123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931 |
- //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass performs several transformations to transform natural loops into a
- // simpler form, which makes subsequent analyses and transformations simpler and
- // more effective.
- //
- // Loop pre-header insertion guarantees that there is a single, non-critical
- // entry edge from outside of the loop to the loop header. This simplifies a
- // number of analyses and transformations, such as LICM.
- //
- // Loop exit-block insertion guarantees that all exit blocks from the loop
- // (blocks which are outside of the loop that have predecessors inside of the
- // loop) only have predecessors from inside of the loop (and are thus dominated
- // by the loop header). This simplifies transformations such as store-sinking
- // that are built into LICM.
- //
- // This pass also guarantees that loops will have exactly one backedge.
- //
- // Indirectbr instructions introduce several complications. If the loop
- // contains or is entered by an indirectbr instruction, it may not be possible
- // to transform the loop and make these guarantees. Client code should check
- // that these conditions are true before relying on them.
- //
- // Similar complications arise from callbr instructions, particularly in
- // asm-goto where blockaddress expressions are used.
- //
- // Note that the simplifycfg pass will clean up blocks which are split out but
- // end up being unnecessary, so usage of this pass should not pessimize
- // generated code.
- //
- // This pass obviously modifies the CFG, but updates loop information and
- // dominator information.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/LoopSimplify.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/SetOperations.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/DependenceAnalysis.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Utils.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-simplify"
- STATISTIC(NumNested , "Number of nested loops split out");
- // If the block isn't already, move the new block to right after some 'outside
- // block' block. This prevents the preheader from being placed inside the loop
- // body, e.g. when the loop hasn't been rotated.
- static void placeSplitBlockCarefully(BasicBlock *NewBB,
- SmallVectorImpl<BasicBlock *> &SplitPreds,
- Loop *L) {
- // Check to see if NewBB is already well placed.
- Function::iterator BBI = --NewBB->getIterator();
- for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
- if (&*BBI == SplitPreds[i])
- return;
- }
- // If it isn't already after an outside block, move it after one. This is
- // always good as it makes the uncond branch from the outside block into a
- // fall-through.
- // Figure out *which* outside block to put this after. Prefer an outside
- // block that neighbors a BB actually in the loop.
- BasicBlock *FoundBB = nullptr;
- for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
- Function::iterator BBI = SplitPreds[i]->getIterator();
- if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
- FoundBB = SplitPreds[i];
- break;
- }
- }
- // If our heuristic for a *good* bb to place this after doesn't find
- // anything, just pick something. It's likely better than leaving it within
- // the loop.
- if (!FoundBB)
- FoundBB = SplitPreds[0];
- NewBB->moveAfter(FoundBB);
- }
- /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
- /// preheader, this method is called to insert one. This method has two phases:
- /// preheader insertion and analysis updating.
- ///
- BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
- LoopInfo *LI, MemorySSAUpdater *MSSAU,
- bool PreserveLCSSA) {
- BasicBlock *Header = L->getHeader();
- // Compute the set of predecessors of the loop that are not in the loop.
- SmallVector<BasicBlock*, 8> OutsideBlocks;
- for (BasicBlock *P : predecessors(Header)) {
- if (!L->contains(P)) { // Coming in from outside the loop?
- // If the loop is branched to from an indirect terminator, we won't
- // be able to fully transform the loop, because it prohibits
- // edge splitting.
- if (P->getTerminator()->isIndirectTerminator())
- return nullptr;
- // Keep track of it.
- OutsideBlocks.push_back(P);
- }
- }
- // Split out the loop pre-header.
- BasicBlock *PreheaderBB;
- PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
- LI, MSSAU, PreserveLCSSA);
- if (!PreheaderBB)
- return nullptr;
- LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
- << PreheaderBB->getName() << "\n");
- // Make sure that NewBB is put someplace intelligent, which doesn't mess up
- // code layout too horribly.
- placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
- return PreheaderBB;
- }
- /// Add the specified block, and all of its predecessors, to the specified set,
- /// if it's not already in there. Stop predecessor traversal when we reach
- /// StopBlock.
- static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
- SmallPtrSetImpl<BasicBlock *> &Blocks) {
- SmallVector<BasicBlock *, 8> Worklist;
- Worklist.push_back(InputBB);
- do {
- BasicBlock *BB = Worklist.pop_back_val();
- if (Blocks.insert(BB).second && BB != StopBlock)
- // If BB is not already processed and it is not a stop block then
- // insert its predecessor in the work list
- append_range(Worklist, predecessors(BB));
- } while (!Worklist.empty());
- }
- /// The first part of loop-nestification is to find a PHI node that tells
- /// us how to partition the loops.
