1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789 |
- //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines common loop utility functions.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/PriorityWorklist.h"
- #include "llvm/ADT/ScopeExit.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/InstSimplifyFolder.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopAccessAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/MustExecute.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DIBuilder.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/MDBuilder.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "loop-utils"
- static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
- static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
- bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
- MemorySSAUpdater *MSSAU,
- bool PreserveLCSSA) {
- bool Changed = false;
- // We re-use a vector for the in-loop predecesosrs.
- SmallVector<BasicBlock *, 4> InLoopPredecessors;
- auto RewriteExit = [&](BasicBlock *BB) {
- assert(InLoopPredecessors.empty() &&
- "Must start with an empty predecessors list!");
- auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
- // See if there are any non-loop predecessors of this exit block and
- // keep track of the in-loop predecessors.
- bool IsDedicatedExit = true;
- for (auto *PredBB : predecessors(BB))
- if (L->contains(PredBB)) {
- if (isa<IndirectBrInst>(PredBB->getTerminator()))
- // We cannot rewrite exiting edges from an indirectbr.
- return false;
- if (isa<CallBrInst>(PredBB->getTerminator()))
- // We cannot rewrite exiting edges from a callbr.
- return false;
- InLoopPredecessors.push_back(PredBB);
- } else {
- IsDedicatedExit = false;
- }
- assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
- // Nothing to do if this is already a dedicated exit.
- if (IsDedicatedExit)
- return false;
- auto *NewExitBB = SplitBlockPredecessors(
- BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
- if (!NewExitBB)
- LLVM_DEBUG(
- dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
- << *L << "\n");
- else
- LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
- << NewExitBB->getName() << "\n");
- return true;
- };
- // Walk the exit blocks directly rather than building up a data structure for
- // them, but only visit each one once.
- SmallPtrSet<BasicBlock *, 4> Visited;
- for (auto *BB : L->blocks())
- for (auto *SuccBB : successors(BB)) {
- // We're looking for exit blocks so skip in-loop successors.
- if (L->contains(SuccBB))
- continue;
- // Visit each exit block exactly once.
- if (!Visited.insert(SuccBB).second)
- continue;
- Changed |= RewriteExit(SuccBB);
- }
- return Changed;
- }
- /// Returns the instructions that use values defined in the loop.
- SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
- SmallVector<Instruction *, 8> UsedOutside;
- for (auto *Block : L->getBlocks())
- // FIXME: I believe that this could use copy_if if the Inst reference could
- // be adapted into a pointer.
- for (auto &Inst : *Block) {
- auto Users = Inst.users();
- if (any_of(Users, [&](User *U) {
- auto *Use = cast<Instruction>(U);
- return !L->contains(Use->getParent());
- }))
- UsedOutside.push_back(&Inst);
- }
- return UsedOutside;
- }
- void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
- // By definition, all loop passes need the LoopInfo analysis and the
- // Dominator tree it depends on. Because they all participate in the loop
- // pass manager, they must also preserve these.
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
- // here because users shouldn't directly get them from this header.
- extern char &LoopSimplifyID;
- extern char &LCSSAID;
- AU.addRequiredID(LoopSimplifyID);
- AU.addPreservedID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addPreservedID(LCSSAID);
- // This is used in the LPPassManager to perform LCSSA verification on passes
- // which preserve lcssa form
- AU.addRequired<LCSSAVerificationPass>();
- AU.addPreserved<LCSSAVerificationPass>();
- // Loop passes are designed to run inside of a loop pass manager which means
- // that any function analyses they require must be required by the first loop
- // pass in the manager (so that it is computed before the loop pass manager
- // runs) and preserved by all loop pasess in the manager. To make this
- // reasonably robust, the set needed for most loop passes is maintained here.
- // If your loop pass requires an analysis not listed here, you will need to
- // carefully audit the loop pass manager nesting structure that results.
- AU.addRequired<AAResultsWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<BasicAAWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<SCEVAAWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addPreserved<ScalarEvolutionWrapperPass>();
- // FIXME: When all loop passes preserve MemorySSA, it can be required and
- // preserved here instead of the individual handling in each pass.
- }
- /// Manually defined generic "LoopPass" dependency initialization. This is used
- /// to initialize the exact set of passes from above in \c
- /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
- /// with:
- ///
- /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
- ///
- /// As-if "LoopPass" were a pass.
- void llvm::initializeLoopPassPass(PassRegistry &Registry) {
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
- }
- /// Create MDNode for input string.
- static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
- LLVMContext &Context = TheLoop->getHeader()->getContext();
- Metadata *MDs[] = {
- MDString::get(Context, Name),
- ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
- return MDNode::get(Context, MDs);
- }
- /// Set input string into loop metadata by keeping other values intact.
- /// If the string is already in loop metadata update value if it is
- /// different.
- void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
- unsigned V) {
- SmallVector<Metadata *, 4> MDs(1);
- // If the loop already has metadata, retain it.
- MDNode *LoopID = TheLoop->getLoopID();
- if (LoopID) {
- for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
- // If it is of form key = value, try to parse it.
- if (Node->getNumOperands() == 2) {
- MDString *S = dyn_cast<MDString>(Node->getOperand(0));
- if (S && S->getString().equals(StringMD)) {
- ConstantInt *IntMD =
- mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
- if (IntMD && IntMD->getSExtValue() == V)
- // It is already in place. Do nothing.
- return;
- // We need to update the value, so just skip it here and it will
- // be added after copying other existed nodes.
- continue;
- }
- }
- MDs.push_back(Node);
- }
- }
- // Add new metadata.
- MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
- // Replace current metadata node with new one.
- LLVMContext &Context = TheLoop->getHeader()->getContext();
- MDNode *NewLoopID = MDNode::get(Context, MDs);
- // Set operand 0 to refer to the loop id itself.
- NewLoopID->replaceOperandWith(0, NewLoopID);
- TheLoop->setLoopID(NewLoopID);
- }
- Optional<ElementCount>
- llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
- Optional<int> Width =
- getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
- if (Width.hasValue()) {
- Optional<int> IsScalable = getOptionalIntLoopAttribute(
- TheLoop, "llvm.loop.vectorize.scalable.enable");
- return ElementCount::get(*Width, IsScalable.getValueOr(false));
- }
- return None;
- }
- Optional<MDNode *> llvm::makeFollowupLoopID(
- MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
- const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
- if (!OrigLoopID) {
- if (AlwaysNew)
- return nullptr;
- return None;
- }
- assert(OrigLoopID->getOperand(0) == OrigLoopID);
- bool InheritAllAttrs = !InheritOptionsExceptPrefix;
- bool InheritSomeAttrs =
- InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
- SmallVector<Metadata *, 8> MDs;
- MDs.push_back(nullptr);
- bool Changed = false;
- if (InheritAllAttrs || InheritSomeAttrs) {
- for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
- MDNode *Op = cast<MDNode>(Existing.get());
- auto InheritThisAttribute = [InheritSomeAttrs,
- InheritOptionsExceptPrefix](MDNode *Op) {
- if (!InheritSomeAttrs)
- return false;
- // Skip malformatted attribute metadata nodes.
