123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597 |
- //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // The LowerSwitch transformation rewrites switch instructions with a sequence
- // of branches, which allows targets to get away with not implementing the
- // switch instruction until it is convenient.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/LowerSwitch.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/LazyValueInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <limits>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "lower-switch"
- namespace {
- struct IntRange {
- int64_t Low, High;
- };
- } // end anonymous namespace
- namespace {
- // Return true iff R is covered by Ranges.
- bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
- // Note: Ranges must be sorted, non-overlapping and non-adjacent.
- // Find the first range whose High field is >= R.High,
- // then check if the Low field is <= R.Low. If so, we
- // have a Range that covers R.
- auto I = llvm::lower_bound(
- Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
- return I != Ranges.end() && I->Low <= R.Low;
- }
- struct CaseRange {
- ConstantInt *Low;
- ConstantInt *High;
- BasicBlock *BB;
- CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
- : Low(low), High(high), BB(bb) {}
- };
- using CaseVector = std::vector<CaseRange>;
- using CaseItr = std::vector<CaseRange>::iterator;
- /// The comparison function for sorting the switch case values in the vector.
- /// WARNING: Case ranges should be disjoint!
- struct CaseCmp {
- bool operator()(const CaseRange &C1, const CaseRange &C2) {
- const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
- const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
- return CI1->getValue().slt(CI2->getValue());
- }
- };
- /// Used for debugging purposes.
- LLVM_ATTRIBUTE_USED
- raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
- O << "[";
- for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
- O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
- if (++B != E)
- O << ", ";
- }
- return O << "]";
- }
- /// Update the first occurrence of the "switch statement" BB in the PHI
- /// node with the "new" BB. The other occurrences will:
- ///
- /// 1) Be updated by subsequent calls to this function. Switch statements may
- /// have more than one outcoming edge into the same BB if they all have the same
- /// value. When the switch statement is converted these incoming edges are now
- /// coming from multiple BBs.
- /// 2) Removed if subsequent incoming values now share the same case, i.e.,
- /// multiple outcome edges are condensed into one. This is necessary to keep the
- /// number of phi values equal to the number of branches to SuccBB.
- void FixPhis(
- BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
- const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
- for (BasicBlock::iterator I = SuccBB->begin(),
- IE = SuccBB->getFirstNonPHI()->getIterator();
- I != IE; ++I) {
- PHINode *PN = cast<PHINode>(I);
- // Only update the first occurrence.
- unsigned Idx = 0, E = PN->getNumIncomingValues();
- unsigned LocalNumMergedCases = NumMergedCases;
- for (; Idx != E; ++Idx) {
- if (PN->getIncomingBlock(Idx) == OrigBB) {
- PN->setIncomingBlock(Idx, NewBB);
- break;
- }
- }
- // Remove additional occurrences coming from condensed cases and keep the
- // number of incoming values equal to the number of branches to SuccBB.
- SmallVector<unsigned, 8> Indices;
- for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
- if (PN->getIncomingBlock(Idx) == OrigBB) {
- Indices.push_back(Idx);
- LocalNumMergedCases--;
- }
- // Remove incoming values in the reverse order to prevent invalidating
- // *successive* index.
- for (unsigned III : llvm::reverse(Indices))
- PN->removeIncomingValue(III);
- }
- }
- /// Create a new leaf block for the binary lookup tree. It checks if the
- /// switch's value == the case's value. If not, then it jumps to the default
- /// branch. At this point in the tree, the value can't be another valid case
- /// value, so the jump to the "default" branch is warranted.
- BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
- ConstantInt *UpperBound, BasicBlock *OrigBlock,
- BasicBlock *Default) {
- Function *F = OrigBlock->getParent();
- BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
- F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
- // Emit comparison
- ICmpInst *Comp = nullptr;
- if (Leaf.Low == Leaf.High) {
- // Make the seteq instruction...
- Comp =
- new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
- } else {
- // Make range comparison
- if (Leaf.Low == LowerBound) {
- // Val >= Min && Val <= Hi --> Val <= Hi
- Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
- "SwitchLeaf");
- } else if (Leaf.High == UpperBound) {
- // Val <= Max && Val >= Lo --> Val >= Lo
- Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
- "SwitchLeaf");
- } else if (Leaf.Low->isZero()) {
- // Val >= 0 && Val <= Hi --> Val <=u Hi
- Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
- "SwitchLeaf");
- } else {
- // Emit V-Lo <=u Hi-Lo
- Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
- Instruction *Add = BinaryOperator::CreateAdd(
- Val, NegLo, Val->getName() + ".off", NewLeaf);
- Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
- Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
- "SwitchLeaf");
- }
- }
- // Make the conditional branch...
