SCCPInstVisitor::markArgInFuncSpecialization(Function *F, Argument *A,
- Constant *C) {
- assert(F->arg_size() == A->getParent()->arg_size() &&
- "Functions should have the same number of arguments");
- // Mark the argument constant in the new function.
- markConstant(A, C);
- // For the remaining arguments in the new function, copy the lattice state
- // over from the old function.
- for (auto I = F->arg_begin(), J = A->getParent()->arg_begin(),
- E = F->arg_end();
- I != E; ++I, ++J)
- if (J != A && ValueState.count(I)) {
- // Note: This previously looked like this:
- // ValueState[J] = ValueState[I];
- // This is incorrect because the DenseMap class may resize the underlying
- // memory when inserting `J`, which will invalidate the reference to `I`.
- // Instead, we make sure `J` exists, then set it to `I` afterwards.
- auto &NewValue = ValueState[J];
- NewValue = ValueState[I];
- pushToWorkList(NewValue, J);
- }
- }
- void SCCPInstVisitor::visitInstruction(Instruction &I) {
- // All the instructions we don't do any special handling for just
- // go to overdefined.
- LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
- markOverdefined(&I);
- }
- bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
- ValueLatticeElement MergeWithV,
- ValueLatticeElement::MergeOptions Opts) {
- if (IV.mergeIn(MergeWithV, Opts)) {
- pushToWorkList(IV, V);
- LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
- << IV << "\n");
- return true;
- }
- return false;
- }
- bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
- if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
- return false; // This edge is already known to be executable!
- if (!markBlockExecutable(Dest)) {
- // If the destination is already executable, we just made an *edge*
- // feasible that wasn't before. Revisit the PHI nodes in the block
- // because they have potentially new operands.
- LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
- << " -> " << Dest->getName() << '\n');
- for (PHINode &PN : Dest->phis())
- visitPHINode(PN);
- }
- return true;
- }
- // getFeasibleSuccessors - Return a vector of booleans to indicate which
- // successors are reachable from a given terminator instruction.
- void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
- SmallVectorImpl<bool> &Succs) {
- Succs.resize(TI.getNumSuccessors());
- if (auto *BI = dyn_cast<BranchInst>(&TI)) {
- if (BI->isUnconditional()) {
- Succs[0] = true;
- return;
- }
- ValueLatticeElement BCValue = getValueState(BI->getCondition());
- ConstantInt *CI = getConstantInt(BCValue);
- if (!CI) {
- // Overdefined condition variables, and branches on unfoldable constant
- // conditions, mean the branch could go either way.
- if (!BCValue.isUnknownOrUndef())
- Succs[0] = Succs[1] = true;
- return;
- }
- // Constant condition variables mean the branch can only go a single way.
- Succs[CI->isZero()] = true;
- return;
- }
- // Unwinding instructions successors are always executable.
- if (TI.isExceptionalTerminator()) {
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
- if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
- if (!SI->getNumCases()) {
- Succs[0] = true;
- return;
- }
- const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
- if (ConstantInt *CI = getConstantInt(SCValue)) {
- Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
- return;
- }
- // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
- // is ready.
- if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
- const ConstantRange &Range = SCValue.getConstantRange();
- for (const auto &Case : SI->cases()) {
- const APInt &CaseValue = Case.getCaseValue()->getValue();
- if (Range.contains(CaseValue))
- Succs[Case.getSuccessorIndex()] = true;
- }
- // TODO: Determine whether default case is reachable.
- Succs[SI->case_default()->getSuccessorIndex()] = true;
- return;
- }
- // Overdefined or unknown condition? All destinations are executable!
- if (!SCValue.isUnknownOrUndef())
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
- // In case of indirect branch and its address is a blockaddress, we mark
- // the target as executable.
- if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
- // Casts are folded by visitCastInst.
- ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
- BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
- if (!Addr) { // Overdefined or unknown condition?
- // All destinations are executable!
- if (!IBRValue.isUnknownOrUndef())
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
- BasicBlock *T = Addr->getBasicBlock();
- assert(Addr->getFunction() == T->getParent() &&
- "Block address of a different function ?");
- for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
- // This is the target.
- if (IBR->getDestination(i) == T) {
- Succs[i] = true;
- return;
- }
- }
- // If we didn't find our destination in the IBR successor list, then we
- // have undefined behavior. Its ok to assume no successor is executable.
- return;
- }
- // In case of callbr, we pessimistically assume that all successors are
- // feasible.
