123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703 |
- //===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Function evaluator for LLVM IR.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Evaluator.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalAlias.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include <iterator>
- #define DEBUG_TYPE "evaluator"
- using namespace llvm;
- static inline bool
- isSimpleEnoughValueToCommit(Constant *C,
- SmallPtrSetImpl<Constant *> &SimpleConstants,
- const DataLayout &DL);
- /// Return true if the specified constant can be handled by the code generator.
- /// We don't want to generate something like:
- /// void *X = &X/42;
- /// because the code generator doesn't have a relocation that can handle that.
- ///
- /// This function should be called if C was not found (but just got inserted)
- /// in SimpleConstants to avoid having to rescan the same constants all the
- /// time.
- static bool
- isSimpleEnoughValueToCommitHelper(Constant *C,
- SmallPtrSetImpl<Constant *> &SimpleConstants,
- const DataLayout &DL) {
- // Simple global addresses are supported, do not allow dllimport or
- // thread-local globals.
- if (auto *GV = dyn_cast<GlobalValue>(C))
- return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
- // Simple integer, undef, constant aggregate zero, etc are all supported.
- if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
- return true;
- // Aggregate values are safe if all their elements are.
- if (isa<ConstantAggregate>(C)) {
- for (Value *Op : C->operands())
- if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
- return false;
- return true;
- }
- // We don't know exactly what relocations are allowed in constant expressions,
- // so we allow &global+constantoffset, which is safe and uniformly supported
- // across targets.
- ConstantExpr *CE = cast<ConstantExpr>(C);
- switch (CE->getOpcode()) {
- case Instruction::BitCast:
- // Bitcast is fine if the casted value is fine.
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
- case Instruction::IntToPtr:
- case Instruction::PtrToInt:
- // int <=> ptr is fine if the int type is the same size as the
- // pointer type.
- if (DL.getTypeSizeInBits(CE->getType()) !=
- DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
- return false;
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
- // GEP is fine if it is simple + constant offset.
- case Instruction::GetElementPtr:
- for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
- if (!isa<ConstantInt>(CE->getOperand(i)))
- return false;
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
- case Instruction::Add:
- // We allow simple+cst.
- if (!isa<ConstantInt>(CE->getOperand(1)))
- return false;
- return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
- }
- return false;
- }
- static inline bool
- isSimpleEnoughValueToCommit(Constant *C,
- SmallPtrSetImpl<Constant *> &SimpleConstants,
- const DataLayout &DL) {
- // If we already checked this constant, we win.
- if (!SimpleConstants.insert(C).second)
- return true;
- // Check the constant.
- return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
- }
- void Evaluator::MutableValue::clear() {
- if (auto *Agg = Val.dyn_cast<MutableAggregate *>())
- delete Agg;
- Val = nullptr;
- }
- Constant *Evaluator::MutableValue::read(Type *Ty, APInt Offset,
- const DataLayout &DL) const {
- TypeSize TySize = DL.getTypeStoreSize(Ty);
- const MutableValue *V = this;
- while (const auto *Agg = V->Val.dyn_cast<MutableAggregate *>()) {
- Type *AggTy = Agg->Ty;
- Optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
- if (!Index || Index->uge(Agg->Elements.size()) ||
- !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
- return nullptr;
- V = &Agg->Elements[Index->getZExtValue()];
- }
- return ConstantFoldLoadFromConst(V->Val.get<Constant *>(), Ty, Offset, DL);
- }
- bool Evaluator::MutableValue::makeMutable() {
- Constant *C = Val.get<Constant *>();
- Type *Ty = C->getType();
- unsigned NumElements;
- if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
- NumElements = VT->getNumElements();
- } else if (auto *AT = dyn_cast<ArrayType>(Ty))
- NumElements = AT->getNumElements();
- else if (auto *ST = dyn_cast<StructType>(Ty))
- NumElements = ST->getNumElements();
- else
- return false;