- BasicBlock *Succ = Leaf.BB;
- BranchInst::Create(Succ, Default, Comp, NewLeaf);
- // If there were any PHI nodes in this successor, rewrite one entry
- // from OrigBlock to come from NewLeaf.
- for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // Remove all but one incoming entries from the cluster
- uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue();
- for (uint64_t j = 0; j < Range; ++j) {
- PN->removeIncomingValue(OrigBlock);
- }
- int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
- assert(BlockIdx != -1 && "Switch didn't go to this successor??");
- PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
- }
- return NewLeaf;
- }
- /// Convert the switch statement into a binary lookup of the case values.
- /// The function recursively builds this tree. LowerBound and UpperBound are
- /// used to keep track of the bounds for Val that have already been checked by
- /// a block emitted by one of the previous calls to switchConvert in the call
- /// stack.
- BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
- ConstantInt *UpperBound, Value *Val,
- BasicBlock *Predecessor, BasicBlock *OrigBlock,
- BasicBlock *Default,
- const std::vector<IntRange> &UnreachableRanges) {
- assert(LowerBound && UpperBound && "Bounds must be initialized");
- unsigned Size = End - Begin;
- if (Size == 1) {
- // Check if the Case Range is perfectly squeezed in between
- // already checked Upper and Lower bounds. If it is then we can avoid
- // emitting the code that checks if the value actually falls in the range
- // because the bounds already tell us so.
- if (Begin->Low == LowerBound && Begin->High == UpperBound) {
- unsigned NumMergedCases = 0;
- NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
- FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
- return Begin->BB;
- }
- return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
- Default);
- }
- unsigned Mid = Size / 2;
- std::vector<CaseRange> LHS(Begin, Begin + Mid);
- LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
- std::vector<CaseRange> RHS(Begin + Mid, End);
- LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
- CaseRange &Pivot = *(Begin + Mid);
- LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
- << Pivot.High->getValue() << "]\n");
- // NewLowerBound here should never be the integer minimal value.
- // This is because it is computed from a case range that is never
- // the smallest, so there is always a case range that has at least
- // a smaller value.
- ConstantInt *NewLowerBound = Pivot.Low;
- // Because NewLowerBound is never the smallest representable integer
- // it is safe here to subtract one.
- ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
- NewLowerBound->getValue() - 1);
- if (!UnreachableRanges.empty()) {
- // Check if the gap between LHS's highest and NewLowerBound is unreachable.
- int64_t GapLow = LHS.back().High->getSExtValue() + 1;
- int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
- IntRange Gap = { GapLow, GapHigh };
- if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
- NewUpperBound = LHS.back().High;
- }
- LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
- << NewUpperBound->getSExtValue() << "]\n"
- << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
- << ", " << UpperBound->getSExtValue() << "]\n");
- // Create a new node that checks if the value is < pivot. Go to the
- // left branch if it is and right branch if not.
- Function* F = OrigBlock->getParent();
- BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
- ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
- Val, Pivot.Low, "Pivot");
- BasicBlock *LBranch =
- SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
- NewNode, OrigBlock, Default, UnreachableRanges);
- BasicBlock *RBranch =
- SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
- NewNode, OrigBlock, Default, UnreachableRanges);
- F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
- NewNode->getInstList().push_back(Comp);
- BranchInst::Create(LBranch, RBranch, Comp, NewNode);
- return NewNode;
- }
- /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
- /// \post \p Cases wouldn't contain references to \p SI's default BB.
- /// \returns Number of \p SI's cases that do not reference \p SI's default BB.
- unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
- unsigned NumSimpleCases = 0;
- // Start with "simple" cases
- for (auto Case : SI->cases()) {
- if (Case.getCaseSuccessor() == SI->getDefaultDest())
- continue;
- Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
- Case.getCaseSuccessor()));
- ++NumSimpleCases;
- }
- llvm::sort(Cases, CaseCmp());
- // Merge case into clusters
- if (Cases.size() >= 2) {
- CaseItr I = Cases.begin();
- for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
- int64_t nextValue = J->Low->getSExtValue();
- int64_t currentValue = I->High->getSExtValue();
- BasicBlock* nextBB = J->BB;
- BasicBlock* currentBB = I->BB;
- // If the two neighboring cases go to the same destination, merge them
- // into a single case.