- static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
- AssumptionCache *AC) {
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
- PHINode *PN = cast<PHINode>(I);
- ++I;
- if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
- // This is a degenerate PHI already, don't modify it!
- PN->replaceAllUsesWith(V);
- PN->eraseFromParent();
- continue;
- }
- // Scan this PHI node looking for a use of the PHI node by itself.
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- if (PN->getIncomingValue(i) == PN &&
- L->contains(PN->getIncomingBlock(i)))
- // We found something tasty to remove.
- return PN;
- }
- return nullptr;
- }
- /// If this loop has multiple backedges, try to pull one of them out into
- /// a nested loop.
- ///
- /// This is important for code that looks like
- /// this:
- ///
- /// Loop:
- /// ...
- /// br cond, Loop, Next
- /// ...
- /// br cond2, Loop, Out
- ///
- /// To identify this common case, we look at the PHI nodes in the header of the
- /// loop. PHI nodes with unchanging values on one backedge correspond to values
- /// that change in the "outer" loop, but not in the "inner" loop.
- ///
- /// If we are able to separate out a loop, return the new outer loop that was
- /// created.
- ///
- static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
- DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, bool PreserveLCSSA,
- AssumptionCache *AC, MemorySSAUpdater *MSSAU) {
- // Don't try to separate loops without a preheader.
- if (!Preheader)
- return nullptr;
- // Treat the presence of convergent functions conservatively. The
- // transformation is invalid if calls to certain convergent
- // functions (like an AMDGPU barrier) get included in the resulting
- // inner loop. But blocks meant for the inner loop will be
- // identified later at a point where it's too late to abort the
- // transformation. Also, the convergent attribute is not really
- // sufficient to express the semantics of functions that are
- // affected by this transformation. So we choose to back off if such
- // a function call is present until a better alternative becomes
- // available. This is similar to the conservative treatment of
- // convergent function calls in GVNHoist and JumpThreading.
- for (auto BB : L->blocks()) {
- for (auto &II : *BB) {
- if (auto CI = dyn_cast<CallBase>(&II)) {
- if (CI->isConvergent()) {
- return nullptr;
- }
- }
- }
- }
- // The header is not a landing pad; preheader insertion should ensure this.
- BasicBlock *Header = L->getHeader();
- assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
- PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
- if (!PN) return nullptr; // No known way to partition.
- // Pull out all predecessors that have varying values in the loop. This
- // handles the case when a PHI node has multiple instances of itself as
- // arguments.
- SmallVector<BasicBlock*, 8> OuterLoopPreds;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- if (PN->getIncomingValue(i) != PN ||
- !L->contains(PN->getIncomingBlock(i))) {
- // We can't split indirect control flow edges.
- if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator())
- return nullptr;
- OuterLoopPreds.push_back(PN->getIncomingBlock(i));
- }
- }
- LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
- // If ScalarEvolution is around and knows anything about values in
- // this loop, tell it to forget them, because we're about to
- // substantially change it.
- if (SE)
- SE->forgetLoop(L);
- BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
- DT, LI, MSSAU, PreserveLCSSA);
- // Make sure that NewBB is put someplace intelligent, which doesn't mess up
- // code layout too horribly.
- placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
- // Create the new outer loop.
- Loop *NewOuter = LI->AllocateLoop();
- // Change the parent loop to use the outer loop as its child now.
- if (Loop *Parent = L->getParentLoop())
- Parent->replaceChildLoopWith(L, NewOuter);
- else
- LI->changeTopLevelLoop(L, NewOuter);
- // L is now a subloop of our outer loop.
- NewOuter->addChildLoop(L);
- for (BasicBlock *BB : L->blocks())
- NewOuter->addBlockEntry(BB);
- // Now reset the header in L, which had been moved by
- // SplitBlockPredecessors for the outer loop.
- L->moveToHeader(Header);
- // Determine which blocks should stay in L and which should be moved out to
- // the Outer loop now.
- SmallPtrSet<BasicBlock *, 4> BlocksInL;
- for (BasicBlock *P : predecessors(Header)) {
- if (DT->dominates(Header, P))
- addBlockAndPredsToSet(P, Header, BlocksInL);
- }
- // Scan all of the loop children of L, moving them to OuterLoop if they are
- // not part of the inner loop.