- if (isa<CallBrInst>(&TI)) {
- Succs.assign(TI.getNumSuccessors(), true);
- return;
- }
- LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
- llvm_unreachable("SCCP: Don't know how to handle this terminator!");
- }
- // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
- // block to the 'To' basic block is currently feasible.
- bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
- // Check if we've called markEdgeExecutable on the edge yet. (We could
- // be more aggressive and try to consider edges which haven't been marked
- // yet, but there isn't any need.)
- return KnownFeasibleEdges.count(Edge(From, To));
- }
- // visit Implementations - Something changed in this instruction, either an
- // operand made a transition, or the instruction is newly executable. Change
- // the value type of I to reflect these changes if appropriate. This method
- // makes sure to do the following actions:
- //
- // 1. If a phi node merges two constants in, and has conflicting value coming
- // from different branches, or if the PHI node merges in an overdefined
- // value, then the PHI node becomes overdefined.
- // 2. If a phi node merges only constants in, and they all agree on value, the
- // PHI node becomes a constant value equal to that.
- // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
- // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
- // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
- // 6. If a conditional branch has a value that is constant, make the selected
- // destination executable
- // 7. If a conditional branch has a value that is overdefined, make all
- // successors executable.
- void SCCPInstVisitor::visitPHINode(PHINode &PN) {
- // If this PN returns a struct, just mark the result overdefined.
- // TODO: We could do a lot better than this if code actually uses this.
- if (PN.getType()->isStructTy())
- return (void)markOverdefined(&PN);
- if (getValueState(&PN).isOverdefined())
- return; // Quick exit
- // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
- // and slow us down a lot. Just mark them overdefined.
- if (PN.getNumIncomingValues() > 64)
- return (void)markOverdefined(&PN);
- unsigned NumActiveIncoming = 0;
- // Look at all of the executable operands of the PHI node. If any of them
- // are overdefined, the PHI becomes overdefined as well. If they are all
- // constant, and they agree with each other, the PHI becomes the identical
- // constant. If they are constant and don't agree, the PHI is a constant
- // range. If there are no executable operands, the PHI remains unknown.
- ValueLatticeElement PhiState = getValueState(&PN);
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
- if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
- continue;
- ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
- PhiState.mergeIn(IV);
- NumActiveIncoming++;
- if (PhiState.isOverdefined())
- break;
- }
- // We allow up to 1 range extension per active incoming value and one
- // additional extension. Note that we manually adjust the number of range
- // extensions to match the number of active incoming values. This helps to
- // limit multiple extensions caused by the same incoming value, if other
- // incoming values are equal.
- mergeInValue(&PN, PhiState,
- ValueLatticeElement::MergeOptions().setMaxWidenSteps(
- NumActiveIncoming + 1));
- ValueLatticeElement &PhiStateRef = getValueState(&PN);
- PhiStateRef.setNumRangeExtensions(
- std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
- }
- void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
- if (I.getNumOperands() == 0)
- return; // ret void
- Function *F = I.getParent()->getParent();
- Value *ResultOp = I.getOperand(0);
- // If we are tracking the return value of this function, merge it in.
- if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
- auto TFRVI = TrackedRetVals.find(F);
- if (TFRVI != TrackedRetVals.end()) {
- mergeInValue(TFRVI->second, F, getValueState(ResultOp));
- return;
- }
- }
- // Handle functions that return multiple values.
- if (!TrackedMultipleRetVals.empty()) {
- if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
- if (MRVFunctionsTracked.count(F))
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
- getStructValueState(ResultOp, i));
- }
- }
- void SCCPInstVisitor::visitTerminator(Instruction &TI) {
- SmallVector<bool, 16> SuccFeasible;
- getFeasibleSuccessors(TI, SuccFeasible);
- BasicBlock *BB = TI.getParent();
- // Mark all feasible successors executable.
- for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
- if (SuccFeasible[i])
- markEdgeExecutable(BB, TI.getSuccessor(i));
- }
- void SCCPInstVisitor::visitCastInst(CastInst &I) {
- // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
- // discover a concrete value later.
- if (ValueState[&I].isOverdefined())
- return;
- ValueLatticeElement OpSt = getValueState(I.getOperand(0));
- if (OpSt.isUnknownOrUndef())
- return;
- if (Constant *OpC = getConstant(OpSt)) {
- // Fold the constant as we build.
- Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
- if (isa<UndefValue>(C))
- return;
- // Propagate constant value
- markConstant(&I, C);
- } else if (I.getDestTy()->isIntegerTy()) {
- auto &LV = getValueState(&I);
- ConstantRange OpRange =
- OpSt.isConstantRange()
- ? OpSt.getConstantRange()
- : ConstantRange::getFull(
- I.getOperand(0)->getType()->getScalarSizeInBits());
- Type *DestTy = I.getDestTy();
- // Vectors where all elements have the same known constant range are treated
- // as a single constant range in the lattice. When bitcasting such vectors,
- // there is a mis-match between the width of the lattice value (single
- // constant range) and the original operands (vector). Go to overdefined in
- // that case.
- if (I.getOpcode() == Instruction::BitCast &&
- I.getOperand(0)->getType()->isVectorTy() &&
- OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
- return (void)markOverdefined(&I);
- ConstantRange Res =
- OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
- mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
- } else
- markOverdefined(&I);
- }
- void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
- // If this returns a struct, mark all elements over defined, we don't track
- // structs in structs.
- if (EVI.getType()->isStructTy())
- return (void)markOverdefined(&EVI);
- // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
- // discover a concrete value later.
- if (ValueState[&EVI].isOverdefined())
- return (void)markOverdefined(&EVI);
- // If this is extracting from more than one level of struct, we don't know.
- if (EVI.getNumIndices() != 1)
- return (void)markOverdefined(&EVI);
- Value *AggVal = EVI.getAggregateOperand();
- if (AggVal->getType()->isStructTy()) {
- unsigned i = *EVI.idx_begin();
- ValueLatticeElement EltVal = getStructValueState(AggVal, i);
- mergeInValue(getValueState(&EVI), &EVI, EltVal);
- } else {
- // Otherwise, must be extracting from an array.
- return (void)markOverdefined(&EVI);
- }
- }
- void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
- auto *STy = dyn_cast<StructType>(IVI.getType());
- if (!STy)
- return (void)markOverdefined(&IVI);
- // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
- // discover a concrete value later.
- if (isOverdefined(ValueState[&IVI]))
- return (void)markOverdefined(&IVI);
- // If this has more than one index, we can't handle it, drive all results to
- // undef.
- if (IVI.getNumIndices() != 1)
- return (void)markOverdefined(&IVI);
- Value *Aggr = IVI.getAggregateOperand();
- unsigned Idx = *IVI.idx_begin();
- // Compute the result based on what we're inserting.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- // This passes through all values that aren't the inserted element.
- if (i != Idx) {
- ValueLatticeElement EltVal = getStructValueState(Aggr, i);
- mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
- continue;
- }
- Value *Val = IVI.getInsertedValueOperand();
- if (Val->getType()->isStructTy())
- // We don't track structs in structs.
- markOverdefined(getStructValueState(&IVI, i), &IVI);
- else {
- ValueLatticeElement InVal = getValueState(Val);
- mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
- }
- }
- }
- void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
- // If this select returns a struct, just mark the result overdefined.
- // TODO: We could do a lot better than this if code actually uses this.
- if (I.getType()->isStructTy())
- return (void)markOverdefined(&I);
- // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
- // discover a concrete value later.
- if (ValueState[&I].isOverdefined())
- return (void)markOverdefined(&I);
- ValueLatticeElement CondValue = getValueState(I.getCondition());
- if (CondValue.isUnknownOrUndef())
- return;
- if (ConstantInt *CondCB = getConstantInt(CondValue)) {
- Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
- mergeInValue(&I, getValueState(OpVal));
- return;
- }
- // Otherwise, the condition is overdefined or a constant we can't evaluate.
- // See if we can produce something better than overdefined based on the T/F
- // value.
- ValueLatticeElement TVal = getValueState(I.getTrueValue());
- ValueLatticeElement FVal = getValueState(I.getFalseValue());
- bool Changed = ValueState[&I].mergeIn(TVal);
- Changed |= ValueState[&I].mergeIn(FVal);
- if (Changed)
- pushToWorkListMsg(ValueState[&I], &I);
- }
- // Handle Unary Operators.
- void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
- ValueLatticeElement V0State = getValueState(I.getOperand(0));
- ValueLatticeElement &IV = ValueState[&I];
- // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
- // discover a concrete value later.
- if (isOverdefined(IV))
- return (void)markOverdefined(&I);
- if (isConstant(V0State)) {
- Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));
- // op Y -> undef.
- if (isa<UndefValue>(C))
- return;
- return (void)markConstant(IV, &I, C);
- }
- // If something is undef, wait for it to resolve.
