12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022 |
- //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file promotes memory references to be register references. It promotes
- // alloca instructions which only have loads and stores as uses. An alloca is
- // transformed by using iterated dominator frontiers to place PHI nodes, then
- // traversing the function in depth-first order to rewrite loads and stores as
- // appropriate.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/TinyPtrVector.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/IteratedDominanceFrontier.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/PromoteMemToReg.h"
- #include <algorithm>
- #include <cassert>
- #include <iterator>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "mem2reg"
- STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
- STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
- STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
- STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
- bool llvm::isAllocaPromotable(const AllocaInst *AI) {
- // Only allow direct and non-volatile loads and stores...
- for (const User *U : AI->users()) {
- if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
- // Note that atomic loads can be transformed; atomic semantics do
- // not have any meaning for a local alloca.
- if (LI->isVolatile())
- return false;
- } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
- if (SI->getValueOperand() == AI ||
- SI->getValueOperand()->getType() != AI->getAllocatedType())
- return false; // Don't allow a store OF the AI, only INTO the AI.
- // Note that atomic stores can be transformed; atomic semantics do
- // not have any meaning for a local alloca.
- if (SI->isVolatile())
- return false;
- } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
- if (!II->isLifetimeStartOrEnd() && !II->isDroppable())
- return false;
- } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
- if (!onlyUsedByLifetimeMarkersOrDroppableInsts(BCI))
- return false;
- } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
- if (!GEPI->hasAllZeroIndices())
- return false;
- if (!onlyUsedByLifetimeMarkersOrDroppableInsts(GEPI))
- return false;
- } else if (const AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(U)) {
- if (!onlyUsedByLifetimeMarkers(ASCI))
- return false;
- } else {
- return false;
- }
- }
- return true;
- }
- namespace {
- struct AllocaInfo {
- using DbgUserVec = SmallVector<DbgVariableIntrinsic *, 1>;
- SmallVector<BasicBlock *, 32> DefiningBlocks;
- SmallVector<BasicBlock *, 32> UsingBlocks;
- StoreInst *OnlyStore;
- BasicBlock *OnlyBlock;
- bool OnlyUsedInOneBlock;
- DbgUserVec DbgUsers;
- void clear() {
- DefiningBlocks.clear();
- UsingBlocks.clear();
- OnlyStore = nullptr;
- OnlyBlock = nullptr;
- OnlyUsedInOneBlock = true;
- DbgUsers.clear();
- }
- /// Scan the uses of the specified alloca, filling in the AllocaInfo used
- /// by the rest of the pass to reason about the uses of this alloca.
- void AnalyzeAlloca(AllocaInst *AI) {
- clear();
- // As we scan the uses of the alloca instruction, keep track of stores,
- // and decide whether all of the loads and stores to the alloca are within
- // the same basic block.
- for (User *U : AI->users()) {
- Instruction *User = cast<Instruction>(U);
- if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
- // Remember the basic blocks which define new values for the alloca
- DefiningBlocks.push_back(SI->getParent());
- OnlyStore = SI;
- } else {
- LoadInst *LI = cast<LoadInst>(User);
- // Otherwise it must be a load instruction, keep track of variable
- // reads.
- UsingBlocks.push_back(LI->getParent());
- }
- if (OnlyUsedInOneBlock) {
- if (!OnlyBlock)
- OnlyBlock = User->getParent();
- else if (OnlyBlock != User->getParent())
- OnlyUsedInOneBlock = false;
- }
- }
- findDbgUsers(DbgUsers, AI);
- }
- };
- /// Data package used by RenamePass().
- struct RenamePassData {
- using ValVector = std::vector<Value *>;
- using LocationVector = std::vector<DebugLoc>;
- RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
- : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
- BasicBlock *BB;
- BasicBlock *Pred;
- ValVector Values;
- LocationVector Locations;
- };
- /// This assigns and keeps a per-bb relative ordering of load/store
- /// instructions in the block that directly load or store an alloca.