- MutableAggregate *MA = new MutableAggregate(Ty);
- MA->Elements.reserve(NumElements);
- for (unsigned I = 0; I < NumElements; ++I)
- MA->Elements.push_back(C->getAggregateElement(I));
- Val = MA;
- return true;
- }
- bool Evaluator::MutableValue::write(Constant *V, APInt Offset,
- const DataLayout &DL) {
- Type *Ty = V->getType();
- TypeSize TySize = DL.getTypeStoreSize(Ty);
- MutableValue *MV = this;
- while (Offset != 0 ||
- !CastInst::isBitOrNoopPointerCastable(Ty, MV->getType(), DL)) {
- if (MV->Val.is<Constant *>() && !MV->makeMutable())
- return false;
- MutableAggregate *Agg = MV->Val.get<MutableAggregate *>();
- Type *AggTy = Agg->Ty;
- Optional<APInt> Index = DL.getGEPIndexForOffset(AggTy, Offset);
- if (!Index || Index->uge(Agg->Elements.size()) ||
- !TypeSize::isKnownLE(TySize, DL.getTypeStoreSize(AggTy)))
- return false;
- MV = &Agg->Elements[Index->getZExtValue()];
- }
- Type *MVType = MV->getType();
- MV->clear();
- if (Ty->isIntegerTy() && MVType->isPointerTy())
- MV->Val = ConstantExpr::getIntToPtr(V, MVType);
- else if (Ty->isPointerTy() && MVType->isIntegerTy())
- MV->Val = ConstantExpr::getPtrToInt(V, MVType);
- else if (Ty != MVType)
- MV->Val = ConstantExpr::getBitCast(V, MVType);
- else
- MV->Val = V;
- return true;
- }
- Constant *Evaluator::MutableAggregate::toConstant() const {
- SmallVector<Constant *, 32> Consts;
- for (const MutableValue &MV : Elements)
- Consts.push_back(MV.toConstant());
- if (auto *ST = dyn_cast<StructType>(Ty))
- return ConstantStruct::get(ST, Consts);
- if (auto *AT = dyn_cast<ArrayType>(Ty))
- return ConstantArray::get(AT, Consts);
- assert(isa<FixedVectorType>(Ty) && "Must be vector");
- return ConstantVector::get(Consts);
- }
- /// Return the value that would be computed by a load from P after the stores
- /// reflected by 'memory' have been performed. If we can't decide, return null.
- Constant *Evaluator::ComputeLoadResult(Constant *P, Type *Ty) {
- APInt Offset(DL.getIndexTypeSizeInBits(P->getType()), 0);
- P = cast<Constant>(P->stripAndAccumulateConstantOffsets(
- DL, Offset, /* AllowNonInbounds */ true));
- Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(P->getType()));
- auto *GV = dyn_cast<GlobalVariable>(P);
- if (!GV)
- return nullptr;
- auto It = MutatedMemory.find(GV);
- if (It != MutatedMemory.end())
- return It->second.read(Ty, Offset, DL);
- if (!GV->hasDefinitiveInitializer())
- return nullptr;
- return ConstantFoldLoadFromConst(GV->getInitializer(), Ty, Offset, DL);
- }
- static Function *getFunction(Constant *C) {
- if (auto *Fn = dyn_cast<Function>(C))
- return Fn;
- if (auto *Alias = dyn_cast<GlobalAlias>(C))
- if (auto *Fn = dyn_cast<Function>(Alias->getAliasee()))
- return Fn;
- return nullptr;
- }
- Function *
- Evaluator::getCalleeWithFormalArgs(CallBase &CB,
- SmallVectorImpl<Constant *> &Formals) {
- auto *V = CB.getCalledOperand()->stripPointerCasts();
- if (auto *Fn = getFunction(getVal(V)))
- return getFormalParams(CB, Fn, Formals) ? Fn : nullptr;
- return nullptr;
- }
- bool Evaluator::getFormalParams(CallBase &CB, Function *F,
- SmallVectorImpl<Constant *> &Formals) {
- if (!F)
- return false;
- auto *FTy = F->getFunctionType();
- if (FTy->getNumParams() > CB.arg_size()) {
- LLVM_DEBUG(dbgs() << "Too few arguments for function.\n");
- return false;
- }
- auto ArgI = CB.arg_begin();
- for (Type *PTy : FTy->params()) {
- auto *ArgC = ConstantFoldLoadThroughBitcast(getVal(*ArgI), PTy, DL);
- if (!ArgC) {
- LLVM_DEBUG(dbgs() << "Can not convert function argument.\n");
- return false;
- }
- Formals.push_back(ArgC);
- ++ArgI;
- }
- return true;
- }
- /// If call expression contains bitcast then we may need to cast
- /// evaluated return value to a type of the call expression.
- Constant *Evaluator::castCallResultIfNeeded(Type *ReturnType, Constant *RV) {
- if (!RV || RV->getType() == ReturnType)
- return RV;
- RV = ConstantFoldLoadThroughBitcast(RV, ReturnType, DL);
- if (!RV)
- LLVM_DEBUG(dbgs() << "Failed to fold bitcast call expr\n");
- return RV;
- }
- /// Evaluate all instructions in block BB, returning true if successful, false
- /// if we can't evaluate it. NewBB returns the next BB that control flows into,
- /// or null upon return. StrippedPointerCastsForAliasAnalysis is set to true if
- /// we looked through pointer casts to evaluate something.
- bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB,
- bool &StrippedPointerCastsForAliasAnalysis) {
- // This is the main evaluation loop.
- while (true) {
- Constant *InstResult = nullptr;
- LLVM_DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
- if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
- if (!SI->isSimple()) {
- LLVM_DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
- return false; // no volatile/atomic accesses.
- }
- Constant *Ptr = getVal(SI->getOperand(1));
- Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
- if (Ptr != FoldedPtr) {
- LLVM_DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
- Ptr = FoldedPtr;
- LLVM_DEBUG(dbgs() << "; To: " << *Ptr << "\n");
- }
- APInt Offset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
- Ptr = cast<Constant>(Ptr->stripAndAccumulateConstantOffsets(
- DL, Offset, /* AllowNonInbounds */ true));
- Offset = Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(Ptr->getType()));
- auto *GV = dyn_cast<GlobalVariable>(Ptr);
- if (!GV || !GV->hasUniqueInitializer()) {
- LLVM_DEBUG(dbgs() << "Store is not to global with unique initializer: "
- << *Ptr << "\n");
- return false;
- }
- // If this might be too difficult for the backend to handle (e.g. the addr
- // of one global variable divided by another) then we can't commit it.
- Constant *Val = getVal(SI->getOperand(0));
- if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
- LLVM_DEBUG(dbgs() << "Store value is too complex to evaluate store. "
- << *Val << "\n");
- return false;
- }
- auto Res = MutatedMemory.try_emplace(GV, GV->getInitializer());
- if (!Res.first->second.write(Val, Offset, DL))
- return false;
- } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
- InstResult = ConstantExpr::get(BO->getOpcode(),
- getVal(BO->getOperand(0)),
- getVal(BO->getOperand(1)));
- LLVM_DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: "
- << *InstResult << "\n");
- } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
- InstResult = ConstantExpr::getCompare(CI->getPredicate(),
- getVal(CI->getOperand(0)),
- getVal(CI->getOperand(1)));
- LLVM_DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
- << "\n");
- } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
- InstResult = ConstantExpr::getCast(CI->getOpcode(),
- getVal(CI->getOperand(0)),
- CI->getType());
- LLVM_DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
- << "\n");
- } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
- InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
- getVal(SI->getOperand(1)),
- getVal(SI->getOperand(2)));
- LLVM_DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
- << "\n");
- } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
- InstResult = ConstantExpr::getExtractValue(
- getVal(EVI->getAggregateOperand()), EVI->getIndices());
- LLVM_DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: "
- << *InstResult << "\n");
- } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
- InstResult = ConstantExpr::getInsertValue(
- getVal(IVI->getAggregateOperand()),
- getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
- LLVM_DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: "
- << *InstResult << "\n");
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
- Constant *P = getVal(GEP->getOperand(0));
- SmallVector<Constant*, 8> GEPOps;
- for (Use &Op : llvm::drop_begin(GEP->operands()))
- GEPOps.push_back(getVal(Op));
- InstResult =
- ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
- cast<GEPOperator>(GEP)->isInBounds());
- LLVM_DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult << "\n");
- } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
- if (!LI->isSimple()) {
- LLVM_DEBUG(
- dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
- return false; // no volatile/atomic accesses.
- }
- Constant *Ptr = getVal(LI->getOperand(0));
- Constant *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI);
- if (Ptr != FoldedPtr) {
- Ptr = FoldedPtr;
- LLVM_DEBUG(dbgs() << "Found a constant pointer expression, constant "
- "folding: "
- << *Ptr << "\n");
- }
- InstResult = ComputeLoadResult(Ptr, LI->getType());
- if (!InstResult) {
- LLVM_DEBUG(
- dbgs() << "Failed to compute load result. Can not evaluate load."
- "\n");
- return false; // Could not evaluate load.
- }
- LLVM_DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
- } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
- if (AI->isArrayAllocation()) {
- LLVM_DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
- return false; // Cannot handle array allocs.
- }
- Type *Ty = AI->getAllocatedType();
- AllocaTmps.push_back(std::make_unique<GlobalVariable>(
- Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
- AI->getName(), /*TLMode=*/GlobalValue::NotThreadLocal,
- AI->getType()->getPointerAddressSpace()));
- InstResult = AllocaTmps.back().get();
- LLVM_DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
- } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
- CallBase &CB = *cast<CallBase>(&*CurInst);
- // Debug info can safely be ignored here.