- if (Op->getNumOperands() == 0)
- return true;
- Metadata *NameMD = Op->getOperand(0).get();
- if (!isa<MDString>(NameMD))
- return true;
- StringRef AttrName = cast<MDString>(NameMD)->getString();
- // Do not inherit excluded attributes.
- return !AttrName.startswith(InheritOptionsExceptPrefix);
- };
- if (InheritThisAttribute(Op))
- MDs.push_back(Op);
- else
- Changed = true;
- }
- } else {
- // Modified if we dropped at least one attribute.
- Changed = OrigLoopID->getNumOperands() > 1;
- }
- bool HasAnyFollowup = false;
- for (StringRef OptionName : FollowupOptions) {
- MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
- if (!FollowupNode)
- continue;
- HasAnyFollowup = true;
- for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
- MDs.push_back(Option.get());
- Changed = true;
- }
- }
- // Attributes of the followup loop not specified explicity, so signal to the
- // transformation pass to add suitable attributes.
- if (!AlwaysNew && !HasAnyFollowup)
- return None;
- // If no attributes were added or remove, the previous loop Id can be reused.
- if (!AlwaysNew && !Changed)
- return OrigLoopID;
- // No attributes is equivalent to having no !llvm.loop metadata at all.
- if (MDs.size() == 1)
- return nullptr;
- // Build the new loop ID.
- MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
- FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
- return FollowupLoopID;
- }
- bool llvm::hasDisableAllTransformsHint(const Loop *L) {
- return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
- }
- bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
- return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
- }
- TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
- if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
- return TM_SuppressedByUser;
- Optional<int> Count =
- getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
- if (Count.hasValue())
- return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
- if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
- return TM_ForcedByUser;
- if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
- return TM_ForcedByUser;
- if (hasDisableAllTransformsHint(L))
- return TM_Disable;
- return TM_Unspecified;
- }
- TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
- if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
- return TM_SuppressedByUser;
- Optional<int> Count =
- getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
- if (Count.hasValue())
- return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
- if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
- return TM_ForcedByUser;
- if (hasDisableAllTransformsHint(L))
- return TM_Disable;
- return TM_Unspecified;
- }
- TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
- Optional<bool> Enable =
- getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
- if (Enable == false)
- return TM_SuppressedByUser;
- Optional<ElementCount> VectorizeWidth =
- getOptionalElementCountLoopAttribute(L);
- Optional<int> InterleaveCount =
- getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
- // 'Forcing' vector width and interleave count to one effectively disables
- // this tranformation.
- if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
- InterleaveCount == 1)
- return TM_SuppressedByUser;
- if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
- return TM_Disable;
- if (Enable == true)
- return TM_ForcedByUser;
- if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
- return TM_Disable;
- if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
- return TM_Enable;
- if (hasDisableAllTransformsHint(L))
- return TM_Disable;
- return TM_Unspecified;
- }
- TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
- if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
- return TM_ForcedByUser;
- if (hasDisableAllTransformsHint(L))
- return TM_Disable;
- return TM_Unspecified;
- }
- TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
- if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
- return TM_SuppressedByUser;
- if (hasDisableAllTransformsHint(L))
- return TM_Disable;
- return TM_Unspecified;
- }
- /// Does a BFS from a given node to all of its children inside a given loop.
- /// The returned vector of nodes includes the starting point.
- SmallVector<DomTreeNode *, 16>
- llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
- SmallVector<DomTreeNode *, 16> Worklist;
- auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
- // Only include subregions in the top level loop.
- BasicBlock *BB = DTN->getBlock();
- if (CurLoop->contains(BB))
- Worklist.push_back(DTN);
- };
- AddRegionToWorklist(N);
- for (size_t I = 0; I < Worklist.size(); I++) {
- for (DomTreeNode *Child : Worklist[I]->children())
- AddRegionToWorklist(Child);
- }
- return Worklist;
- }
- void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
- LoopInfo *LI, MemorySSA *MSSA) {
- assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
- auto *Preheader = L->getLoopPreheader();
- assert(Preheader && "Preheader should exist!");
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- if (MSSA)
- MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
- // Now that we know the removal is safe, remove the loop by changing the
- // branch from the preheader to go to the single exit block.
- //
- // Because we're deleting a large chunk of code at once, the sequence in which
- // we remove things is very important to avoid invalidation issues.
- // Tell ScalarEvolution that the loop is deleted. Do this before
- // deleting the loop so that ScalarEvolution can look at the loop
- // to determine what it needs to clean up.
- if (SE)
- SE->forgetLoop(L);
- auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
- assert(OldBr && "Preheader must end with a branch");
- assert(OldBr->isUnconditional() && "Preheader must have a single successor");
- // Connect the preheader to the exit block. Keep the old edge to the header
- // around to perform the dominator tree update in two separate steps
- // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
- // preheader -> header.
- //
- //
- // 0. Preheader 1. Preheader 2. Preheader
- // | | | |
- // V | V |
- // Header <--\ | Header <--\ | Header <--\
- // | | | | | | | | | | |
- // | V | | | V | | | V |
- // | Body --/ | | Body --/ | | Body --/
- // V V V V V
- // Exit Exit Exit
- //
- // By doing this is two separate steps we can perform the dominator tree
- // update without using the batch update API.
- //
- // Even when the loop is never executed, we cannot remove the edge from the
- // source block to the exit block. Consider the case where the unexecuted loop
- // branches back to an outer loop. If we deleted the loop and removed the edge
- // coming to this inner loop, this will break the outer loop structure (by
- // deleting the backedge of the outer loop). If the outer loop is indeed a
- // non-loop, it will be deleted in a future iteration of loop deletion pass.
- IRBuilder<> Builder(OldBr);
- auto *ExitBlock = L->getUniqueExitBlock();
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- if (ExitBlock) {
- assert(ExitBlock && "Should have a unique exit block!");
- assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
- Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
- // Remove the old branch. The conditional branch becomes a new terminator.
- OldBr->eraseFromParent();
- // Rewrite phis in the exit block to get their inputs from the Preheader
- // instead of the exiting block.