- ///
- /// This functionality is important because it avoids scanning large basic
- /// blocks multiple times when promoting many allocas in the same block.
- class LargeBlockInfo {
- /// For each instruction that we track, keep the index of the
- /// instruction.
- ///
- /// The index starts out as the number of the instruction from the start of
- /// the block.
- DenseMap<const Instruction *, unsigned> InstNumbers;
- public:
- /// This code only looks at accesses to allocas.
- static bool isInterestingInstruction(const Instruction *I) {
- return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
- (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
- }
- /// Get or calculate the index of the specified instruction.
- unsigned getInstructionIndex(const Instruction *I) {
- assert(isInterestingInstruction(I) &&
- "Not a load/store to/from an alloca?");
- // If we already have this instruction number, return it.
- DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
- if (It != InstNumbers.end())
- return It->second;
- // Scan the whole block to get the instruction. This accumulates
- // information for every interesting instruction in the block, in order to
- // avoid gratuitus rescans.
- const BasicBlock *BB = I->getParent();
- unsigned InstNo = 0;
- for (const Instruction &BBI : *BB)
- if (isInterestingInstruction(&BBI))
- InstNumbers[&BBI] = InstNo++;
- It = InstNumbers.find(I);
- assert(It != InstNumbers.end() && "Didn't insert instruction?");
- return It->second;
- }
- void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
- void clear() { InstNumbers.clear(); }
- };
- struct PromoteMem2Reg {
- /// The alloca instructions being promoted.
- std::vector<AllocaInst *> Allocas;
- DominatorTree &DT;
- DIBuilder DIB;
- /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
- AssumptionCache *AC;
- const SimplifyQuery SQ;
- /// Reverse mapping of Allocas.
- DenseMap<AllocaInst *, unsigned> AllocaLookup;
- /// The PhiNodes we're adding.
- ///
- /// That map is used to simplify some Phi nodes as we iterate over it, so
- /// it should have deterministic iterators. We could use a MapVector, but
- /// since we already maintain a map from BasicBlock* to a stable numbering
- /// (BBNumbers), the DenseMap is more efficient (also supports removal).
- DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
- /// For each PHI node, keep track of which entry in Allocas it corresponds
- /// to.
- DenseMap<PHINode *, unsigned> PhiToAllocaMap;
- /// For each alloca, we keep track of the dbg.declare intrinsic that
- /// describes it, if any, so that we can convert it to a dbg.value
- /// intrinsic if the alloca gets promoted.
- SmallVector<AllocaInfo::DbgUserVec, 8> AllocaDbgUsers;
- /// The set of basic blocks the renamer has already visited.
- SmallPtrSet<BasicBlock *, 16> Visited;
- /// Contains a stable numbering of basic blocks to avoid non-determinstic
- /// behavior.
- DenseMap<BasicBlock *, unsigned> BBNumbers;
- /// Lazily compute the number of predecessors a block has.
- DenseMap<const BasicBlock *, unsigned> BBNumPreds;
- public:
- PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
- AssumptionCache *AC)
- : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
- DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
- AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
- nullptr, &DT, AC) {}
- void run();
- private:
- void RemoveFromAllocasList(unsigned &AllocaIdx) {
- Allocas[AllocaIdx] = Allocas.back();
- Allocas.pop_back();
- --AllocaIdx;
- }
- unsigned getNumPreds(const BasicBlock *BB) {
- unsigned &NP = BBNumPreds[BB];
- if (NP == 0)
- NP = pred_size(BB) + 1;
- return NP - 1;
- }
- void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
- const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
- SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
- void RenamePass(BasicBlock *BB, BasicBlock *Pred,
- RenamePassData::ValVector &IncVals,
- RenamePassData::LocationVector &IncLocs,
- std::vector<RenamePassData> &Worklist);
- bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
- };
- } // end anonymous namespace
- /// Given a LoadInst LI this adds assume(LI != null) after it.