- if (!isOverdefined(V0State))
- return;
- markOverdefined(&I);
- }
- // Handle Binary Operators.
- void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
- ValueLatticeElement V1State = getValueState(I.getOperand(0));
- ValueLatticeElement V2State = getValueState(I.getOperand(1));
- ValueLatticeElement &IV = ValueState[&I];
- if (IV.isOverdefined())
- return;
- // If something is undef, wait for it to resolve.
- if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
- return;
- if (V1State.isOverdefined() && V2State.isOverdefined())
- return (void)markOverdefined(&I);
- // If either of the operands is a constant, try to fold it to a constant.
- // TODO: Use information from notconstant better.
- if ((V1State.isConstant() || V2State.isConstant())) {
- Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
- Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
- Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
- auto *C = dyn_cast_or_null<Constant>(R);
- if (C) {
- // X op Y -> undef.
- if (isa<UndefValue>(C))
- return;
- // Conservatively assume that the result may be based on operands that may
- // be undef. Note that we use mergeInValue to combine the constant with
- // the existing lattice value for I, as different constants might be found
- // after one of the operands go to overdefined, e.g. due to one operand
- // being a special floating value.
- ValueLatticeElement NewV;
- NewV.markConstant(C, /*MayIncludeUndef=*/true);
- return (void)mergeInValue(&I, NewV);
- }
- }
- // Only use ranges for binary operators on integers.
- if (!I.getType()->isIntegerTy())
- return markOverdefined(&I);
- // Try to simplify to a constant range.
- ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
- ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
- if (V1State.isConstantRange())
- A = V1State.getConstantRange();
- if (V2State.isConstantRange())
- B = V2State.getConstantRange();
- ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
- mergeInValue(&I, ValueLatticeElement::getRange(R));
- // TODO: Currently we do not exploit special values that produce something
- // better than overdefined with an overdefined operand for vector or floating
- // point types, like and <4 x i32> overdefined, zeroinitializer.
- }
- // Handle ICmpInst instruction.
- void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
- // Do not cache this lookup, getValueState calls later in the function might
- // invalidate the reference.
- if (isOverdefined(ValueState[&I]))
- return (void)markOverdefined(&I);
- Value *Op1 = I.getOperand(0);
- Value *Op2 = I.getOperand(1);
- // For parameters, use ParamState which includes constant range info if
- // available.
- auto V1State = getValueState(Op1);
- auto V2State = getValueState(Op2);
- Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
- if (C) {
- if (isa<UndefValue>(C))
- return;
- ValueLatticeElement CV;
- CV.markConstant(C);
- mergeInValue(&I, CV);
- return;
- }
- // If operands are still unknown, wait for it to resolve.
- if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
- !isConstant(ValueState[&I]))
- return;
- markOverdefined(&I);
- }
- // Handle getelementptr instructions. If all operands are constants then we
- // can turn this into a getelementptr ConstantExpr.
- void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
- if (isOverdefined(ValueState[&I]))
- return (void)markOverdefined(&I);
- SmallVector<Constant *, 8> Operands;
- Operands.reserve(I.getNumOperands());
- for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
- ValueLatticeElement State = getValueState(I.getOperand(i));
- if (State.isUnknownOrUndef())
- return; // Operands are not resolved yet.
- if (isOverdefined(State))
- return (void)markOverdefined(&I);
- if (Constant *C = getConstant(State)) {
- Operands.push_back(C);
- continue;
- }
- return (void)markOverdefined(&I);
- }
- Constant *Ptr = Operands[0];
- auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
- Constant *C =
- ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
- if (isa<UndefValue>(C))
- return;
- markConstant(&I, C);
- }
- void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
- // If this store is of a struct, ignore it.
- if (SI.getOperand(0)->getType()->isStructTy())
- return;
- if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
- return;
- GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
- auto I = TrackedGlobals.find(GV);
- if (I == TrackedGlobals.end())
- return;
- // Get the value we are storing into the global, then merge it.
- mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
- ValueLatticeElement::MergeOptions().setCheckWiden(false));
- if (I->second.isOverdefined())
- TrackedGlobals.erase(I); // No need to keep tracking this!
- }
- static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
- if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
- if (I->getType()->isIntegerTy())
- return ValueLatticeElement::getRange(
- getConstantRangeFromMetadata(*Ranges));
- if (I->hasMetadata(LLVMContext::MD_nonnull))
- return ValueLatticeElement::getNot(
- ConstantPointerNull::get(cast<PointerType>(I->getType())));
- return ValueLatticeElement::getOverdefined();
- }
- // Handle load instructions. If the operand is a constant pointer to a constant
- // global, we can replace the load with the loaded constant value!