- for (PHINode &P : ExitBlock->phis()) {
- // Set the zero'th element of Phi to be from the preheader and remove all
- // other incoming values. Given the loop has dedicated exits, all other
- // incoming values must be from the exiting blocks.
- int PredIndex = 0;
- P.setIncomingBlock(PredIndex, Preheader);
- // Removes all incoming values from all other exiting blocks (including
- // duplicate values from an exiting block).
- // Nuke all entries except the zero'th entry which is the preheader entry.
- // NOTE! We need to remove Incoming Values in the reverse order as done
- // below, to keep the indices valid for deletion (removeIncomingValues
- // updates getNumIncomingValues and shifts all values down into the
- // operand being deleted).
- for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
- P.removeIncomingValue(e - i, false);
- assert((P.getNumIncomingValues() == 1 &&
- P.getIncomingBlock(PredIndex) == Preheader) &&
- "Should have exactly one value and that's from the preheader!");
- }
- if (DT) {
- DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
- if (MSSA) {
- MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
- *DT);
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- }
- }
- // Disconnect the loop body by branching directly to its exit.
- Builder.SetInsertPoint(Preheader->getTerminator());
- Builder.CreateBr(ExitBlock);
- // Remove the old branch.
- Preheader->getTerminator()->eraseFromParent();
- } else {
- assert(L->hasNoExitBlocks() &&
- "Loop should have either zero or one exit blocks.");
- Builder.SetInsertPoint(OldBr);
- Builder.CreateUnreachable();
- Preheader->getTerminator()->eraseFromParent();
- }
- if (DT) {
- DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
- if (MSSA) {
- MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
- *DT);
- SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
- L->block_end());
- MSSAU->removeBlocks(DeadBlockSet);
- if (VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- }
- }
- // Use a map to unique and a vector to guarantee deterministic ordering.
- llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
- llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
- if (ExitBlock) {
- // Given LCSSA form is satisfied, we should not have users of instructions
- // within the dead loop outside of the loop. However, LCSSA doesn't take
- // unreachable uses into account. We handle them here.
- // We could do it after drop all references (in this case all users in the
- // loop will be already eliminated and we have less work to do but according
- // to API doc of User::dropAllReferences only valid operation after dropping
- // references, is deletion. So let's substitute all usages of
- // instruction from the loop with undef value of corresponding type first.
- for (auto *Block : L->blocks())
- for (Instruction &I : *Block) {
- auto *Undef = UndefValue::get(I.getType());
- for (Use &U : llvm::make_early_inc_range(I.uses())) {
- if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
- if (L->contains(Usr->getParent()))
- continue;
- // If we have a DT then we can check that uses outside a loop only in
- // unreachable block.
- if (DT)
- assert(!DT->isReachableFromEntry(U) &&
- "Unexpected user in reachable block");
- U.set(Undef);
- }
- auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
- if (!DVI)
- continue;
- auto Key =
- DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
- if (Key != DeadDebugSet.end())
- continue;
- DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
- DeadDebugInst.push_back(DVI);
- }
- // After the loop has been deleted all the values defined and modified
- // inside the loop are going to be unavailable.
- // Since debug values in the loop have been deleted, inserting an undef
- // dbg.value truncates the range of any dbg.value before the loop where the
- // loop used to be. This is particularly important for constant values.
- DIBuilder DIB(*ExitBlock->getModule());
- Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
- assert(InsertDbgValueBefore &&
- "There should be a non-PHI instruction in exit block, else these "
- "instructions will have no parent.");
- for (auto *DVI : DeadDebugInst)
- DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
- DVI->getVariable(), DVI->getExpression(),
- DVI->getDebugLoc(), InsertDbgValueBefore);
- }
- // Remove the block from the reference counting scheme, so that we can
- // delete it freely later.
- for (auto *Block : L->blocks())
- Block->dropAllReferences();
- if (MSSA && VerifyMemorySSA)
- MSSA->verifyMemorySSA();
- if (LI) {
- // Erase the instructions and the blocks without having to worry
- // about ordering because we already dropped the references.
- // NOTE: This iteration is safe because erasing the block does not remove
- // its entry from the loop's block list. We do that in the next section.
- for (BasicBlock *BB : L->blocks())
- BB->eraseFromParent();
- // Finally, the blocks from loopinfo. This has to happen late because
- // otherwise our loop iterators won't work.
- SmallPtrSet<BasicBlock *, 8> blocks;
- blocks.insert(L->block_begin(), L->block_end());
- for (BasicBlock *BB : blocks)
- LI->removeBlock(BB);
- // The last step is to update LoopInfo now that we've eliminated this loop.
- // Note: LoopInfo::erase remove the given loop and relink its subloops with
- // its parent. While removeLoop/removeChildLoop remove the given loop but
- // not relink its subloops, which is what we want.
- if (Loop *ParentLoop = L->getParentLoop()) {
- Loop::iterator I = find(*ParentLoop, L);
- assert(I != ParentLoop->end() && "Couldn't find loop");
- ParentLoop->removeChildLoop(I);
- } else {
- Loop::iterator I = find(*LI, L);
- assert(I != LI->end() && "Couldn't find loop");
- LI->removeLoop(I);
- }
- LI->destroy(L);
- }
- }
- static Loop *getOutermostLoop(Loop *L) {
- while (Loop *Parent = L->getParentLoop())
- L = Parent;
- return L;
- }
- void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
- LoopInfo &LI, MemorySSA *MSSA) {
- auto *Latch = L->getLoopLatch();
- assert(Latch && "multiple latches not yet supported");
- auto *Header = L->getHeader();
- Loop *OutermostLoop = getOutermostLoop(L);
- SE.forgetLoop(L);
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- if (MSSA)
- MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
- // Update the CFG and domtree. We chose to special case a couple of
- // of common cases for code quality and test readability reasons.
- [&]() -> void {
- if (auto *BI = dyn_cast<BranchInst>(Latch->getTerminator())) {
- if (!BI->isConditional()) {
- DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
- (void)changeToUnreachable(BI, /*PreserveLCSSA*/ true, &DTU,
- MSSAU.get());
- return;
- }
- // Conditional latch/exit - note that latch can be shared by inner
- // and outer loop so the other target doesn't need to an exit
- if (L->isLoopExiting(Latch)) {
- // TODO: Generalize ConstantFoldTerminator so that it can be used
- // here without invalidating LCSSA or MemorySSA. (Tricky case for
- // LCSSA: header is an exit block of a preceeding sibling loop w/o
- // dedicated exits.)
