123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514 |
- //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass transforms loops by placing phi nodes at the end of the loops for
- // all values that are live across the loop boundary. For example, it turns
- // the left into the right code:
- //
- // for (...) for (...)
- // if (c) if (c)
- // X1 = ... X1 = ...
- // else else
- // X2 = ... X2 = ...
- // X3 = phi(X1, X2) X3 = phi(X1, X2)
- // ... = X3 + 4 X4 = phi(X3)
- // ... = X4 + 4
- //
- // This is still valid LLVM; the extra phi nodes are purely redundant, and will
- // be trivially eliminated by InstCombine. The major benefit of this
- // transformation is that it makes many other loop optimizations, such as
- // LoopUnswitching, simpler.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/LCSSA.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DebugInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PredIteratorCache.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Transforms/Utils.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- using namespace llvm;
- #define DEBUG_TYPE "lcssa"
- STATISTIC(NumLCSSA, "Number of live out of a loop variables");
- #ifdef EXPENSIVE_CHECKS
- static bool VerifyLoopLCSSA = true;
- #else
- static bool VerifyLoopLCSSA = false;
- #endif
- static cl::opt<bool, true>
- VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
- cl::Hidden,
- cl::desc("Verify loop lcssa form (time consuming)"));
- /// Return true if the specified block is in the list.
- static bool isExitBlock(BasicBlock *BB,
- const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
- return is_contained(ExitBlocks, BB);
- }
- /// For every instruction from the worklist, check to see if it has any uses
- /// that are outside the current loop. If so, insert LCSSA PHI nodes and
- /// rewrite the uses.
- bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
- const DominatorTree &DT, const LoopInfo &LI,
- ScalarEvolution *SE, IRBuilderBase &Builder,
- SmallVectorImpl<PHINode *> *PHIsToRemove) {
- SmallVector<Use *, 16> UsesToRewrite;
- SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
- PredIteratorCache PredCache;
- bool Changed = false;
- IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
- // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
- // instructions within the same loops, computing the exit blocks is
- // expensive, and we're not mutating the loop structure.
- SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
- while (!Worklist.empty()) {
- UsesToRewrite.clear();
- Instruction *I = Worklist.pop_back_val();
- assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
- BasicBlock *InstBB = I->getParent();
- Loop *L = LI.getLoopFor(InstBB);
- assert(L && "Instruction belongs to a BB that's not part of a loop");
- if (!LoopExitBlocks.count(L))
- L->getExitBlocks(LoopExitBlocks[L]);
- assert(LoopExitBlocks.count(L));
- const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
- if (ExitBlocks.empty())
- continue;
- for (Use &U : I->uses()) {
- Instruction *User = cast<Instruction>(U.getUser());
- BasicBlock *UserBB = User->getParent();
- // For practical purposes, we consider that the use in a PHI
- // occurs in the respective predecessor block. For more info,
- // see the `phi` doc in LangRef and the LCSSA doc.
- if (auto *PN = dyn_cast<PHINode>(User))
- UserBB = PN->getIncomingBlock(U);
- if (InstBB != UserBB && !L->contains(UserBB))
- UsesToRewrite.push_back(&U);
- }
- // If there are no uses outside the loop, exit with no change.
- if (UsesToRewrite.empty())
- continue;
- ++NumLCSSA; // We are applying the transformation
- // Invoke instructions are special in that their result value is not
- // available along their unwind edge. The code below tests to see whether
- // DomBB dominates the value, so adjust DomBB to the normal destination
- // block, which is effectively where the value is first usable.
- BasicBlock *DomBB = InstBB;
- if (auto *Inv = dyn_cast<InvokeInst>(I))
- DomBB = Inv->getNormalDest();
- const DomTreeNode *DomNode = DT.getNode(DomBB);
- SmallVector<PHINode *, 16> AddedPHIs;
- SmallVector<PHINode *, 8> PostProcessPHIs;
- SmallVector<PHINode *, 4> InsertedPHIs;
- SSAUpdater SSAUpdate(&InsertedPHIs);
- SSAUpdate.Initialize(I->getType(), I->getName());
- // Force re-computation of I, as some users now need to use the new PHI
- // node.