- assert(nextValue > currentValue && "Cases should be strictly ascending");
- if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
- I->High = J->High;
- // FIXME: Combine branch weights.
- } else if (++I != J) {
- *I = *J;
- }
- }
- Cases.erase(std::next(I), Cases.end());
- }
- return NumSimpleCases;
- }
- /// Replace the specified switch instruction with a sequence of chained if-then
- /// insts in a balanced binary search.
- void ProcessSwitchInst(SwitchInst *SI,
- SmallPtrSetImpl<BasicBlock *> &DeleteList,
- AssumptionCache *AC, LazyValueInfo *LVI) {
- BasicBlock *OrigBlock = SI->getParent();
- Function *F = OrigBlock->getParent();
- Value *Val = SI->getCondition(); // The value we are switching on...
- BasicBlock* Default = SI->getDefaultDest();
- // Don't handle unreachable blocks. If there are successors with phis, this
- // would leave them behind with missing predecessors.
- if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
- OrigBlock->getSinglePredecessor() == OrigBlock) {
- DeleteList.insert(OrigBlock);
- return;
- }
- // Prepare cases vector.
- CaseVector Cases;
- const unsigned NumSimpleCases = Clusterify(Cases, SI);
- LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
- << ". Total non-default cases: " << NumSimpleCases
- << "\nCase clusters: " << Cases << "\n");
- // If there is only the default destination, just branch.
- if (Cases.empty()) {
- BranchInst::Create(Default, OrigBlock);
- // Remove all the references from Default's PHIs to OrigBlock, but one.
- FixPhis(Default, OrigBlock, OrigBlock);
- SI->eraseFromParent();
- return;
- }
- ConstantInt *LowerBound = nullptr;
- ConstantInt *UpperBound = nullptr;
- bool DefaultIsUnreachableFromSwitch = false;
- if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
- // Make the bounds tightly fitted around the case value range, because we
- // know that the value passed to the switch must be exactly one of the case
- // values.
- LowerBound = Cases.front().Low;
- UpperBound = Cases.back().High;
- DefaultIsUnreachableFromSwitch = true;
- } else {
- // Constraining the range of the value being switched over helps eliminating
- // unreachable BBs and minimizing the number of `add` instructions
- // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
- // LowerSwitch isn't as good, and also much more expensive in terms of
- // compile time for the following reasons:
- // 1. it processes many kinds of instructions, not just switches;
- // 2. even if limited to icmp instructions only, it will have to process
- // roughly C icmp's per switch, where C is the number of cases in the
- // switch, while LowerSwitch only needs to call LVI once per switch.
- const DataLayout &DL = F->getParent()->getDataLayout();
- KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
- // TODO Shouldn't this create a signed range?
- ConstantRange KnownBitsRange =
- ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
- const ConstantRange LVIRange = LVI->getConstantRange(Val, SI);
- ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
- // We delegate removal of unreachable non-default cases to other passes. In
- // the unlikely event that some of them survived, we just conservatively
- // maintain the invariant that all the cases lie between the bounds. This
- // may, however, still render the default case effectively unreachable.
- APInt Low = Cases.front().Low->getValue();
- APInt High = Cases.back().High->getValue();
- APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
- APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
- LowerBound = ConstantInt::get(SI->getContext(), Min);
- UpperBound = ConstantInt::get(SI->getContext(), Max);
- DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
- }
- std::vector<IntRange> UnreachableRanges;
- if (DefaultIsUnreachableFromSwitch) {
- DenseMap<BasicBlock *, unsigned> Popularity;
- unsigned MaxPop = 0;
- BasicBlock *PopSucc = nullptr;
- IntRange R = {std::numeric_limits<int64_t>::min(),
- std::numeric_limits<int64_t>::max()};
- UnreachableRanges.push_back(R);
- for (const auto &I : Cases) {
- int64_t Low = I.Low->getSExtValue();
- int64_t High = I.High->getSExtValue();
- IntRange &LastRange = UnreachableRanges.back();
- if (LastRange.Low == Low) {
- // There is nothing left of the previous range.