- const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
- BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
- DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
- Header->removePredecessor(Latch, true);
- IRBuilder<> Builder(BI);
- auto *NewBI = Builder.CreateBr(ExitBB);
- // Transfer the metadata to the new branch instruction (minus the
- // loop info since this is no longer a loop)
- NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
- LLVMContext::MD_annotation});
- BI->eraseFromParent();
- DTU.applyUpdates({{DominatorTree::Delete, Latch, Header}});
- if (MSSA)
- MSSAU->applyUpdates({{DominatorTree::Delete, Latch, Header}}, DT);
- return;
- }
- }
- // General case. By splitting the backedge, and then explicitly making it
- // unreachable we gracefully handle corner cases such as switch and invoke
- // termiantors.
- auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
- DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
- (void)changeToUnreachable(BackedgeBB->getTerminator(),
- /*PreserveLCSSA*/ true, &DTU, MSSAU.get());
- }();
- // Erase (and destroy) this loop instance. Handles relinking sub-loops
- // and blocks within the loop as needed.
- LI.erase(L);
- // If the loop we broke had a parent, then changeToUnreachable might have
- // caused a block to be removed from the parent loop (see loop_nest_lcssa
- // test case in zero-btc.ll for an example), thus changing the parent's
- // exit blocks. If that happened, we need to rebuild LCSSA on the outermost
- // loop which might have a had a block removed.
- if (OutermostLoop != L)
- formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
- }
- /// Checks if \p L has an exiting latch branch. There may also be other
- /// exiting blocks. Returns branch instruction terminating the loop
- /// latch if above check is successful, nullptr otherwise.
- static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
- BasicBlock *Latch = L->getLoopLatch();
- if (!Latch)
- return nullptr;
- BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
- if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
- return nullptr;
- assert((LatchBR->getSuccessor(0) == L->getHeader() ||
- LatchBR->getSuccessor(1) == L->getHeader()) &&
- "At least one edge out of the latch must go to the header");
- return LatchBR;
- }
- /// Return the estimated trip count for any exiting branch which dominates
- /// the loop latch.
- static Optional<uint64_t>
- getEstimatedTripCount(BranchInst *ExitingBranch, Loop *L,
- uint64_t &OrigExitWeight) {
- // To estimate the number of times the loop body was executed, we want to
- // know the number of times the backedge was taken, vs. the number of times
- // we exited the loop.
- uint64_t LoopWeight, ExitWeight;
- if (!ExitingBranch->extractProfMetadata(LoopWeight, ExitWeight))
- return None;
- if (L->contains(ExitingBranch->getSuccessor(1)))
- std::swap(LoopWeight, ExitWeight);
- if (!ExitWeight)
- // Don't have a way to return predicated infinite
- return None;
- OrigExitWeight = ExitWeight;
- // Estimated exit count is a ratio of the loop weight by the weight of the
- // edge exiting the loop, rounded to nearest.
- uint64_t ExitCount = llvm::divideNearest(LoopWeight, ExitWeight);
- // Estimated trip count is one plus estimated exit count.
- return ExitCount + 1;
- }
- Optional<unsigned>
- llvm::getLoopEstimatedTripCount(Loop *L,
- unsigned *EstimatedLoopInvocationWeight) {
- // Currently we take the estimate exit count only from the loop latch,
- // ignoring other exiting blocks. This can overestimate the trip count
- // if we exit through another exit, but can never underestimate it.
- // TODO: incorporate information from other exits
- if (BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L)) {
- uint64_t ExitWeight;
- if (Optional<uint64_t> EstTripCount =
- getEstimatedTripCount(LatchBranch, L, ExitWeight)) {
- if (EstimatedLoopInvocationWeight)
- *EstimatedLoopInvocationWeight = ExitWeight;
- return *EstTripCount;
- }
- }
- return None;
- }
- bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
- unsigned EstimatedloopInvocationWeight) {
- // At the moment, we currently support changing the estimate trip count of
- // the latch branch only. We could extend this API to manipulate estimated
- // trip counts for any exit.
- BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
- if (!LatchBranch)
- return false;
- // Calculate taken and exit weights.
- unsigned LatchExitWeight = 0;
- unsigned BackedgeTakenWeight = 0;
- if (EstimatedTripCount > 0) {
- LatchExitWeight = EstimatedloopInvocationWeight;
- BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
- }
- // Make a swap if back edge is taken when condition is "false".
- if (LatchBranch->getSuccessor(0) != L->getHeader())
- std::swap(BackedgeTakenWeight, LatchExitWeight);
- MDBuilder MDB(LatchBranch->getContext());
- // Set/Update profile metadata.
- LatchBranch->setMetadata(
- LLVMContext::MD_prof,
- MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
- return true;
- }
- bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
- ScalarEvolution &SE) {
- Loop *OuterL = InnerLoop->getParentLoop();
- if (!OuterL)
- return true;
- // Get the backedge taken count for the inner loop
- BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
- const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
- if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
- !InnerLoopBECountSC->getType()->isIntegerTy())
- return false;
- // Get whether count is invariant to the outer loop
- ScalarEvolution::LoopDisposition LD =
- SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
- if (LD != ScalarEvolution::LoopInvariant)
- return false;
- return true;
- }
- CmpInst::Predicate llvm::getMinMaxReductionPredicate(RecurKind RK) {
- switch (RK) {
- default:
- llvm_unreachable("Unknown min/max recurrence kind");
- case RecurKind::UMin:
- return CmpInst::ICMP_ULT;
- case RecurKind::UMax:
- return CmpInst::ICMP_UGT;
- case RecurKind::SMin:
- return CmpInst::ICMP_SLT;
- case RecurKind::SMax:
- return CmpInst::ICMP_SGT;
- case RecurKind::FMin:
- return CmpInst::FCMP_OLT;
- case RecurKind::FMax:
- return CmpInst::FCMP_OGT;
- }
- }
- Value *llvm::createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal,
- RecurKind RK, Value *Left, Value *Right) {
- if (auto VTy = dyn_cast<VectorType>(Left->getType()))
- StartVal = Builder.CreateVectorSplat(VTy->getElementCount(), StartVal);
- Value *Cmp =
- Builder.CreateCmp(CmpInst::ICMP_NE, Left, StartVal, "rdx.select.cmp");
- return Builder.CreateSelect(Cmp, Left, Right, "rdx.select");
- }
- Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
- Value *Right) {
- CmpInst::Predicate Pred = getMinMaxReductionPredicate(RK);
- Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
- Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
- return Select;
- }
- // Helper to generate an ordered reduction.
- Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
- unsigned Op, RecurKind RdxKind) {
- unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
- // Extract and apply reduction ops in ascending order:
- // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
- Value *Result = Acc;
- for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
- Value *Ext =
- Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
- if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
- Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
- "bin.rdx");
- } else {
- assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
- "Invalid min/max");
- Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
- }
- }
- return Result;
- }
- // Helper to generate a log2 shuffle reduction.
- Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
- unsigned Op, RecurKind RdxKind) {
- unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
- // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
- // and vector ops, reducing the set of values being computed by half each
- // round.
- assert(isPowerOf2_32(VF) &&
- "Reduction emission only supported for pow2 vectors!");
- // Note: fast-math-flags flags are controlled by the builder configuration
- // and are assumed to apply to all generated arithmetic instructions. Other
- // poison generating flags (nsw/nuw/inbounds/inrange/exact) are not part
- // of the builder configuration, and since they're not passed explicitly,
- // will never be relevant here. Note that it would be generally unsound to
- // propagate these from an intrinsic call to the expansion anyways as we/
- // change the order of operations.
- Value *TmpVec = Src;
- SmallVector<int, 32> ShuffleMask(VF);
- for (unsigned i = VF; i != 1; i >>= 1) {
- // Move the upper half of the vector to the lower half.
- for (unsigned j = 0; j != i / 2; ++j)
- ShuffleMask[j] = i / 2 + j;
- // Fill the rest of the mask with undef.
- std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
- Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
- if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
- TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
- "bin.rdx");
- } else {
- assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
- "Invalid min/max");
- TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
- }
- }
- // The result is in the first element of the vector.
- return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
- }
- Value *llvm::createSelectCmpTargetReduction(IRBuilderBase &Builder,
- const TargetTransformInfo *TTI,
- Value *Src,
- const RecurrenceDescriptor &Desc,
- PHINode *OrigPhi) {
- assert(RecurrenceDescriptor::isSelectCmpRecurrenceKind(
- Desc.getRecurrenceKind()) &&
- "Unexpected reduction kind");
- Value *InitVal = Desc.getRecurrenceStartValue();
- Value *NewVal = nullptr;
- // First use the original phi to determine the new value we're trying to
- // select from in the loop.
- SelectInst *SI = nullptr;
- for (auto *U : OrigPhi->users()) {
- if ((SI = dyn_cast<SelectInst>(U)))
- break;
- }
- assert(SI && "One user of the original phi should be a select");
- if (SI->getTrueValue() == OrigPhi)
- NewVal = SI->getFalseValue();
- else {
- assert(SI->getFalseValue() == OrigPhi &&
- "At least one input to the select should be the original Phi");
- NewVal = SI->getTrueValue();
- }
- // Create a splat vector with the new value and compare this to the vector
- // we want to reduce.
- ElementCount EC = cast<VectorType>(Src->getType())->getElementCount();
- Value *Right = Builder.CreateVectorSplat(EC, InitVal);
- Value *Cmp =
- Builder.CreateCmp(CmpInst::ICMP_NE, Src, Right, "rdx.select.cmp");
- // If any predicate is true it means that we want to select the new value.
- Cmp = Builder.CreateOrReduce(Cmp);
- return Builder.CreateSelect(Cmp, NewVal, InitVal, "rdx.select");
- }
- Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
- const TargetTransformInfo *TTI,
- Value *Src, RecurKind RdxKind) {
- auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
- switch (RdxKind) {
- case RecurKind::Add:
- return Builder.CreateAddReduce(Src);
- case RecurKind::Mul:
- return Builder.CreateMulReduce(Src);
- case RecurKind::And:
- return Builder.CreateAndReduce(Src);
- case RecurKind::Or:
- return Builder.CreateOrReduce(Src);
- case RecurKind::Xor:
- return Builder.CreateXorReduce(Src);
- case RecurKind::FMulAdd:
- case RecurKind::FAdd:
- return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
- Src);
- case RecurKind::FMul:
- return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
- case RecurKind::SMax:
- return Builder.CreateIntMaxReduce(Src, true);
- case RecurKind::SMin:
- return Builder.CreateIntMinReduce(Src, true);
- case RecurKind::UMax:
- return Builder.CreateIntMaxReduce(Src, false);
- case RecurKind::UMin:
- return Builder.CreateIntMinReduce(Src, false);
- case RecurKind::FMax:
- return Builder.CreateFPMaxReduce(Src);
- case RecurKind::FMin:
- return Builder.CreateFPMinReduce(Src);
- default:
- llvm_unreachable("Unhandled opcode");
- }
- }
- Value *llvm::createTargetReduction(IRBuilderBase &B,
- const TargetTransformInfo *TTI,
- const RecurrenceDescriptor &Desc, Value *Src,
- PHINode *OrigPhi) {
- // TODO: Support in-order reductions based on the recurrence descriptor.
- // All ops in the reduction inherit fast-math-flags from the recurrence
- // descriptor.
- IRBuilderBase::FastMathFlagGuard FMFGuard(B);
- B.setFastMathFlags(Desc.getFastMathFlags());
- RecurKind RK = Desc.getRecurrenceKind();
- if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
- return createSelectCmpTargetReduction(B, TTI, Src, Desc, OrigPhi);
- return createSimpleTargetReduction(B, TTI, Src, RK);
- }
- Value *llvm::createOrderedReduction(IRBuilderBase &B,
- const RecurrenceDescriptor &Desc,
- Value *Src, Value *Start) {
- assert((Desc.getRecurrenceKind() == RecurKind::FAdd ||
- Desc.getRecurrenceKind() == RecurKind::FMulAdd) &&
- "Unexpected reduction kind");
- assert(Src->getType()->isVectorTy() && "Expected a vector type");
- assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
- return B.CreateFAddReduce(Start, Src);
- }
- void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
- auto *VecOp = dyn_cast<Instruction>(I);
- if (!VecOp)
- return;
- auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
- : dyn_cast<Instruction>(OpValue);
- if (!Intersection)
- return;
- const unsigned Opcode = Intersection->getOpcode();
- VecOp->copyIRFlags(Intersection);
- for (auto *V : VL) {
- auto *Instr = dyn_cast<Instruction>(V);
- if (!Instr)
- continue;
- if (OpValue == nullptr || Opcode == Instr->getOpcode())
- VecOp->andIRFlags(V);
- }
- }
- bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
- ScalarEvolution &SE) {
- const SCEV *Zero = SE.getZero(S->getType());
- return SE.isAvailableAtLoopEntry(S, L) &&
- SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
- }
- bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
- ScalarEvolution &SE) {
- const SCEV *Zero = SE.getZero(S->getType());
- return SE.isAvailableAtLoopEntry(S, L) &&
- SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
- }
- bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
- bool Signed) {
- unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
- APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
- APInt::getMinValue(BitWidth);
- auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
- return SE.isAvailableAtLoopEntry(S, L) &&
- SE.isLoopEntryGuardedByCond(L, Predicate, S,
- SE.getConstant(Min));
- }
- bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
- bool Signed) {
- unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
- APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
- APInt::getMaxValue(BitWidth);
- auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
- return SE.isAvailableAtLoopEntry(S, L) &&
- SE.isLoopEntryGuardedByCond(L, Predicate, S,
- SE.getConstant(Max));
- }
- //===----------------------------------------------------------------------===//
- // rewriteLoopExitValues - Optimize IV users outside the loop.