- if (SE)
- SE->forgetValue(I);
- // Insert the LCSSA phi's into all of the exit blocks dominated by the
- // value, and add them to the Phi's map.
- for (BasicBlock *ExitBB : ExitBlocks) {
- if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
- continue;
- // If we already inserted something for this BB, don't reprocess it.
- if (SSAUpdate.HasValueForBlock(ExitBB))
- continue;
- Builder.SetInsertPoint(&ExitBB->front());
- PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
- I->getName() + ".lcssa");
- // Get the debug location from the original instruction.
- PN->setDebugLoc(I->getDebugLoc());
- // Add inputs from inside the loop for this PHI. This is valid
- // because `I` dominates `ExitBB` (checked above). This implies
- // that every incoming block/edge is dominated by `I` as well,
- // i.e. we can add uses of `I` to those incoming edges/append to the incoming
- // blocks without violating the SSA dominance property.
- for (BasicBlock *Pred : PredCache.get(ExitBB)) {
- PN->addIncoming(I, Pred);
- // If the exit block has a predecessor not within the loop, arrange for
- // the incoming value use corresponding to that predecessor to be
- // rewritten in terms of a different LCSSA PHI.
- if (!L->contains(Pred))
- UsesToRewrite.push_back(
- &PN->getOperandUse(PN->getOperandNumForIncomingValue(
- PN->getNumIncomingValues() - 1)));
- }
- AddedPHIs.push_back(PN);
- // Remember that this phi makes the value alive in this block.
- SSAUpdate.AddAvailableValue(ExitBB, PN);
- // LoopSimplify might fail to simplify some loops (e.g. when indirect
- // branches are involved). In such situations, it might happen that an
- // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
- // create PHIs in such an exit block, we are also inserting PHIs into L2's
- // header. This could break LCSSA form for L2 because these inserted PHIs
- // can also have uses outside of L2. Remember all PHIs in such situation
- // as to revisit than later on. FIXME: Remove this if indirectbr support
- // into LoopSimplify gets improved.
- if (auto *OtherLoop = LI.getLoopFor(ExitBB))
- if (!L->contains(OtherLoop))
- PostProcessPHIs.push_back(PN);
- }
- // Rewrite all uses outside the loop in terms of the new PHIs we just
- // inserted.
- for (Use *UseToRewrite : UsesToRewrite) {
- Instruction *User = cast<Instruction>(UseToRewrite->getUser());
- BasicBlock *UserBB = User->getParent();
- // For practical purposes, we consider that the use in a PHI
- // occurs in the respective predecessor block. For more info,
- // see the `phi` doc in LangRef and the LCSSA doc.
- if (auto *PN = dyn_cast<PHINode>(User))
- UserBB = PN->getIncomingBlock(*UseToRewrite);
- // If this use is in an exit block, rewrite to use the newly inserted PHI.
- // This is required for correctness because SSAUpdate doesn't handle uses
- // in the same block. It assumes the PHI we inserted is at the end of the
- // block.
- if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
- UseToRewrite->set(&UserBB->front());
- continue;
- }
- // If we added a single PHI, it must dominate all uses and we can directly
- // rename it.
- if (AddedPHIs.size() == 1) {
- UseToRewrite->set(AddedPHIs[0]);
- continue;
- }
- // Otherwise, do full PHI insertion.
- SSAUpdate.RewriteUse(*UseToRewrite);
- }
- SmallVector<DbgValueInst *, 4> DbgValues;
- llvm::findDbgValues(DbgValues, I);
- // Update pre-existing debug value uses that reside outside the loop.