- if (isa<DbgInfoIntrinsic>(CB)) {
- LLVM_DEBUG(dbgs() << "Ignoring debug info.\n");
- ++CurInst;
- continue;
- }
- // Cannot handle inline asm.
- if (CB.isInlineAsm()) {
- LLVM_DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
- return false;
- }
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CB)) {
- if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
- if (MSI->isVolatile()) {
- LLVM_DEBUG(dbgs() << "Can not optimize a volatile memset "
- << "intrinsic.\n");
- return false;
- }
- Constant *Ptr = getVal(MSI->getDest());
- Constant *Val = getVal(MSI->getValue());
- Constant *DestVal =
- ComputeLoadResult(getVal(Ptr), MSI->getValue()->getType());
- if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
- // This memset is a no-op.
- LLVM_DEBUG(dbgs() << "Ignoring no-op memset.\n");
- ++CurInst;
- continue;
- }
- }
- if (II->isLifetimeStartOrEnd()) {
- LLVM_DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
- ++CurInst;
- continue;
- }
- if (II->getIntrinsicID() == Intrinsic::invariant_start) {
- // We don't insert an entry into Values, as it doesn't have a
- // meaningful return value.
- if (!II->use_empty()) {
- LLVM_DEBUG(dbgs()
- << "Found unused invariant_start. Can't evaluate.\n");
- return false;
- }
- ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
- Value *PtrArg = getVal(II->getArgOperand(1));
- Value *Ptr = PtrArg->stripPointerCasts();
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
- Type *ElemTy = GV->getValueType();
- if (!Size->isMinusOne() &&
- Size->getValue().getLimitedValue() >=
- DL.getTypeStoreSize(ElemTy)) {
- Invariants.insert(GV);
- LLVM_DEBUG(dbgs() << "Found a global var that is an invariant: "
- << *GV << "\n");
- } else {
- LLVM_DEBUG(dbgs()
- << "Found a global var, but can not treat it as an "
- "invariant.\n");
- }
- }
- // Continue even if we do nothing.
- ++CurInst;
- continue;
- } else if (II->getIntrinsicID() == Intrinsic::assume) {
- LLVM_DEBUG(dbgs() << "Skipping assume intrinsic.\n");
- ++CurInst;
- continue;
- } else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
- LLVM_DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
- ++CurInst;
- continue;
- } else if (II->getIntrinsicID() == Intrinsic::pseudoprobe) {
- LLVM_DEBUG(dbgs() << "Skipping pseudoprobe intrinsic.\n");
- ++CurInst;
- continue;
- } else {
- Value *Stripped = CurInst->stripPointerCastsForAliasAnalysis();
- // Only attempt to getVal() if we've actually managed to strip
- // anything away, or else we'll call getVal() on the current
- // instruction.
- if (Stripped != &*CurInst) {
- InstResult = getVal(Stripped);
- }
- if (InstResult) {
- LLVM_DEBUG(dbgs()
- << "Stripped pointer casts for alias analysis for "
- "intrinsic call.\n");
- StrippedPointerCastsForAliasAnalysis = true;
- InstResult = ConstantExpr::getBitCast(InstResult, II->getType());
- } else {
- LLVM_DEBUG(dbgs() << "Unknown intrinsic. Cannot evaluate.\n");
- return false;
- }
- }
- }
- if (!InstResult) {
- // Resolve function pointers.
- SmallVector<Constant *, 8> Formals;
- Function *Callee = getCalleeWithFormalArgs(CB, Formals);
- if (!Callee || Callee->isInterposable()) {
- LLVM_DEBUG(dbgs() << "Can not resolve function pointer.\n");
- return false; // Cannot resolve.
- }
- if (Callee->isDeclaration()) {
- // If this is a function we can constant fold, do it.
- if (Constant *C = ConstantFoldCall(&CB, Callee, Formals, TLI)) {
- InstResult = castCallResultIfNeeded(CB.getType(), C);
- if (!InstResult)
- return false;
- LLVM_DEBUG(dbgs() << "Constant folded function call. Result: "
- << *InstResult << "\n");
- } else {
- LLVM_DEBUG(dbgs() << "Can not constant fold function call.\n");
- return false;
- }
- } else {
- if (Callee->getFunctionType()->isVarArg()) {
- LLVM_DEBUG(dbgs()
- << "Can not constant fold vararg function call.\n");
- return false;
- }
- Constant *RetVal = nullptr;
- // Execute the call, if successful, use the return value.