- // As a side effect, reduces the amount of IV processing within the loop.
- //===----------------------------------------------------------------------===//
- static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
- SmallPtrSet<const Instruction *, 8> Visited;
- SmallVector<const Instruction *, 8> WorkList;
- Visited.insert(I);
- WorkList.push_back(I);
- while (!WorkList.empty()) {
- const Instruction *Curr = WorkList.pop_back_val();
- // This use is outside the loop, nothing to do.
- if (!L->contains(Curr))
- continue;
- // Do we assume it is a "hard" use which will not be eliminated easily?
- if (Curr->mayHaveSideEffects())
- return true;
- // Otherwise, add all its users to worklist.
- for (auto U : Curr->users()) {
- auto *UI = cast<Instruction>(U);
- if (Visited.insert(UI).second)
- WorkList.push_back(UI);
- }
- }
- return false;
- }
- // Collect information about PHI nodes which can be transformed in
- // rewriteLoopExitValues.
- struct RewritePhi {
- PHINode *PN; // For which PHI node is this replacement?
- unsigned Ith; // For which incoming value?
- const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
- Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
- bool HighCost; // Is this expansion a high-cost?
- RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
- bool H)
- : PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
- HighCost(H) {}
- };
- // Check whether it is possible to delete the loop after rewriting exit
- // value. If it is possible, ignore ReplaceExitValue and do rewriting
- // aggressively.
- static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
- BasicBlock *Preheader = L->getLoopPreheader();
- // If there is no preheader, the loop will not be deleted.
- if (!Preheader)
- return false;
- // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
- // We obviate multiple ExitingBlocks case for simplicity.
- // TODO: If we see testcase with multiple ExitingBlocks can be deleted
- // after exit value rewriting, we can enhance the logic here.
- SmallVector<BasicBlock *, 4> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
- if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
- return false;
- BasicBlock *ExitBlock = ExitBlocks[0];
- BasicBlock::iterator BI = ExitBlock->begin();
- while (PHINode *P = dyn_cast<PHINode>(BI)) {
- Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
- // If the Incoming value of P is found in RewritePhiSet, we know it
- // could be rewritten to use a loop invariant value in transformation
- // phase later. Skip it in the loop invariant check below.
- bool found = false;
- for (const RewritePhi &Phi : RewritePhiSet) {
- unsigned i = Phi.Ith;
- if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
- found = true;
- break;
- }
- }
- Instruction *I;
- if (!found && (I = dyn_cast<Instruction>(Incoming)))
- if (!L->hasLoopInvariantOperands(I))
- return false;
- ++BI;
- }
- for (auto *BB : L->blocks())
- if (llvm::any_of(*BB, [](Instruction &I) {
- return I.mayHaveSideEffects();
- }))
- return false;
- return true;
- }
- int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
- ScalarEvolution *SE,
- const TargetTransformInfo *TTI,
- SCEVExpander &Rewriter, DominatorTree *DT,
- ReplaceExitVal ReplaceExitValue,
- SmallVector<WeakTrackingVH, 16> &DeadInsts) {
- // Check a pre-condition.
- assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
- "Indvars did not preserve LCSSA!");
- SmallVector<BasicBlock*, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
- SmallVector<RewritePhi, 8> RewritePhiSet;
- // Find all values that are computed inside the loop, but used outside of it.
- // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
- // the exit blocks of the loop to find them.
- for (BasicBlock *ExitBB : ExitBlocks) {
- // If there are no PHI nodes in this exit block, then no values defined
- // inside the loop are used on this path, skip it.
- PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
- if (!PN) continue;
- unsigned NumPreds = PN->getNumIncomingValues();
- // Iterate over all of the PHI nodes.
- BasicBlock::iterator BBI = ExitBB->begin();
- while ((PN = dyn_cast<PHINode>(BBI++))) {
- if (PN->use_empty())
- continue; // dead use, don't replace it
- if (!SE->isSCEVable(PN->getType()))
- continue;
- // Iterate over all of the values in all the PHI nodes.
- for (unsigned i = 0; i != NumPreds; ++i) {
- // If the value being merged in is not integer or is not defined
- // in the loop, skip it.
- Value *InVal = PN->getIncomingValue(i);
- if (!isa<Instruction>(InVal))
- continue;
- // If this pred is for a subloop, not L itself, skip it.
- if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
- continue; // The Block is in a subloop, skip it.
- // Check that InVal is defined in the loop.
- Instruction *Inst = cast<Instruction>(InVal);
- if (!L->contains(Inst))
- continue;
- // Okay, this instruction has a user outside of the current loop
- // and varies predictably *inside* the loop. Evaluate the value it
- // contains when the loop exits, if possible. We prefer to start with
- // expressions which are true for all exits (so as to maximize
- // expression reuse by the SCEVExpander), but resort to per-exit
- // evaluation if that fails.
- const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
- if (isa<SCEVCouldNotCompute>(ExitValue) ||
- !SE->isLoopInvariant(ExitValue, L) ||
- !isSafeToExpand(ExitValue, *SE)) {
- // TODO: This should probably be sunk into SCEV in some way; maybe a
- // getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
- // most SCEV expressions and other recurrence types (e.g. shift
- // recurrences). Is there existing code we can reuse?
- const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
- if (isa<SCEVCouldNotCompute>(ExitCount))
- continue;
- if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
- if (AddRec->getLoop() == L)
- ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
- if (isa<SCEVCouldNotCompute>(ExitValue) ||
- !SE->isLoopInvariant(ExitValue, L) ||
- !isSafeToExpand(ExitValue, *SE))
- continue;
- }
- // Computing the value outside of the loop brings no benefit if it is
- // definitely used inside the loop in a way which can not be optimized
- // away. Avoid doing so unless we know we have a value which computes
- // the ExitValue already. TODO: This should be merged into SCEV
- // expander to leverage its knowledge of existing expressions.
- if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
- !isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
- continue;
- // Check if expansions of this SCEV would count as being high cost.