- for (auto DVI : DbgValues) {
- BasicBlock *UserBB = DVI->getParent();
- if (InstBB == UserBB || L->contains(UserBB))
- continue;
- // We currently only handle debug values residing in blocks that were
- // traversed while rewriting the uses. If we inserted just a single PHI,
- // we will handle all relevant debug values.
- Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
- : SSAUpdate.FindValueForBlock(UserBB);
- if (V)
- DVI->replaceVariableLocationOp(I, V);
- }
- // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
- // to post-process them to keep LCSSA form.
- for (PHINode *InsertedPN : InsertedPHIs) {
- if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
- if (!L->contains(OtherLoop))
- PostProcessPHIs.push_back(InsertedPN);
- }
- // Post process PHI instructions that were inserted into another disjoint
- // loop and update their exits properly.
- for (auto *PostProcessPN : PostProcessPHIs)
- if (!PostProcessPN->use_empty())
- Worklist.push_back(PostProcessPN);
- // Keep track of PHI nodes that we want to remove because they did not have
- // any uses rewritten.
- for (PHINode *PN : AddedPHIs)
- if (PN->use_empty())
- LocalPHIsToRemove.insert(PN);
- Changed = true;
- }
- // Remove PHI nodes that did not have any uses rewritten or add them to
- // PHIsToRemove, so the caller can remove them after some additional cleanup.
- // We need to redo the use_empty() check here, because even if the PHI node
- // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
- // using it. This cleanup is not guaranteed to handle trees/cycles of PHI
- // nodes that only are used by each other. Such situations has only been
- // noticed when the input IR contains unreachable code, and leaving some extra
- // redundant PHI nodes in such situations is considered a minor problem.
- if (PHIsToRemove) {
- PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
- } else {
- for (PHINode *PN : LocalPHIsToRemove)
- if (PN->use_empty())
- PN->eraseFromParent();
- }
- return Changed;
- }
- // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
- static void computeBlocksDominatingExits(
- Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
- SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
- // We start from the exit blocks, as every block trivially dominates itself
- // (not strictly).
- SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
- while (!BBWorklist.empty()) {
- BasicBlock *BB = BBWorklist.pop_back_val();
- // Check if this is a loop header. If this is the case, we're done.
- if (L.getHeader() == BB)
- continue;
- // Otherwise, add its immediate predecessor in the dominator tree to the
- // worklist, unless we visited it already.
- BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
- // Exit blocks can have an immediate dominator not belonging to the
- // loop. For an exit block to be immediately dominated by another block
- // outside the loop, it implies not all paths from that dominator, to the
- // exit block, go through the loop.
- // Example:
- //
- // |---- A
- // | |
- // | B<--
- // | | |
- // |---> C --
- // |
- // D
- //
- // C is the exit block of the loop and it's immediately dominated by A,
- // which doesn't belong to the loop.
- if (!L.contains(IDomBB))
- continue;
- if (BlocksDominatingExits.insert(IDomBB))
- BBWorklist.push_back(IDomBB);
- }
- }
- bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
- ScalarEvolution *SE) {
- bool Changed = false;
- #ifdef EXPENSIVE_CHECKS
- // Verify all sub-loops are in LCSSA form already.
- for (Loop *SubLoop: L) {
- (void)SubLoop; // Silence unused variable warning.
- assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
- }
- #endif
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L.getExitBlocks(ExitBlocks);
- if (ExitBlocks.empty())
- return false;
- SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
- // We want to avoid use-scanning leveraging dominance informations.
- // If a block doesn't dominate any of the loop exits, the none of the values
- // defined in the loop can be used outside.
- // We compute the set of blocks fullfilling the conditions in advance
- // walking the dominator tree upwards until we hit a loop header.
- computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
- SmallVector<Instruction *, 8> Worklist;
- // Look at all the instructions in the loop, checking to see if they have uses
- // outside the loop. If so, put them into the worklist to rewrite those uses.
- for (BasicBlock *BB : BlocksDominatingExits) {
- // Skip blocks that are part of any sub-loops, they must be in LCSSA
- // already.