- static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
- Function *AssumeIntrinsic =
- Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
- ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
- Constant::getNullValue(LI->getType()));
- LoadNotNull->insertAfter(LI);
- CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
- CI->insertAfter(LoadNotNull);
- AC->registerAssumption(cast<AssumeInst>(CI));
- }
- static void removeIntrinsicUsers(AllocaInst *AI) {
- // Knowing that this alloca is promotable, we know that it's safe to kill all
- // instructions except for load and store.
- for (Use &U : llvm::make_early_inc_range(AI->uses())) {
- Instruction *I = cast<Instruction>(U.getUser());
- if (isa<LoadInst>(I) || isa<StoreInst>(I))
- continue;
- // Drop the use of AI in droppable instructions.
- if (I->isDroppable()) {
- I->dropDroppableUse(U);
- continue;
- }
- if (!I->getType()->isVoidTy()) {
- // The only users of this bitcast/GEP instruction are lifetime intrinsics.
- // Follow the use/def chain to erase them now instead of leaving it for
- // dead code elimination later.
- for (Use &UU : llvm::make_early_inc_range(I->uses())) {
- Instruction *Inst = cast<Instruction>(UU.getUser());
- // Drop the use of I in droppable instructions.
- if (Inst->isDroppable()) {
- Inst->dropDroppableUse(UU);
- continue;
- }
- Inst->eraseFromParent();
- }
- }
- I->eraseFromParent();
- }
- }
- /// Rewrite as many loads as possible given a single store.
- ///
- /// When there is only a single store, we can use the domtree to trivially
- /// replace all of the dominated loads with the stored value. Do so, and return
- /// true if this has successfully promoted the alloca entirely. If this returns
- /// false there were some loads which were not dominated by the single store
- /// and thus must be phi-ed with undef. We fall back to the standard alloca
- /// promotion algorithm in that case.
- static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
- LargeBlockInfo &LBI, const DataLayout &DL,
- DominatorTree &DT, AssumptionCache *AC) {
- StoreInst *OnlyStore = Info.OnlyStore;
- bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
- BasicBlock *StoreBB = OnlyStore->getParent();
- int StoreIndex = -1;
- // Clear out UsingBlocks. We will reconstruct it here if needed.
- Info.UsingBlocks.clear();
- for (User *U : make_early_inc_range(AI->users())) {
- Instruction *UserInst = cast<Instruction>(U);
- if (UserInst == OnlyStore)
- continue;
- LoadInst *LI = cast<LoadInst>(UserInst);
- // Okay, if we have a load from the alloca, we want to replace it with the
- // only value stored to the alloca. We can do this if the value is
- // dominated by the store. If not, we use the rest of the mem2reg machinery
- // to insert the phi nodes as needed.
- if (!StoringGlobalVal) { // Non-instructions are always dominated.
- if (LI->getParent() == StoreBB) {
- // If we have a use that is in the same block as the store, compare the
- // indices of the two instructions to see which one came first. If the
- // load came before the store, we can't handle it.
- if (StoreIndex == -1)
- StoreIndex = LBI.getInstructionIndex(OnlyStore);
- if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
- // Can't handle this load, bail out.
- Info.UsingBlocks.push_back(StoreBB);
- continue;
- }
- } else if (!DT.dominates(StoreBB, LI->getParent())) {
- // If the load and store are in different blocks, use BB dominance to
- // check their relationships. If the store doesn't dom the use, bail
- // out.
- Info.UsingBlocks.push_back(LI->getParent());
- continue;
- }
- }
- // Otherwise, we *can* safely rewrite this load.
- Value *ReplVal = OnlyStore->getOperand(0);
- // If the replacement value is the load, this must occur in unreachable
- // code.
- if (ReplVal == LI)
- ReplVal = PoisonValue::get(LI->getType());
- // If the load was marked as nonnull we don't want to lose
- // that information when we erase this Load. So we preserve
- // it with an assume.