- ValueStack.emplace_back();
- if (!EvaluateFunction(Callee, RetVal, Formals)) {
- LLVM_DEBUG(dbgs() << "Failed to evaluate function.\n");
- return false;
- }
- ValueStack.pop_back();
- InstResult = castCallResultIfNeeded(CB.getType(), RetVal);
- if (RetVal && !InstResult)
- return false;
- if (InstResult) {
- LLVM_DEBUG(dbgs() << "Successfully evaluated function. Result: "
- << *InstResult << "\n\n");
- } else {
- LLVM_DEBUG(dbgs()
- << "Successfully evaluated function. Result: 0\n\n");
- }
- }
- }
- } else if (CurInst->isTerminator()) {
- LLVM_DEBUG(dbgs() << "Found a terminator instruction.\n");
- if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
- if (BI->isUnconditional()) {
- NextBB = BI->getSuccessor(0);
- } else {
- ConstantInt *Cond =
- dyn_cast<ConstantInt>(getVal(BI->getCondition()));
- if (!Cond) return false; // Cannot determine.
- NextBB = BI->getSuccessor(!Cond->getZExtValue());
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
- ConstantInt *Val =
- dyn_cast<ConstantInt>(getVal(SI->getCondition()));
- if (!Val) return false; // Cannot determine.
- NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
- } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
- Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
- if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
- NextBB = BA->getBasicBlock();
- else
- return false; // Cannot determine.
- } else if (isa<ReturnInst>(CurInst)) {
- NextBB = nullptr;
- } else {
- // invoke, unwind, resume, unreachable.
- LLVM_DEBUG(dbgs() << "Can not handle terminator.");
- return false; // Cannot handle this terminator.
- }
- // We succeeded at evaluating this block!
- LLVM_DEBUG(dbgs() << "Successfully evaluated block.\n");
- return true;
- } else {
- // Did not know how to evaluate this!
- LLVM_DEBUG(
- dbgs() << "Failed to evaluate block due to unhandled instruction."
- "\n");
- return false;
- }
- if (!CurInst->use_empty()) {
- InstResult = ConstantFoldConstant(InstResult, DL, TLI);
- setVal(&*CurInst, InstResult);
- }
- // If we just processed an invoke, we finished evaluating the block.
- if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
- NextBB = II->getNormalDest();
- LLVM_DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
- return true;
- }
- // Advance program counter.
- ++CurInst;
- }
- }
- /// Evaluate a call to function F, returning true if successful, false if we
- /// can't evaluate it. ActualArgs contains the formal arguments for the
- /// function.
- bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
- const SmallVectorImpl<Constant*> &ActualArgs) {
- // Check to see if this function is already executing (recursion). If so,
- // bail out. TODO: we might want to accept limited recursion.
- if (is_contained(CallStack, F))
- return false;
- CallStack.push_back(F);
- // Initialize arguments to the incoming values specified.
- unsigned ArgNo = 0;
- for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
- ++AI, ++ArgNo)
- setVal(&*AI, ActualArgs[ArgNo]);
- // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
- // we can only evaluate any one basic block at most once. This set keeps
- // track of what we have executed so we can detect recursive cases etc.
- SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
- // CurBB - The current basic block we're evaluating.
- BasicBlock *CurBB = &F->front();
- BasicBlock::iterator CurInst = CurBB->begin();
- while (true) {
- BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
- LLVM_DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
- bool StrippedPointerCastsForAliasAnalysis = false;
- if (!EvaluateBlock(CurInst, NextBB, StrippedPointerCastsForAliasAnalysis))
- return false;
- if (!NextBB) {
- // Successfully running until there's no next block means that we found
- // the return. Fill it the return value and pop the call stack.
- ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
- if (RI->getNumOperands()) {
- // The Evaluator can look through pointer casts as long as alias
- // analysis holds because it's just a simple interpreter and doesn't
- // skip memory accesses due to invariant group metadata, but we can't
- // let users of Evaluator use a value that's been gleaned looking
- // through stripping pointer casts.
- if (StrippedPointerCastsForAliasAnalysis &&
- !RI->getReturnValue()->getType()->isVoidTy()) {
- return false;
- }
- RetVal = getVal(RI->getOperand(0));
- }
- CallStack.pop_back();
- return true;
- }
- // Okay, we succeeded in evaluating this control flow. See if we have
- // executed the new block before. If so, we have a looping function,
- // which we cannot evaluate in reasonable time.
- if (!ExecutedBlocks.insert(NextBB).second)
- return false; // looped!
- // Okay, we have never been in this block before. Check to see if there
- // are any PHI nodes. If so, evaluate them with information about where
- // we came from.
- PHINode *PN = nullptr;
- for (CurInst = NextBB->begin();
- (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
- setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
- // Advance to the next block.
- CurBB = NextBB;
- }
- }
|