- void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
- // If this load is of a struct or the load is volatile, just mark the result
- // as overdefined.
- if (I.getType()->isStructTy() || I.isVolatile())
- return (void)markOverdefined(&I);
- // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
- // discover a concrete value later.
- if (ValueState[&I].isOverdefined())
- return (void)markOverdefined(&I);
- ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
- if (PtrVal.isUnknownOrUndef())
- return; // The pointer is not resolved yet!
- ValueLatticeElement &IV = ValueState[&I];
- if (isConstant(PtrVal)) {
- Constant *Ptr = getConstant(PtrVal);
- // load null is undefined.
- if (isa<ConstantPointerNull>(Ptr)) {
- if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
- return (void)markOverdefined(IV, &I);
- else
- return;
- }
- // Transform load (constant global) into the value loaded.
- if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
- if (!TrackedGlobals.empty()) {
- // If we are tracking this global, merge in the known value for it.
- auto It = TrackedGlobals.find(GV);
- if (It != TrackedGlobals.end()) {
- mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
- return;
- }
- }
- }
- // Transform load from a constant into a constant if possible.
- if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
- if (isa<UndefValue>(C))
- return;
- return (void)markConstant(IV, &I, C);
- }
- }
- // Fall back to metadata.
- mergeInValue(&I, getValueFromMetadata(&I));
- }
- void SCCPInstVisitor::visitCallBase(CallBase &CB) {
- handleCallResult(CB);
- handleCallArguments(CB);
- }
- void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
- Function *F = CB.getCalledFunction();
- // Void return and not tracking callee, just bail.
- if (CB.getType()->isVoidTy())
- return;
- // Always mark struct return as overdefined.
- if (CB.getType()->isStructTy())
- return (void)markOverdefined(&CB);
- // Otherwise, if we have a single return value case, and if the function is
- // a declaration, maybe we can constant fold it.
- if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
- SmallVector<Constant *, 8> Operands;
- for (const Use &A : CB.args()) {
- if (A.get()->getType()->isStructTy())
- return markOverdefined(&CB); // Can't handle struct args.
- ValueLatticeElement State = getValueState(A);
- if (State.isUnknownOrUndef())
- return; // Operands are not resolved yet.
- if (isOverdefined(State))
- return (void)markOverdefined(&CB);
- assert(isConstant(State) && "Unknown state!");
- Operands.push_back(getConstant(State));
- }
- if (isOverdefined(getValueState(&CB)))
- return (void)markOverdefined(&CB);
- // If we can constant fold this, mark the result of the call as a
- // constant.
- if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
- // call -> undef.
- if (isa<UndefValue>(C))
- return;
- return (void)markConstant(&CB, C);
- }
- }
- // Fall back to metadata.
- mergeInValue(&CB, getValueFromMetadata(&CB));
- }
- void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
- Function *F = CB.getCalledFunction();
- // If this is a local function that doesn't have its address taken, mark its
- // entry block executable and merge in the actual arguments to the call into
- // the formal arguments of the function.
- if (!TrackingIncomingArguments.empty() &&
- TrackingIncomingArguments.count(F)) {
- markBlockExecutable(&F->front());
- // Propagate information from this call site into the callee.
- auto CAI = CB.arg_begin();
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
- ++AI, ++CAI) {
- // If this argument is byval, and if the function is not readonly, there
- // will be an implicit copy formed of the input aggregate.
- if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
- markOverdefined(&*AI);
- continue;
- }
- if (auto *STy = dyn_cast<StructType>(AI->getType())) {
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- ValueLatticeElement CallArg = getStructValueState(*CAI, i);
- mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
- getMaxWidenStepsOpts());
- }
- } else
- mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
- }
- }
- }
- void SCCPInstVisitor::handleCallResult(CallBase &CB) {
- Function *F = CB.getCalledFunction();
- if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
- if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
- if (ValueState[&CB].isOverdefined())
- return;
- Value *CopyOf = CB.getOperand(0);
- ValueLatticeElement CopyOfVal = getValueState(CopyOf);
- const auto *PI = getPredicateInfoFor(&CB);
- assert(PI && "Missing predicate info for ssa.copy");
- const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
- if (!Constraint) {
- mergeInValue(ValueState[&CB], &CB, CopyOfVal);
- return;
- }
- CmpInst::Predicate Pred = Constraint->Predicate;
- Value *OtherOp = Constraint->OtherOp;
- // Wait until OtherOp is resolved.