- if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
- !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
- addAssumeNonNull(AC, LI);
- LI->replaceAllUsesWith(ReplVal);
- LI->eraseFromParent();
- LBI.deleteValue(LI);
- }
- // Finally, after the scan, check to see if the store is all that is left.
- if (!Info.UsingBlocks.empty())
- return false; // If not, we'll have to fall back for the remainder.
- // Record debuginfo for the store and remove the declaration's
- // debuginfo.
- for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
- if (DII->isAddressOfVariable()) {
- DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
- ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
- DII->eraseFromParent();
- } else if (DII->getExpression()->startsWithDeref()) {
- DII->eraseFromParent();
- }
- }
- // Remove the (now dead) store and alloca.
- Info.OnlyStore->eraseFromParent();
- LBI.deleteValue(Info.OnlyStore);
- AI->eraseFromParent();
- return true;
- }
- /// Many allocas are only used within a single basic block. If this is the
- /// case, avoid traversing the CFG and inserting a lot of potentially useless
- /// PHI nodes by just performing a single linear pass over the basic block
- /// using the Alloca.
- ///
- /// If we cannot promote this alloca (because it is read before it is written),
- /// return false. This is necessary in cases where, due to control flow, the
- /// alloca is undefined only on some control flow paths. e.g. code like
- /// this is correct in LLVM IR:
- /// // A is an alloca with no stores so far
- /// for (...) {
- /// int t = *A;
- /// if (!first_iteration)
- /// use(t);
- /// *A = 42;
- /// }
- static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
- LargeBlockInfo &LBI,
- const DataLayout &DL,
- DominatorTree &DT,
- AssumptionCache *AC) {
- // The trickiest case to handle is when we have large blocks. Because of this,
- // this code is optimized assuming that large blocks happen. This does not
- // significantly pessimize the small block case. This uses LargeBlockInfo to
- // make it efficient to get the index of various operations in the block.
- // Walk the use-def list of the alloca, getting the locations of all stores.
- using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
- StoresByIndexTy StoresByIndex;
- for (User *U : AI->users())
- if (StoreInst *SI = dyn_cast<StoreInst>(U))
- StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
- // Sort the stores by their index, making it efficient to do a lookup with a
- // binary search.
- llvm::sort(StoresByIndex, less_first());
- // Walk all of the loads from this alloca, replacing them with the nearest
- // store above them, if any.
- for (User *U : make_early_inc_range(AI->users())) {
- LoadInst *LI = dyn_cast<LoadInst>(U);
- if (!LI)
- continue;
- unsigned LoadIdx = LBI.getInstructionIndex(LI);
- // Find the nearest store that has a lower index than this load.
- StoresByIndexTy::iterator I = llvm::lower_bound(
- StoresByIndex,
- std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
- less_first());
- if (I == StoresByIndex.begin()) {
- if (StoresByIndex.empty())
- // If there are no stores, the load takes the undef value.
- LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
- else
- // There is no store before this load, bail out (load may be affected
- // by the following stores - see main comment).
- return false;
- } else {
- // Otherwise, there was a store before this load, the load takes its value.
- // Note, if the load was marked as nonnull we don't want to lose that
- // information when we erase it. So we preserve it with an assume.
- Value *ReplVal = std::prev(I)->second->getOperand(0);
- if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
- !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
- addAssumeNonNull(AC, LI);
- // If the replacement value is the load, this must occur in unreachable
- // code.
- if (ReplVal == LI)
- ReplVal = PoisonValue::get(LI->getType());
- LI->replaceAllUsesWith(ReplVal);
- }
- LI->eraseFromParent();
- LBI.deleteValue(LI);
- }
- // Remove the (now dead) stores and alloca.
- while (!AI->use_empty()) {
- StoreInst *SI = cast<StoreInst>(AI->user_back());
- // Record debuginfo for the store before removing it.