- const std::vector<Loop*> &SubLoops = L->getSubLoops();
- for (size_t I = 0; I != SubLoops.size(); )
- if (BlocksInL.count(SubLoops[I]->getHeader()))
- ++I; // Loop remains in L
- else
- NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
- SmallVector<BasicBlock *, 8> OuterLoopBlocks;
- OuterLoopBlocks.push_back(NewBB);
- // Now that we know which blocks are in L and which need to be moved to
- // OuterLoop, move any blocks that need it.
- for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
- BasicBlock *BB = L->getBlocks()[i];
- if (!BlocksInL.count(BB)) {
- // Move this block to the parent, updating the exit blocks sets
- L->removeBlockFromLoop(BB);
- if ((*LI)[BB] == L) {
- LI->changeLoopFor(BB, NewOuter);
- OuterLoopBlocks.push_back(BB);
- }
- --i;
- }
- }
- // Split edges to exit blocks from the inner loop, if they emerged in the
- // process of separating the outer one.
- formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA);
- if (PreserveLCSSA) {
- // Fix LCSSA form for L. Some values, which previously were only used inside
- // L, can now be used in NewOuter loop. We need to insert phi-nodes for them
- // in corresponding exit blocks.
- // We don't need to form LCSSA recursively, because there cannot be uses
- // inside a newly created loop of defs from inner loops as those would
- // already be a use of an LCSSA phi node.
- formLCSSA(*L, *DT, LI, SE);
- assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) &&
- "LCSSA is broken after separating nested loops!");
- }
- return NewOuter;
- }
- /// This method is called when the specified loop has more than one
- /// backedge in it.
- ///
- /// If this occurs, revector all of these backedges to target a new basic block
- /// and have that block branch to the loop header. This ensures that loops
- /// have exactly one backedge.
- static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
- DominatorTree *DT, LoopInfo *LI,
- MemorySSAUpdater *MSSAU) {
- assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
- // Get information about the loop
- BasicBlock *Header = L->getHeader();
- Function *F = Header->getParent();
- // Unique backedge insertion currently depends on having a preheader.
- if (!Preheader)
- return nullptr;
- // The header is not an EH pad; preheader insertion should ensure this.
- assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
- // Figure out which basic blocks contain back-edges to the loop header.
- std::vector<BasicBlock*> BackedgeBlocks;
- for (BasicBlock *P : predecessors(Header)) {
- // Indirect edges cannot be split, so we must fail if we find one.
- if (P->getTerminator()->isIndirectTerminator())
- return nullptr;
- if (P != Preheader) BackedgeBlocks.push_back(P);
- }
- // Create and insert the new backedge block...
- BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
- Header->getName() + ".backedge", F);
- BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
- BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
- LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
- << BEBlock->getName() << "\n");
- // Move the new backedge block to right after the last backedge block.
- Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
- F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
- // Now that the block has been inserted into the function, create PHI nodes in
- // the backedge block which correspond to any PHI nodes in the header block.
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
- PN->getName()+".be", BETerminator);
- // Loop over the PHI node, moving all entries except the one for the
- // preheader over to the new PHI node.
- unsigned PreheaderIdx = ~0U;
- bool HasUniqueIncomingValue = true;
- Value *UniqueValue = nullptr;
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- BasicBlock *IBB = PN->getIncomingBlock(i);
- Value *IV = PN->getIncomingValue(i);
- if (IBB == Preheader) {
- PreheaderIdx = i;
- } else {
- NewPN->addIncoming(IV, IBB);
- if (HasUniqueIncomingValue) {
- if (!UniqueValue)
- UniqueValue = IV;
- else if (UniqueValue != IV)
- HasUniqueIncomingValue = false;
- }
- }
- }
- // Delete all of the incoming values from the old PN except the preheader's
- assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
- if (PreheaderIdx != 0) {
- PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
- PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
- }
- // Nuke all entries except the zero'th.
- for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
- PN->removeIncomingValue(e-i, false);
- // Finally, add the newly constructed PHI node as the entry for the BEBlock.
- PN->addIncoming(NewPN, BEBlock);
- // As an optimization, if all incoming values in the new PhiNode (which is a
- // subset of the incoming values of the old PHI node) have the same value,
- // eliminate the PHI Node.
- if (HasUniqueIncomingValue) {
- NewPN->replaceAllUsesWith(UniqueValue);
- BEBlock->getInstList().erase(NewPN);
- }
- }
- // Now that all of the PHI nodes have been inserted and adjusted, modify the
- // backedge blocks to jump to the BEBlock instead of the header.