- if (getValueState(OtherOp).isUnknown()) {
- addAdditionalUser(OtherOp, &CB);
- return;
- }
- // TODO: Actually filp MayIncludeUndef for the created range to false,
- // once most places in the optimizer respect the branches on
- // undef/poison are UB rule. The reason why the new range cannot be
- // undef is as follows below:
- // The new range is based on a branch condition. That guarantees that
- // neither of the compare operands can be undef in the branch targets,
- // unless we have conditions that are always true/false (e.g. icmp ule
- // i32, %a, i32_max). For the latter overdefined/empty range will be
- // inferred, but the branch will get folded accordingly anyways.
- bool MayIncludeUndef = !isa<PredicateAssume>(PI);
- ValueLatticeElement CondVal = getValueState(OtherOp);
- ValueLatticeElement &IV = ValueState[&CB];
- if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
- auto ImposedCR =
- ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
- // Get the range imposed by the condition.
- if (CondVal.isConstantRange())
- ImposedCR = ConstantRange::makeAllowedICmpRegion(
- Pred, CondVal.getConstantRange());
- // Combine range info for the original value with the new range from the
- // condition.
- auto CopyOfCR = CopyOfVal.isConstantRange()
- ? CopyOfVal.getConstantRange()
- : ConstantRange::getFull(
- DL.getTypeSizeInBits(CopyOf->getType()));
- auto NewCR = ImposedCR.intersectWith(CopyOfCR);
- // If the existing information is != x, do not use the information from
- // a chained predicate, as the != x information is more likely to be
- // helpful in practice.
- if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
- NewCR = CopyOfCR;
- addAdditionalUser(OtherOp, &CB);
- mergeInValue(IV, &CB,
- ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
- return;
- } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
- // For non-integer values or integer constant expressions, only
- // propagate equal constants.
- addAdditionalUser(OtherOp, &CB);
- mergeInValue(IV, &CB, CondVal);
- return;
- } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
- !MayIncludeUndef) {
- // Propagate inequalities.
- addAdditionalUser(OtherOp, &CB);
- mergeInValue(IV, &CB,
- ValueLatticeElement::getNot(CondVal.getConstant()));
- return;
- }
- return (void)mergeInValue(IV, &CB, CopyOfVal);
- }
- if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
- // Compute result range for intrinsics supported by ConstantRange.
- // Do this even if we don't know a range for all operands, as we may
- // still know something about the result range, e.g. of abs(x).
- SmallVector<ConstantRange, 2> OpRanges;
- for (Value *Op : II->args()) {
- const ValueLatticeElement &State = getValueState(Op);
- if (State.isConstantRange())
- OpRanges.push_back(State.getConstantRange());
- else
- OpRanges.push_back(
- ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
- }
- ConstantRange Result =
- ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
- return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
- }
- }
- // The common case is that we aren't tracking the callee, either because we
- // are not doing interprocedural analysis or the callee is indirect, or is
- // external. Handle these cases first.
- if (!F || F->isDeclaration())
- return handleCallOverdefined(CB);
- // If this is a single/zero retval case, see if we're tracking the function.
- if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
- if (!MRVFunctionsTracked.count(F))
- return handleCallOverdefined(CB); // Not tracking this callee.
- // If we are tracking this callee, propagate the result of the function
- // into this call site.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
- mergeInValue(getStructValueState(&CB, i), &CB,
- TrackedMultipleRetVals[std::make_pair(F, i)],
- getMaxWidenStepsOpts());
- } else {
- auto TFRVI = TrackedRetVals.find(F);
- if (TFRVI == TrackedRetVals.end())
- return handleCallOverdefined(CB); // Not tracking this callee.
- // If so, propagate the return value of the callee into this call result.
- mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
- }
- }
- void SCCPInstVisitor::solve() {
- // Process the work lists until they are empty!
- while (!BBWorkList.empty() || !InstWorkList.empty() ||
- !OverdefinedInstWorkList.empty()) {
- // Process the overdefined instruction's work list first, which drives other
- // things to overdefined more quickly.
- while (!OverdefinedInstWorkList.empty()) {
- Value *I = OverdefinedInstWorkList.pop_back_val();
- LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
- // "I" got into the work list because it either made the transition from
- // bottom to constant, or to overdefined.
- //
- // Anything on this worklist that is overdefined need not be visited
- // since all of its users will have already been marked as overdefined
- // Update all of the users of this instruction's value.