- for (DbgVariableIntrinsic *DII : Info.DbgUsers) {
- if (DII->isAddressOfVariable()) {
- DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
- ConvertDebugDeclareToDebugValue(DII, SI, DIB);
- }
- }
- SI->eraseFromParent();
- LBI.deleteValue(SI);
- }
- AI->eraseFromParent();
- // The alloca's debuginfo can be removed as well.
- for (DbgVariableIntrinsic *DII : Info.DbgUsers)
- if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
- DII->eraseFromParent();
- ++NumLocalPromoted;
- return true;
- }
- void PromoteMem2Reg::run() {
- Function &F = *DT.getRoot()->getParent();
- AllocaDbgUsers.resize(Allocas.size());
- AllocaInfo Info;
- LargeBlockInfo LBI;
- ForwardIDFCalculator IDF(DT);
- for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
- AllocaInst *AI = Allocas[AllocaNum];
- assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
- assert(AI->getParent()->getParent() == &F &&
- "All allocas should be in the same function, which is same as DF!");
- removeIntrinsicUsers(AI);
- if (AI->use_empty()) {
- // If there are no uses of the alloca, just delete it now.
- AI->eraseFromParent();
- // Remove the alloca from the Allocas list, since it has been processed
- RemoveFromAllocasList(AllocaNum);
- ++NumDeadAlloca;
- continue;
- }
- // Calculate the set of read and write-locations for each alloca. This is
- // analogous to finding the 'uses' and 'definitions' of each variable.
- Info.AnalyzeAlloca(AI);
- // If there is only a single store to this value, replace any loads of
- // it that are directly dominated by the definition with the value stored.
- if (Info.DefiningBlocks.size() == 1) {
- if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
- // The alloca has been processed, move on.
- RemoveFromAllocasList(AllocaNum);
- ++NumSingleStore;
- continue;
- }
- }
- // If the alloca is only read and written in one basic block, just perform a
- // linear sweep over the block to eliminate it.
- if (Info.OnlyUsedInOneBlock &&
- promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
- // The alloca has been processed, move on.
- RemoveFromAllocasList(AllocaNum);
- continue;
- }
- // If we haven't computed a numbering for the BB's in the function, do so
- // now.
- if (BBNumbers.empty()) {
- unsigned ID = 0;
- for (auto &BB : F)
- BBNumbers[&BB] = ID++;
- }
- // Remember the dbg.declare intrinsic describing this alloca, if any.
- if (!Info.DbgUsers.empty())
- AllocaDbgUsers[AllocaNum] = Info.DbgUsers;
- // Keep the reverse mapping of the 'Allocas' array for the rename pass.
- AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
- // Unique the set of defining blocks for efficient lookup.
- SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
- Info.DefiningBlocks.end());
- // Determine which blocks the value is live in. These are blocks which lead
- // to uses.
- SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
- ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
- // At this point, we're committed to promoting the alloca using IDF's, and
- // the standard SSA construction algorithm. Determine which blocks need phi
- // nodes and see if we can optimize out some work by avoiding insertion of
- // dead phi nodes.
- IDF.setLiveInBlocks(LiveInBlocks);
- IDF.setDefiningBlocks(DefBlocks);
- SmallVector<BasicBlock *, 32> PHIBlocks;
- IDF.calculate(PHIBlocks);
- llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
- return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
- });
- unsigned CurrentVersion = 0;
- for (BasicBlock *BB : PHIBlocks)
- QueuePhiNode(BB, AllocaNum, CurrentVersion);
- }
- if (Allocas.empty())
- return; // All of the allocas must have been trivial!
- LBI.clear();
- // Set the incoming values for the basic block to be null values for all of
- // the alloca's. We do this in case there is a load of a value that has not
- // been stored yet. In this case, it will get this null value.
- RenamePassData::ValVector Values(Allocas.size());
- for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
- Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
- // When handling debug info, treat all incoming values as if they have unknown
- // locations until proven otherwise.