- if (LI->getLoopFor(BB) != &L)
- continue;
- for (Instruction &I : *BB) {
- // Reject two common cases fast: instructions with no uses (like stores)
- // and instructions with one use that is in the same block as this.
- if (I.use_empty() ||
- (I.hasOneUse() && I.user_back()->getParent() == BB &&
- !isa<PHINode>(I.user_back())))
- continue;
- // Tokens cannot be used in PHI nodes, so we skip over them.
- // We can run into tokens which are live out of a loop with catchswitch
- // instructions in Windows EH if the catchswitch has one catchpad which
- // is inside the loop and another which is not.
- if (I.getType()->isTokenTy())
- continue;
- Worklist.push_back(&I);
- }
- }
- IRBuilder<> Builder(L.getHeader()->getContext());
- Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
- // If we modified the code, remove any caches about the loop from SCEV to
- // avoid dangling entries.
- // FIXME: This is a big hammer, can we clear the cache more selectively?
- if (SE && Changed)
- SE->forgetLoop(&L);
- assert(L.isLCSSAForm(DT));
- return Changed;
- }
- /// Process a loop nest depth first.
- bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
- const LoopInfo *LI, ScalarEvolution *SE) {
- bool Changed = false;
- // Recurse depth-first through inner loops.
- for (Loop *SubLoop : L.getSubLoops())
- Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
- Changed |= formLCSSA(L, DT, LI, SE);
- return Changed;
- }
- /// Process all loops in the function, inner-most out.
- static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
- ScalarEvolution *SE) {
- bool Changed = false;
- for (auto &L : *LI)
- Changed |= formLCSSARecursively(*L, DT, LI, SE);
- return Changed;
- }
- namespace {
- struct LCSSAWrapperPass : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- LCSSAWrapperPass() : FunctionPass(ID) {
- initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
- }
- // Cached analysis information for the current function.
- DominatorTree *DT;
- LoopInfo *LI;
- ScalarEvolution *SE;
- bool runOnFunction(Function &F) override;
- void verifyAnalysis() const override {
- // This check is very expensive. On the loop intensive compiles it may cause
- // up to 10x slowdown. Currently it's disabled by default. LPPassManager
- // always does limited form of the LCSSA verification. Similar reasoning
- // was used for the LoopInfo verifier.
- if (VerifyLoopLCSSA) {
- assert(all_of(*LI,
- [&](Loop *L) {
- return L->isRecursivelyLCSSAForm(*DT, *LI);
- }) &&
- "LCSSA form is broken!");
- }
- };
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG. It maintains both of these,
- /// as well as the CFG. It also requires dominator information.
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreservedID(LoopSimplifyID);
- AU.addPreserved<AAResultsWrapperPass>();
- AU.addPreserved<BasicAAWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<ScalarEvolutionWrapperPass>();
- AU.addPreserved<SCEVAAWrapperPass>();
- AU.addPreserved<BranchProbabilityInfoWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- // This is needed to perform LCSSA verification inside LPPassManager
- AU.addRequired<LCSSAVerificationPass>();
- AU.addPreserved<LCSSAVerificationPass>();
- }
- };
- }
- char LCSSAWrapperPass::ID = 0;
- INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
- INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
- false, false)
- Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
- char &llvm::LCSSAID = LCSSAWrapperPass::ID;
- /// Transform \p F into loop-closed SSA form.
- bool LCSSAWrapperPass::runOnFunction(Function &F) {
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
- SE = SEWP ? &SEWP->getSE() : nullptr;
- return formLCSSAOnAllLoops(LI, *DT, SE);
- }
- PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto &LI = AM.getResult<LoopAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
- if (!formLCSSAOnAllLoops(&LI, DT, SE))
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<ScalarEvolutionAnalysis>();
- // BPI maps terminators to probabilities, since we don't modify the CFG, no
- // updates are needed to preserve it.
- PA.preserve<BranchProbabilityAnalysis>();
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
|