- // If one of the backedges has llvm.loop metadata attached, we remove
- // it from the backedge and add it to BEBlock.
- unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop");
- MDNode *LoopMD = nullptr;
- for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
- Instruction *TI = BackedgeBlocks[i]->getTerminator();
- if (!LoopMD)
- LoopMD = TI->getMetadata(LoopMDKind);
- TI->setMetadata(LoopMDKind, nullptr);
- TI->replaceSuccessorWith(Header, BEBlock);
- }
- BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD);
- //===--- Update all analyses which we must preserve now -----------------===//
- // Update Loop Information - we know that this block is now in the current
- // loop and all parent loops.
- L->addBasicBlockToLoop(BEBlock, *LI);
- // Update dominator information
- DT->splitBlock(BEBlock);
- if (MSSAU)
- MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader,
- BEBlock);
- return BEBlock;
- }
- /// Simplify one loop and queue further loops for simplification.
- static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
- DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, AssumptionCache *AC,
- MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
- bool Changed = false;
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- ReprocessLoop:
- // Check to see that no blocks (other than the header) in this loop have
- // predecessors that are not in the loop. This is not valid for natural
- // loops, but can occur if the blocks are unreachable. Since they are
- // unreachable we can just shamelessly delete those CFG edges!
- for (BasicBlock *BB : L->blocks()) {
- if (BB == L->getHeader())
- continue;
- SmallPtrSet<BasicBlock*, 4> BadPreds;
- for (BasicBlock *P : predecessors(BB))
- if (!L->contains(P))
- BadPreds.insert(P);
- // Delete each unique out-of-loop (and thus dead) predecessor.
- for (BasicBlock *P : BadPreds) {
- LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
- << P->getName() << "\n");
- // Zap the dead pred's terminator and replace it with unreachable.
- Instruction *TI = P->getTerminator();
- changeToUnreachable(TI, PreserveLCSSA,
- /*DTU=*/nullptr, MSSAU);
- Changed = true;
- }
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // If there are exiting blocks with branches on undef, resolve the undef in
- // the direction which will exit the loop. This will help simplify loop
- // trip count computations.
- SmallVector<BasicBlock*, 8> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- for (BasicBlock *ExitingBlock : ExitingBlocks)
- if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
- if (BI->isConditional()) {
- if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
- LLVM_DEBUG(dbgs()
- << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
- << ExitingBlock->getName() << "\n");
- BI->setCondition(ConstantInt::get(Cond->getType(),
- !L->contains(BI->getSuccessor(0))));
- Changed = true;
- }
- }
- // Does the loop already have a preheader? If so, don't insert one.
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) {
- Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA);
- if (Preheader)
- Changed = true;
- }
- // Next, check to make sure that all exit nodes of the loop only have
- // predecessors that are inside of the loop. This check guarantees that the
- // loop preheader/header will dominate the exit blocks. If the exit block has
- // predecessors from outside of the loop, split the edge now.
- if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA))
- Changed = true;
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // If the header has more than two predecessors at this point (from the
- // preheader and from multiple backedges), we must adjust the loop.
- BasicBlock *LoopLatch = L->getLoopLatch();
- if (!LoopLatch) {
- // If this is really a nested loop, rip it out into a child loop. Don't do
- // this for loops with a giant number of backedges, just factor them into a
- // common backedge instead.
- if (L->getNumBackEdges() < 8) {
- if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE,
- PreserveLCSSA, AC, MSSAU)) {
- ++NumNested;
- // Enqueue the outer loop as it should be processed next in our
- // depth-first nest walk.
- Worklist.push_back(OuterL);
- // This is a big restructuring change, reprocess the whole loop.
- Changed = true;
- // GCC doesn't tail recursion eliminate this.
- // FIXME: It isn't clear we can't rely on LLVM to TRE this.
- goto ReprocessLoop;
- }
- }
- // If we either couldn't, or didn't want to, identify nesting of the loops,
- // insert a new block that all backedges target, then make it jump to the
- // loop header.
- LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU);
- if (LoopLatch)
- Changed = true;
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- // Scan over the PHI nodes in the loop header. Since they now have only two
- // incoming values (the loop is canonicalized), we may have simplified the PHI
- // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
- PHINode *PN;
- for (BasicBlock::iterator I = L->getHeader()->begin();
- (PN = dyn_cast<PHINode>(I++)); )
- if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) {
- if (SE) SE->forgetValue(PN);
- if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) {
- PN->replaceAllUsesWith(V);
- PN->eraseFromParent();
- Changed = true;
- }
- }
- // If this loop has multiple exits and the exits all go to the same
- // block, attempt to merge the exits. This helps several passes, such
- // as LoopRotation, which do not support loops with multiple exits.