- RenamePassData::LocationVector Locations(Allocas.size());
- // Walks all basic blocks in the function performing the SSA rename algorithm
- // and inserting the phi nodes we marked as necessary
- std::vector<RenamePassData> RenamePassWorkList;
- RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
- std::move(Locations));
- do {
- RenamePassData RPD = std::move(RenamePassWorkList.back());
- RenamePassWorkList.pop_back();
- // RenamePass may add new worklist entries.
- RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
- } while (!RenamePassWorkList.empty());
- // The renamer uses the Visited set to avoid infinite loops. Clear it now.
- Visited.clear();
- // Remove the allocas themselves from the function.
- for (Instruction *A : Allocas) {
- // If there are any uses of the alloca instructions left, they must be in
- // unreachable basic blocks that were not processed by walking the dominator
- // tree. Just delete the users now.
- if (!A->use_empty())
- A->replaceAllUsesWith(PoisonValue::get(A->getType()));
- A->eraseFromParent();
- }
- // Remove alloca's dbg.declare instrinsics from the function.
- for (auto &DbgUsers : AllocaDbgUsers) {
- for (auto *DII : DbgUsers)
- if (DII->isAddressOfVariable() || DII->getExpression()->startsWithDeref())
- DII->eraseFromParent();
- }
- // Loop over all of the PHI nodes and see if there are any that we can get
- // rid of because they merge all of the same incoming values. This can
- // happen due to undef values coming into the PHI nodes. This process is
- // iterative, because eliminating one PHI node can cause others to be removed.
- bool EliminatedAPHI = true;
- while (EliminatedAPHI) {
- EliminatedAPHI = false;
- // Iterating over NewPhiNodes is deterministic, so it is safe to try to
- // simplify and RAUW them as we go. If it was not, we could add uses to
- // the values we replace with in a non-deterministic order, thus creating
- // non-deterministic def->use chains.
- for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
- I = NewPhiNodes.begin(),
- E = NewPhiNodes.end();
- I != E;) {
- PHINode *PN = I->second;
- // If this PHI node merges one value and/or undefs, get the value.
- if (Value *V = SimplifyInstruction(PN, SQ)) {
- PN->replaceAllUsesWith(V);
- PN->eraseFromParent();
- NewPhiNodes.erase(I++);
- EliminatedAPHI = true;
- continue;
- }
- ++I;
- }
- }
- // At this point, the renamer has added entries to PHI nodes for all reachable
- // code. Unfortunately, there may be unreachable blocks which the renamer
- // hasn't traversed. If this is the case, the PHI nodes may not
- // have incoming values for all predecessors. Loop over all PHI nodes we have
- // created, inserting undef values if they are missing any incoming values.
- for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
- I = NewPhiNodes.begin(),
- E = NewPhiNodes.end();
- I != E; ++I) {
- // We want to do this once per basic block. As such, only process a block
- // when we find the PHI that is the first entry in the block.
- PHINode *SomePHI = I->second;
- BasicBlock *BB = SomePHI->getParent();
- if (&BB->front() != SomePHI)
- continue;
- // Only do work here if there the PHI nodes are missing incoming values. We
- // know that all PHI nodes that were inserted in a block will have the same
- // number of incoming values, so we can just check any of them.
- if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
- continue;
- // Get the preds for BB.
- SmallVector<BasicBlock *, 16> Preds(predecessors(BB));
- // Ok, now we know that all of the PHI nodes are missing entries for some
- // basic blocks. Start by sorting the incoming predecessors for efficient
- // access.
- auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
- return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
- };
- llvm::sort(Preds, CompareBBNumbers);
- // Now we loop through all BB's which have entries in SomePHI and remove
- // them from the Preds list.
- for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
- // Do a log(n) search of the Preds list for the entry we want.
- SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
- Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
- assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
- "PHI node has entry for a block which is not a predecessor!");
- // Remove the entry
- Preds.erase(EntIt);
- }
- // At this point, the blocks left in the preds list must have dummy
- // entries inserted into every PHI nodes for the block. Update all the phi
- // nodes in this block that we are inserting (there could be phis before
- // mem2reg runs).