- bool HighCost = Rewriter.isHighCostExpansion(
- ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
- // Note that we must not perform expansions until after
- // we query *all* the costs, because if we perform temporary expansion
- // inbetween, one that we might not intend to keep, said expansion
- // *may* affect cost calculation of the the next SCEV's we'll query,
- // and next SCEV may errneously get smaller cost.
- // Collect all the candidate PHINodes to be rewritten.
- RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
- }
- }
- }
- // TODO: evaluate whether it is beneficial to change how we calculate
- // high-cost: if we have SCEV 'A' which we know we will expand, should we
- // calculate the cost of other SCEV's after expanding SCEV 'A', thus
- // potentially giving cost bonus to those other SCEV's?
- bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
- int NumReplaced = 0;
- // Transformation.
- for (const RewritePhi &Phi : RewritePhiSet) {
- PHINode *PN = Phi.PN;
- // Only do the rewrite when the ExitValue can be expanded cheaply.
- // If LoopCanBeDel is true, rewrite exit value aggressively.
- if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost)
- continue;
- Value *ExitVal = Rewriter.expandCodeFor(
- Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
- LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
- << '\n'
- << " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
- #ifndef NDEBUG
- // If we reuse an instruction from a loop which is neither L nor one of
- // its containing loops, we end up breaking LCSSA form for this loop by
- // creating a new use of its instruction.
- if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
- if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
- if (EVL != L)
- assert(EVL->contains(L) && "LCSSA breach detected!");
- #endif
- NumReplaced++;
- Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
- PN->setIncomingValue(Phi.Ith, ExitVal);
- // It's necessary to tell ScalarEvolution about this explicitly so that
- // it can walk the def-use list and forget all SCEVs, as it may not be
- // watching the PHI itself. Once the new exit value is in place, there
- // may not be a def-use connection between the loop and every instruction
- // which got a SCEVAddRecExpr for that loop.
- SE->forgetValue(PN);
- // If this instruction is dead now, delete it. Don't do it now to avoid
- // invalidating iterators.
- if (isInstructionTriviallyDead(Inst, TLI))
- DeadInsts.push_back(Inst);
- // Replace PN with ExitVal if that is legal and does not break LCSSA.
- if (PN->getNumIncomingValues() == 1 &&
- LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
- PN->replaceAllUsesWith(ExitVal);
- PN->eraseFromParent();
- }
- }
- // The insertion point instruction may have been deleted; clear it out
- // so that the rewriter doesn't trip over it later.
- Rewriter.clearInsertPoint();
- return NumReplaced;
- }
- /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
- /// \p OrigLoop.
- void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
- Loop *RemainderLoop, uint64_t UF) {
- assert(UF > 0 && "Zero unrolled factor is not supported");
- assert(UnrolledLoop != RemainderLoop &&
- "Unrolled and Remainder loops are expected to distinct");
- // Get number of iterations in the original scalar loop.
- unsigned OrigLoopInvocationWeight = 0;
- Optional<unsigned> OrigAverageTripCount =
- getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
- if (!OrigAverageTripCount)
- return;
- // Calculate number of iterations in unrolled loop.
- unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
- // Calculate number of iterations for remainder loop.
- unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
- setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
- OrigLoopInvocationWeight);
- setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
- OrigLoopInvocationWeight);
- }
- /// Utility that implements appending of loops onto a worklist.
- /// Loops are added in preorder (analogous for reverse postorder for trees),
- /// and the worklist is processed LIFO.
- template <typename RangeT>
- void llvm::appendReversedLoopsToWorklist(
- RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
- // We use an internal worklist to build up the preorder traversal without
- // recursion.
- SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
- // We walk the initial sequence of loops in reverse because we generally want
- // to visit defs before uses and the worklist is LIFO.
- for (Loop *RootL : Loops) {
- assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
- assert(PreOrderWorklist.empty() &&
- "Must start with an empty preorder walk worklist.");
- PreOrderWorklist.push_back(RootL);
- do {
- Loop *L = PreOrderWorklist.pop_back_val();
- PreOrderWorklist.append(L->begin(), L->end());
- PreOrderLoops.push_back(L);
- } while (!PreOrderWorklist.empty());
- Worklist.insert(std::move(PreOrderLoops));
- PreOrderLoops.clear();
- }
- }
- template <typename RangeT>
- void llvm::appendLoopsToWorklist(RangeT &&Loops,
- SmallPriorityWorklist<Loop *, 4> &Worklist) {
- appendReversedLoopsToWorklist(reverse(Loops), Worklist);
- }
- template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
- ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
- template void
- llvm::appendLoopsToWorklist<Loop &>(Loop &L,
- SmallPriorityWorklist<Loop *, 4> &Worklist);
- void llvm::appendLoopsToWorklist(LoopInfo &LI,
- SmallPriorityWorklist<Loop *, 4> &Worklist) {
- appendReversedLoopsToWorklist(LI, Worklist);
- }
- Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
- LoopInfo *LI, LPPassManager *LPM) {
- Loop &New = *LI->AllocateLoop();
- if (PL)
- PL->addChildLoop(&New);
- else
- LI->addTopLevelLoop(&New);
- if (LPM)
- LPM->addLoop(New);
- // Add all of the blocks in L to the new loop.
- for (BasicBlock *BB : L->blocks())
- if (LI->getLoopFor(BB) == L)
- New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), *LI);
- // Add all of the subloops to the new loop.
- for (Loop *I : *L)
- cloneLoop(I, &New, VM, LI, LPM);
- return &New;
- }
- /// IR Values for the lower and upper bounds of a pointer evolution. We
- /// need to use value-handles because SCEV expansion can invalidate previously
- /// expanded values. Thus expansion of a pointer can invalidate the bounds for
- /// a previous one.
- struct PointerBounds {
- TrackingVH<Value> Start;
- TrackingVH<Value> End;
- };
- /// Expand code for the lower and upper bound of the pointer group \p CG
- /// in \p TheLoop. \return the values for the bounds.
- static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
- Loop *TheLoop, Instruction *Loc,
- SCEVExpander &Exp) {
- LLVMContext &Ctx = Loc->getContext();
- Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace);
- Value *Start = nullptr, *End = nullptr;
- LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
- Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
- End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
- LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
- return {Start, End};
- }
- /// Turns a collection of checks into a collection of expanded upper and
- /// lower bounds for both pointers in the check.
- static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
- expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
- Instruction *Loc, SCEVExpander &Exp) {
- SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
- // Here we're relying on the SCEV Expander's cache to only emit code for the
- // same bounds once.