- UnreachableRanges.pop_back();
- } else {
- // Terminate the previous range.
- assert(Low > LastRange.Low);
- LastRange.High = Low - 1;
- }
- if (High != std::numeric_limits<int64_t>::max()) {
- IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
- UnreachableRanges.push_back(R);
- }
- // Count popularity.
- int64_t N = High - Low + 1;
- unsigned &Pop = Popularity[I.BB];
- if ((Pop += N) > MaxPop) {
- MaxPop = Pop;
- PopSucc = I.BB;
- }
- }
- #ifndef NDEBUG
- /* UnreachableRanges should be sorted and the ranges non-adjacent. */
- for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
- I != E; ++I) {
- assert(I->Low <= I->High);
- auto Next = I + 1;
- if (Next != E) {
- assert(Next->Low > I->High);
- }
- }
- #endif
- // As the default block in the switch is unreachable, update the PHI nodes
- // (remove all of the references to the default block) to reflect this.
- const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
- for (unsigned I = 0; I < NumDefaultEdges; ++I)
- Default->removePredecessor(OrigBlock);
- // Use the most popular block as the new default, reducing the number of
- // cases.
- assert(MaxPop > 0 && PopSucc);
- Default = PopSucc;
- llvm::erase_if(Cases,
- [PopSucc](const CaseRange &R) { return R.BB == PopSucc; });
- // If there are no cases left, just branch.
- if (Cases.empty()) {
- BranchInst::Create(Default, OrigBlock);
- SI->eraseFromParent();
- // As all the cases have been replaced with a single branch, only keep
- // one entry in the PHI nodes.
- for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
- PopSucc->removePredecessor(OrigBlock);
- return;
- }
- // If the condition was a PHI node with the switch block as a predecessor
- // removing predecessors may have caused the condition to be erased.
- // Getting the condition value again here protects against that.
- Val = SI->getCondition();
- }
- // Create a new, empty default block so that the new hierarchy of
- // if-then statements go to this and the PHI nodes are happy.
- BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
- F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
- BranchInst::Create(Default, NewDefault);
- BasicBlock *SwitchBlock =
- SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
- OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
- // If there are entries in any PHI nodes for the default edge, make sure
- // to update them as well.
- FixPhis(Default, OrigBlock, NewDefault);
- // Branch to our shiny new if-then stuff...
- BranchInst::Create(SwitchBlock, OrigBlock);
- // We are now done with the switch instruction, delete it.
- BasicBlock *OldDefault = SI->getDefaultDest();
- OrigBlock->getInstList().erase(SI);
- // If the Default block has no more predecessors just add it to DeleteList.
- if (pred_empty(OldDefault))
- DeleteList.insert(OldDefault);
- }
- bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
- bool Changed = false;
- SmallPtrSet<BasicBlock *, 8> DeleteList;
- // We use make_early_inc_range here so that we don't traverse new blocks.
- for (BasicBlock &Cur : llvm::make_early_inc_range(F)) {
- // If the block is a dead Default block that will be deleted later, don't
- // waste time processing it.
- if (DeleteList.count(&Cur))
- continue;
- if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur.getTerminator())) {
- Changed = true;
- ProcessSwitchInst(SI, DeleteList, AC, LVI);
- }
- }
- for (BasicBlock *BB : DeleteList) {
- LVI->eraseBlock(BB);
- DeleteDeadBlock(BB);
- }
- return Changed;
- }
- /// Replace all SwitchInst instructions with chained branch instructions.
- class LowerSwitchLegacyPass : public FunctionPass {
- public:
- // Pass identification, replacement for typeid
- static char ID;
- LowerSwitchLegacyPass() : FunctionPass(ID) {
- initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<LazyValueInfoWrapperPass>();
- }
- };
- } // end anonymous namespace
- char LowerSwitchLegacyPass::ID = 0;
- // Publicly exposed interface to pass...
- char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;
- INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
- "Lower SwitchInst's to branches", false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
- INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
- "Lower SwitchInst's to branches", false, false)
- // createLowerSwitchPass - Interface to this file...
- FunctionPass *llvm::createLowerSwitchPass() {
- return new LowerSwitchLegacyPass();
- }
- bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
- LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
- auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
- AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
- return LowerSwitch(F, LVI, AC);
- }
- PreservedAnalyses LowerSwitchPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
- AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
- return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
- : PreservedAnalyses::all();
- }
|