- //
- markUsersAsChanged(I);
- }
- // Process the instruction work list.
- while (!InstWorkList.empty()) {
- Value *I = InstWorkList.pop_back_val();
- LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
- // "I" got into the work list because it made the transition from undef to
- // constant.
- //
- // Anything on this worklist that is overdefined need not be visited
- // since all of its users will have already been marked as overdefined.
- // Update all of the users of this instruction's value.
- //
- if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
- markUsersAsChanged(I);
- }
- // Process the basic block work list.
- while (!BBWorkList.empty()) {
- BasicBlock *BB = BBWorkList.pop_back_val();
- LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
- // Notify all instructions in this basic block that they are newly
- // executable.
- visit(BB);
- }
- }
- }
- /// resolvedUndefsIn - While solving the dataflow for a function, we assume
- /// that branches on undef values cannot reach any of their successors.
- /// However, this is not a safe assumption. After we solve dataflow, this
- /// method should be use to handle this. If this returns true, the solver
- /// should be rerun.
- ///
- /// This method handles this by finding an unresolved branch and marking it one
- /// of the edges from the block as being feasible, even though the condition
- /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
- /// CFG and only slightly pessimizes the analysis results (by marking one,
- /// potentially infeasible, edge feasible). This cannot usefully modify the
- /// constraints on the condition of the branch, as that would impact other users
- /// of the value.
- ///
- /// This scan also checks for values that use undefs. It conservatively marks
- /// them as overdefined.
- bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
- bool MadeChange = false;
- for (BasicBlock &BB : F) {
- if (!BBExecutable.count(&BB))
- continue;
- for (Instruction &I : BB) {
- // Look for instructions which produce undef values.
- if (I.getType()->isVoidTy())
- continue;
- if (auto *STy = dyn_cast<StructType>(I.getType())) {
- // Only a few things that can be structs matter for undef.
- // Tracked calls must never be marked overdefined in resolvedUndefsIn.
- if (auto *CB = dyn_cast<CallBase>(&I))
- if (Function *F = CB->getCalledFunction())
- if (MRVFunctionsTracked.count(F))
- continue;
- // extractvalue and insertvalue don't need to be marked; they are
- // tracked as precisely as their operands.
- if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
- continue;
- // Send the results of everything else to overdefined. We could be
- // more precise than this but it isn't worth bothering.
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- ValueLatticeElement &LV = getStructValueState(&I, i);
- if (LV.isUnknownOrUndef()) {
- markOverdefined(LV, &I);
- MadeChange = true;
- }
- }
- continue;
- }
- ValueLatticeElement &LV = getValueState(&I);
- if (!LV.isUnknownOrUndef())
- continue;
- // There are two reasons a call can have an undef result
- // 1. It could be tracked.
- // 2. It could be constant-foldable.
- // Because of the way we solve return values, tracked calls must
- // never be marked overdefined in resolvedUndefsIn.
- if (auto *CB = dyn_cast<CallBase>(&I))
- if (Function *F = CB->getCalledFunction())
- if (TrackedRetVals.count(F))
- continue;
- if (isa<LoadInst>(I)) {
- // A load here means one of two things: a load of undef from a global,
- // a load from an unknown pointer. Either way, having it return undef
- // is okay.
- continue;
- }
- markOverdefined(&I);
- MadeChange = true;
- }
- // Check to see if we have a branch or switch on an undefined value. If so
- // we force the branch to go one way or the other to make the successor
- // values live. It doesn't really matter which way we force it.
- Instruction *TI = BB.getTerminator();
- if (auto *BI = dyn_cast<BranchInst>(TI)) {
- if (!BI->isConditional())
- continue;
- if (!getValueState(BI->getCondition()).isUnknownOrUndef())
- continue;
- // If the input to SCCP is actually branch on undef, fix the undef to
- // false.
- if (isa<UndefValue>(BI->getCondition())) {
- BI->setCondition(ConstantInt::getFalse(BI->getContext()));
- markEdgeExecutable(&BB, TI->getSuccessor(1));
- MadeChange = true;
- continue;
- }
- // Otherwise, it is a branch on a symbolic value which is currently
- // considered to be undef. Make sure some edge is executable, so a
- // branch on "undef" always flows somewhere.
- // FIXME: Distinguish between dead code and an LLVM "undef" value.
- BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
- if (markEdgeExecutable(&BB, DefaultSuccessor))
- MadeChange = true;
- continue;
- }
- if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
- // Indirect branch with no successor ?. Its ok to assume it branches
- // to no target.