- transform(PointerChecks, std::back_inserter(ChecksWithBounds),
- [&](const RuntimePointerCheck &Check) {
- PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
- Second = expandBounds(Check.second, L, Loc, Exp);
- return std::make_pair(First, Second);
- });
- return ChecksWithBounds;
- }
- Value *llvm::addRuntimeChecks(
- Instruction *Loc, Loop *TheLoop,
- const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
- SCEVExpander &Exp) {
- // TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
- // TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
- auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
- LLVMContext &Ctx = Loc->getContext();
- IRBuilder<InstSimplifyFolder> ChkBuilder(Ctx,
- Loc->getModule()->getDataLayout());
- ChkBuilder.SetInsertPoint(Loc);
- // Our instructions might fold to a constant.
- Value *MemoryRuntimeCheck = nullptr;
- for (const auto &Check : ExpandedChecks) {
- const PointerBounds &A = Check.first, &B = Check.second;
- // Check if two pointers (A and B) conflict where conflict is computed as:
- // start(A) <= end(B) && start(B) <= end(A)
- unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
- unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
- assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
- (AS1 == A.End->getType()->getPointerAddressSpace()) &&
- "Trying to bounds check pointers with different address spaces");
- Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
- Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
- Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
- Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
- Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
- Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
- // [A|B].Start points to the first accessed byte under base [A|B].
- // [A|B].End points to the last accessed byte, plus one.
- // There is no conflict when the intervals are disjoint:
- // NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
- //
- // bound0 = (B.Start < A.End)
- // bound1 = (A.Start < B.End)
- // IsConflict = bound0 & bound1
- Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
- Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
- Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
- if (MemoryRuntimeCheck) {
- IsConflict =
- ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
- }
- MemoryRuntimeCheck = IsConflict;
- }
- return MemoryRuntimeCheck;
- }
- Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L,
- unsigned MSSAThreshold,
- MemorySSA &MSSA,
- AAResults &AA) {
- auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
- if (!TI || !TI->isConditional())
- return {};
- auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
- // The case with the condition outside the loop should already be handled
- // earlier.
- if (!CondI || !L.contains(CondI))
- return {};
- SmallVector<Instruction *> InstToDuplicate;
- InstToDuplicate.push_back(CondI);
- SmallVector<Value *, 4> WorkList;
- WorkList.append(CondI->op_begin(), CondI->op_end());
- SmallVector<MemoryAccess *, 4> AccessesToCheck;
- SmallVector<MemoryLocation, 4> AccessedLocs;
- while (!WorkList.empty()) {
- Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
- if (!I || !L.contains(I))
- continue;
- // TODO: support additional instructions.
- if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
- return {};
- // Do not duplicate volatile and atomic loads.
- if (auto *LI = dyn_cast<LoadInst>(I))
- if (LI->isVolatile() || LI->isAtomic())
- return {};
- InstToDuplicate.push_back(I);
- if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
- if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
- // Queue the defining access to check for alias checks.
- AccessesToCheck.push_back(MemUse->getDefiningAccess());
- AccessedLocs.push_back(MemoryLocation::get(I));
- } else {
- // MemoryDefs may clobber the location or may be atomic memory
- // operations. Bail out.
- return {};
- }
- }
- WorkList.append(I->op_begin(), I->op_end());
- }
- if (InstToDuplicate.empty())
- return {};
- SmallVector<BasicBlock *, 4> ExitingBlocks;
- L.getExitingBlocks(ExitingBlocks);
- auto HasNoClobbersOnPath =
- [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
- MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
- SmallVector<MemoryAccess *, 4> AccessesToCheck)
- -> Optional<IVConditionInfo> {
- IVConditionInfo Info;
- // First, collect all blocks in the loop that are on a patch from Succ
- // to the header.
- SmallVector<BasicBlock *, 4> WorkList;
- WorkList.push_back(Succ);
- WorkList.push_back(Header);
- SmallPtrSet<BasicBlock *, 4> Seen;
- Seen.insert(Header);
- Info.PathIsNoop &=
- all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
- while (!WorkList.empty()) {
- BasicBlock *Current = WorkList.pop_back_val();
- if (!L.contains(Current))
- continue;
- const auto &SeenIns = Seen.insert(Current);
- if (!SeenIns.second)
- continue;
- Info.PathIsNoop &= all_of(
- *Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
- WorkList.append(succ_begin(Current), succ_end(Current));
- }
- // Require at least 2 blocks on a path through the loop. This skips
- // paths that directly exit the loop.
- if (Seen.size() < 2)
- return {};
- // Next, check if there are any MemoryDefs that are on the path through
- // the loop (in the Seen set) and they may-alias any of the locations in
- // AccessedLocs. If that is the case, they may modify the condition and
- // partial unswitching is not possible.
- SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
- while (!AccessesToCheck.empty()) {
- MemoryAccess *Current = AccessesToCheck.pop_back_val();
- auto SeenI = SeenAccesses.insert(Current);
- if (!SeenI.second || !Seen.contains(Current->getBlock()))
- continue;
- // Bail out if exceeded the threshold.
- if (SeenAccesses.size() >= MSSAThreshold)
- return {};
- // MemoryUse are read-only accesses.
- if (isa<MemoryUse>(Current))
- continue;
- // For a MemoryDef, check if is aliases any of the location feeding
- // the original condition.
- if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
- if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
- return isModSet(
- AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
- }))
- return {};
- }
- for (Use &U : Current->uses())
- AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
- }
- // We could also allow loops with known trip counts without mustprogress,
- // but ScalarEvolution may not be available.
- Info.PathIsNoop &= isMustProgress(&L);
- // If the path is considered a no-op so far, check if it reaches a
- // single exit block without any phis. This ensures no values from the
- // loop are used outside of the loop.
- if (Info.PathIsNoop) {
- for (auto *Exiting : ExitingBlocks) {
- if (!Seen.contains(Exiting))
- continue;
- for (auto *Succ : successors(Exiting)) {
- if (L.contains(Succ))
- continue;
- Info.PathIsNoop &= llvm::empty(Succ->phis()) &&
- (!Info.ExitForPath || Info.ExitForPath == Succ);
- if (!Info.PathIsNoop)
- break;
- assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
- "cannot have multiple exit blocks");
- Info.ExitForPath = Succ;
- }
- }
- }
- if (!Info.ExitForPath)
- Info.PathIsNoop = false;
- Info.InstToDuplicate = InstToDuplicate;
- return Info;
- };
- // If we branch to the same successor, partial unswitching will not be
- // beneficial.
- if (TI->getSuccessor(0) == TI->getSuccessor(1))
- return {};
- if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
- AccessesToCheck)) {
- Info->KnownValue = ConstantInt::getTrue(TI->getContext());
- return Info;
- }
- if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
- AccessesToCheck)) {
- Info->KnownValue = ConstantInt::getFalse(TI->getContext());
- return Info;
- }
- return {};
- }
|