- unsigned NumBadPreds = SomePHI->getNumIncomingValues();
- BasicBlock::iterator BBI = BB->begin();
- while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
- SomePHI->getNumIncomingValues() == NumBadPreds) {
- Value *UndefVal = UndefValue::get(SomePHI->getType());
- for (BasicBlock *Pred : Preds)
- SomePHI->addIncoming(UndefVal, Pred);
- }
- }
- NewPhiNodes.clear();
- }
- /// Determine which blocks the value is live in.
- ///
- /// These are blocks which lead to uses. Knowing this allows us to avoid
- /// inserting PHI nodes into blocks which don't lead to uses (thus, the
- /// inserted phi nodes would be dead).
- void PromoteMem2Reg::ComputeLiveInBlocks(
- AllocaInst *AI, AllocaInfo &Info,
- const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
- SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
- // To determine liveness, we must iterate through the predecessors of blocks
- // where the def is live. Blocks are added to the worklist if we need to
- // check their predecessors. Start with all the using blocks.
- SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
- Info.UsingBlocks.end());
- // If any of the using blocks is also a definition block, check to see if the
- // definition occurs before or after the use. If it happens before the use,
- // the value isn't really live-in.
- for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
- BasicBlock *BB = LiveInBlockWorklist[i];
- if (!DefBlocks.count(BB))
- continue;
- // Okay, this is a block that both uses and defines the value. If the first
- // reference to the alloca is a def (store), then we know it isn't live-in.
- for (BasicBlock::iterator I = BB->begin();; ++I) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- if (SI->getOperand(1) != AI)
- continue;
- // We found a store to the alloca before a load. The alloca is not
- // actually live-in here.
- LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
- LiveInBlockWorklist.pop_back();
- --i;
- --e;
- break;
- }
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- // Okay, we found a load before a store to the alloca. It is actually
- // live into this block.
- if (LI->getOperand(0) == AI)
- break;
- }
- }
- // Now that we have a set of blocks where the phi is live-in, recursively add
- // their predecessors until we find the full region the value is live.
- while (!LiveInBlockWorklist.empty()) {
- BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
- // The block really is live in here, insert it into the set. If already in
- // the set, then it has already been processed.
- if (!LiveInBlocks.insert(BB).second)
- continue;
- // Since the value is live into BB, it is either defined in a predecessor or
- // live into it to. Add the preds to the worklist unless they are a
- // defining block.
- for (BasicBlock *P : predecessors(BB)) {
- // The value is not live into a predecessor if it defines the value.
- if (DefBlocks.count(P))
- continue;
- // Otherwise it is, add to the worklist.
- LiveInBlockWorklist.push_back(P);
- }
- }
- }
- /// Queue a phi-node to be added to a basic-block for a specific Alloca.
- ///
- /// Returns true if there wasn't already a phi-node for that variable
- bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
- unsigned &Version) {
- // Look up the basic-block in question.
- PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
- // If the BB already has a phi node added for the i'th alloca then we're done!
- if (PN)
- return false;
- // Create a PhiNode using the dereferenced type... and add the phi-node to the
- // BasicBlock.
- PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
- Allocas[AllocaNo]->getName() + "." + Twine(Version++),
- &BB->front());
- ++NumPHIInsert;
- PhiToAllocaMap[PN] = AllocaNo;
- return true;
- }
- /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
- /// create a merged location incorporating \p DL, or to set \p DL directly.
- static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
- bool ApplyMergedLoc) {
- if (ApplyMergedLoc)
- PN->applyMergedLocation(PN->getDebugLoc(), DL);
- else
- PN->setDebugLoc(DL);
- }
- /// Recursively traverse the CFG of the function, renaming loads and
- /// stores to the allocas which we are promoting.
- ///
- /// IncomingVals indicates what value each Alloca contains on exit from the
- /// predecessor block Pred.