- if (IBR->getNumSuccessors() < 1)
- continue;
- if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
- continue;
- // If the input to SCCP is actually branch on undef, fix the undef to
- // the first successor of the indirect branch.
- if (isa<UndefValue>(IBR->getAddress())) {
- IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
- markEdgeExecutable(&BB, IBR->getSuccessor(0));
- MadeChange = true;
- continue;
- }
- // Otherwise, it is a branch on a symbolic value which is currently
- // considered to be undef. Make sure some edge is executable, so a
- // branch on "undef" always flows somewhere.
- // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
- // we can assume the branch has undefined behavior instead.
- BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
- if (markEdgeExecutable(&BB, DefaultSuccessor))
- MadeChange = true;
- continue;
- }
- if (auto *SI = dyn_cast<SwitchInst>(TI)) {
- if (!SI->getNumCases() ||
- !getValueState(SI->getCondition()).isUnknownOrUndef())
- continue;
- // If the input to SCCP is actually switch on undef, fix the undef to
- // the first constant.
- if (isa<UndefValue>(SI->getCondition())) {
- SI->setCondition(SI->case_begin()->getCaseValue());
- markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
- MadeChange = true;
- continue;
- }
- // Otherwise, it is a branch on a symbolic value which is currently
- // considered to be undef. Make sure some edge is executable, so a
- // branch on "undef" always flows somewhere.
- // FIXME: Distinguish between dead code and an LLVM "undef" value.
- BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
- if (markEdgeExecutable(&BB, DefaultSuccessor))
- MadeChange = true;
- continue;
- }
- }
- return MadeChange;
- }
- //===----------------------------------------------------------------------===//
- //
- // SCCPSolver implementations
- //
- SCCPSolver::SCCPSolver(
- const DataLayout &DL,
- std::function<const TargetLibraryInfo &(Function &)> GetTLI,
- LLVMContext &Ctx)
- : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
- SCCPSolver::~SCCPSolver() {}
- void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) {
- return Visitor->addAnalysis(F, std::move(A));
- }
- bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
- return Visitor->markBlockExecutable(BB);
- }
- const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
- return Visitor->getPredicateInfoFor(I);
- }
- DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); }
- void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
- Visitor->trackValueOfGlobalVariable(GV);
- }
- void SCCPSolver::addTrackedFunction(Function *F) {
- Visitor->addTrackedFunction(F);
- }
- void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
- Visitor->addToMustPreserveReturnsInFunctions(F);
- }
- bool SCCPSolver::mustPreserveReturn(Function *F) {
- return Visitor->mustPreserveReturn(F);
- }
- void SCCPSolver::addArgumentTrackedFunction(Function *F) {
- Visitor->addArgumentTrackedFunction(F);
- }
- bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
- return Visitor->isArgumentTrackedFunction(F);
- }
- void SCCPSolver::solve() { Visitor->solve(); }
- bool SCCPSolver::resolvedUndefsIn(Function &F) {
- return Visitor->resolvedUndefsIn(F);
- }
- bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
- return Visitor->isBlockExecutable(BB);
- }
- bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
- return Visitor->isEdgeFeasible(From, To);
- }
- std::vector<ValueLatticeElement>
- SCCPSolver::getStructLatticeValueFor(Value *V) const {
- return Visitor->getStructLatticeValueFor(V);
- }
- void SCCPSolver::removeLatticeValueFor(Value *V) {
- return Visitor->removeLatticeValueFor(V);
- }
- const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
- return Visitor->getLatticeValueFor(V);
- }
- const MapVector<Function *, ValueLatticeElement> &
- SCCPSolver::getTrackedRetVals() {
- return Visitor->getTrackedRetVals();
- }
- const DenseMap<GlobalVariable *, ValueLatticeElement> &
- SCCPSolver::getTrackedGlobals() {
- return Visitor->getTrackedGlobals();
- }
- const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
- return Visitor->getMRVFunctionsTracked();
- }
- void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
- bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
- return Visitor->isStructLatticeConstant(F, STy);
- }
- Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const {
- return Visitor->getConstant(LV);
- }
- SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
- return Visitor->getArgumentTrackedFunctions();
- }
- void SCCPSolver::markArgInFuncSpecialization(Function *F, Argument *A,
- Constant *C) {
- Visitor->markArgInFuncSpecialization(F, A, C);
- }
- void SCCPSolver::markFunctionUnreachable(Function *F) {
- Visitor->markFunctionUnreachable(F);
- }
- void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
- void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
|