- // SimplifyCFG also does this (and this code uses the same utility
- // function), however this code is loop-aware, where SimplifyCFG is
- // not. That gives it the advantage of being able to hoist
- // loop-invariant instructions out of the way to open up more
- // opportunities, and the disadvantage of having the responsibility
- // to preserve dominator information.
- auto HasUniqueExitBlock = [&]() {
- BasicBlock *UniqueExit = nullptr;
- for (auto *ExitingBB : ExitingBlocks)
- for (auto *SuccBB : successors(ExitingBB)) {
- if (L->contains(SuccBB))
- continue;
- if (!UniqueExit)
- UniqueExit = SuccBB;
- else if (UniqueExit != SuccBB)
- return false;
- }
- return true;
- };
- if (HasUniqueExitBlock()) {
- for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
- BasicBlock *ExitingBlock = ExitingBlocks[i];
- if (!ExitingBlock->getSinglePredecessor()) continue;
- BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
- if (!BI || !BI->isConditional()) continue;
- CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
- if (!CI || CI->getParent() != ExitingBlock) continue;
- // Attempt to hoist out all instructions except for the
- // comparison and the branch.
- bool AllInvariant = true;
- bool AnyInvariant = false;
- for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) {
- Instruction *Inst = &*I++;
- if (Inst == CI)
- continue;
- if (!L->makeLoopInvariant(
- Inst, AnyInvariant,
- Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) {
- AllInvariant = false;
- break;
- }
- }
- if (AnyInvariant) {
- Changed = true;
- // The loop disposition of all SCEV expressions that depend on any
- // hoisted values have also changed.
- if (SE)
- SE->forgetLoopDispositions(L);
- }
- if (!AllInvariant) continue;
- // The block has now been cleared of all instructions except for
- // a comparison and a conditional branch. SimplifyCFG may be able
- // to fold it now.
- if (!FoldBranchToCommonDest(BI, /*DTU=*/nullptr, MSSAU))
- continue;
- // Success. The block is now dead, so remove it from the loop,
- // update the dominator tree and delete it.
- LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
- << ExitingBlock->getName() << "\n");
- assert(pred_empty(ExitingBlock));
- Changed = true;
- LI->removeBlock(ExitingBlock);
- DomTreeNode *Node = DT->getNode(ExitingBlock);
- while (!Node->isLeaf()) {
- DomTreeNode *Child = Node->back();
- DT->changeImmediateDominator(Child, Node->getIDom());
- }
- DT->eraseNode(ExitingBlock);
- if (MSSAU) {
- SmallSetVector<BasicBlock *, 8> ExitBlockSet;
- ExitBlockSet.insert(ExitingBlock);
- MSSAU->removeBlocks(ExitBlockSet);
- }
- BI->getSuccessor(0)->removePredecessor(
- ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
- BI->getSuccessor(1)->removePredecessor(
- ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA);
- ExitingBlock->eraseFromParent();
- }
- }
- // Changing exit conditions for blocks may affect exit counts of this loop and
- // any of its paretns, so we must invalidate the entire subtree if we've made
- // any changes.
- if (Changed && SE)
- SE->forgetTopmostLoop(L);
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- return Changed;
- }
- bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
- ScalarEvolution *SE, AssumptionCache *AC,
- MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
- bool Changed = false;
- #ifndef NDEBUG
- // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA
- // form.
- if (PreserveLCSSA) {
- assert(DT && "DT not available.");
- assert(LI && "LI not available.");
- assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
- "Requested to preserve LCSSA, but it's already broken.");
- }
- #endif
- // Worklist maintains our depth-first queue of loops in this nest to process.
- SmallVector<Loop *, 4> Worklist;
- Worklist.push_back(L);
- // Walk the worklist from front to back, pushing newly found sub loops onto
- // the back. This will let us process loops from back to front in depth-first
- // order. We can use this simple process because loops form a tree.
- for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
- Loop *L2 = Worklist[Idx];
- Worklist.append(L2->begin(), L2->end());
- }
- while (!Worklist.empty())
- Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
- AC, MSSAU, PreserveLCSSA);
- return Changed;
- }
- namespace {
- struct LoopSimplify : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- LoopSimplify() : FunctionPass(ID) {
- initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- // We need loop information to identify the loops...