- void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
- RenamePassData::ValVector &IncomingVals,
- RenamePassData::LocationVector &IncomingLocs,
- std::vector<RenamePassData> &Worklist) {
- NextIteration:
- // If we are inserting any phi nodes into this BB, they will already be in the
- // block.
- if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
- // If we have PHI nodes to update, compute the number of edges from Pred to
- // BB.
- if (PhiToAllocaMap.count(APN)) {
- // We want to be able to distinguish between PHI nodes being inserted by
- // this invocation of mem2reg from those phi nodes that already existed in
- // the IR before mem2reg was run. We determine that APN is being inserted
- // because it is missing incoming edges. All other PHI nodes being
- // inserted by this pass of mem2reg will have the same number of incoming
- // operands so far. Remember this count.
- unsigned NewPHINumOperands = APN->getNumOperands();
- unsigned NumEdges = llvm::count(successors(Pred), BB);
- assert(NumEdges && "Must be at least one edge from Pred to BB!");
- // Add entries for all the phis.
- BasicBlock::iterator PNI = BB->begin();
- do {
- unsigned AllocaNo = PhiToAllocaMap[APN];
- // Update the location of the phi node.
- updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
- APN->getNumIncomingValues() > 0);
- // Add N incoming values to the PHI node.
- for (unsigned i = 0; i != NumEdges; ++i)
- APN->addIncoming(IncomingVals[AllocaNo], Pred);
- // The currently active variable for this block is now the PHI.
- IncomingVals[AllocaNo] = APN;
- for (DbgVariableIntrinsic *DII : AllocaDbgUsers[AllocaNo])
- if (DII->isAddressOfVariable())
- ConvertDebugDeclareToDebugValue(DII, APN, DIB);
- // Get the next phi node.
- ++PNI;
- APN = dyn_cast<PHINode>(PNI);
- if (!APN)
- break;
- // Verify that it is missing entries. If not, it is not being inserted
- // by this mem2reg invocation so we want to ignore it.
- } while (APN->getNumOperands() == NewPHINumOperands);
- }
- }
- // Don't revisit blocks.
- if (!Visited.insert(BB).second)
- return;
- for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
- Instruction *I = &*II++; // get the instruction, increment iterator
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
- if (!Src)
- continue;
- DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
- if (AI == AllocaLookup.end())
- continue;
- Value *V = IncomingVals[AI->second];
- // If the load was marked as nonnull we don't want to lose
- // that information when we erase this Load. So we preserve
- // it with an assume.
- if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
- !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
- addAssumeNonNull(AC, LI);
- // Anything using the load now uses the current value.
- LI->replaceAllUsesWith(V);
- BB->getInstList().erase(LI);
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- // Delete this instruction and mark the name as the current holder of the
- // value
- AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
- if (!Dest)
- continue;
- DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
- if (ai == AllocaLookup.end())
- continue;
- // what value were we writing?
- unsigned AllocaNo = ai->second;
- IncomingVals[AllocaNo] = SI->getOperand(0);
- // Record debuginfo for the store before removing it.
- IncomingLocs[AllocaNo] = SI->getDebugLoc();
- for (DbgVariableIntrinsic *DII : AllocaDbgUsers[ai->second])
- if (DII->isAddressOfVariable())
- ConvertDebugDeclareToDebugValue(DII, SI, DIB);
- BB->getInstList().erase(SI);
- }
- }
- // 'Recurse' to our successors.
- succ_iterator I = succ_begin(BB), E = succ_end(BB);
- if (I == E)
- return;
- // Keep track of the successors so we don't visit the same successor twice
- SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
- // Handle the first successor without using the worklist.
- VisitedSuccs.insert(*I);
- Pred = BB;
- BB = *I;
- ++I;
- for (; I != E; ++I)
- if (VisitedSuccs.insert(*I).second)
- Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
- goto NextIteration;
- }
- void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
- AssumptionCache *AC) {
- // If there is nothing to do, bail out...
- if (Allocas.empty())
- return;
- PromoteMem2Reg(Allocas, DT, AC).run();
- }
|