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<BasicAAWrapperPass>();
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<ScalarEvolutionWrapperPass>();
- AU.addPreserved<SCEVAAWrapperPass>();
- AU.addPreservedID(LCSSAID);
- AU.addPreserved<DependenceAnalysisWrapperPass>();
- AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
- AU.addPreserved<BranchProbabilityInfoWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
- void verifyAnalysis() const override;
- };
- }
- char LoopSimplify::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
- "Canonicalize natural loops", false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
- "Canonicalize natural loops", false, false)
- // Publicly exposed interface to pass...
- char &llvm::LoopSimplifyID = LoopSimplify::ID;
- Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
- /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
- /// it in any convenient order) inserting preheaders...
- ///
- bool LoopSimplify::runOnFunction(Function &F) {
- bool Changed = false;
- LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
- ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr;
- AssumptionCache *AC =
- &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- MemorySSA *MSSA = nullptr;
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
- if (MSSAAnalysis) {
- MSSA = &MSSAAnalysis->getMSSA();
- MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
- }
- bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
- // Simplify each loop nest in the function.
- for (auto *L : *LI)
- Changed |= simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA);
- #ifndef NDEBUG
- if (PreserveLCSSA) {
- bool InLCSSA = all_of(
- *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); });
- assert(InLCSSA && "LCSSA is broken after loop-simplify.");
- }
- #endif
- return Changed;
- }
- PreservedAnalyses LoopSimplifyPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- bool Changed = false;
- LoopInfo *LI = &AM.getResult<LoopAnalysis>(F);
- DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
- ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
- AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F);
- auto *MSSAAnalysis = AM.getCachedResult<MemorySSAAnalysis>(F);
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- if (MSSAAnalysis) {
- auto *MSSA = &MSSAAnalysis->getMSSA();
- MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
- }
- // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA
- // after simplifying the loops. MemorySSA is preserved if it exists.
- for (auto *L : *LI)
- Changed |=
- simplifyLoop(L, DT, LI, SE, AC, MSSAU.get(), /*PreserveLCSSA*/ false);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- PA.preserve<ScalarEvolutionAnalysis>();
- PA.preserve<DependenceAnalysis>();
- if (MSSAAnalysis)
- PA.preserve<MemorySSAAnalysis>();
- // BPI maps conditional terminators to probabilities, LoopSimplify can insert
- // blocks, but it does so only by splitting existing blocks and edges. This
- // results in the interesting property that all new terminators inserted are
- // unconditional branches which do not appear in BPI. All deletions are
- // handled via ValueHandle callbacks w/in BPI.
- PA.preserve<BranchProbabilityAnalysis>();
- return PA;
- }
- // FIXME: Restore this code when we re-enable verification in verifyAnalysis
- // below.
- #if 0
- static void verifyLoop(Loop *L) {
- // Verify subloops.
- for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
- verifyLoop(*I);
- // It used to be possible to just assert L->isLoopSimplifyForm(), however
- // with the introduction of indirectbr, there are now cases where it's
- // not possible to transform a loop as necessary. We can at least check
- // that there is an indirectbr near any time there's trouble.
- // Indirectbr can interfere with preheader and unique backedge insertion.
- if (!L->getLoopPreheader() || !L->getLoopLatch()) {
- bool HasIndBrPred = false;
- for (BasicBlock *Pred : predecessors(L->getHeader()))
- if (isa<IndirectBrInst>(Pred->getTerminator())) {
- HasIndBrPred = true;
- break;
- }
- assert(HasIndBrPred &&
- "LoopSimplify has no excuse for missing loop header info!");
- (void)HasIndBrPred;
- }
- // Indirectbr can interfere with exit block canonicalization.
- if (!L->hasDedicatedExits()) {
- bool HasIndBrExiting = false;
- SmallVector<BasicBlock*, 8> ExitingBlocks;
- L->getExitingBlocks(ExitingBlocks);
- for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
- if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
- HasIndBrExiting = true;
- break;
- }
- }
- assert(HasIndBrExiting &&
- "LoopSimplify has no excuse for missing exit block info!");
- (void)HasIndBrExiting;
- }
- }
- #endif
- void LoopSimplify::verifyAnalysis() const {
- // FIXME: This routine is being called mid-way through the loop pass manager
- // as loop passes destroy this analysis. That's actually fine, but we have no
- // way of expressing that here. Once all of the passes that destroy this are
- // hoisted out of the loop pass manager we can add back verification here.
- #if 0
- for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
- verifyLoop(*I);
- #endif
- }
|