123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944 |
- //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file transforms calls of the current function (self recursion) followed
- // by a return instruction with a branch to the entry of the function, creating
- // a loop. This pass also implements the following extensions to the basic
- // algorithm:
- //
- // 1. Trivial instructions between the call and return do not prevent the
- // transformation from taking place, though currently the analysis cannot
- // support moving any really useful instructions (only dead ones).
- // 2. This pass transforms functions that are prevented from being tail
- // recursive by an associative and commutative expression to use an
- // accumulator variable, thus compiling the typical naive factorial or
- // 'fib' implementation into efficient code.
- // 3. TRE is performed if the function returns void, if the return
- // returns the result returned by the call, or if the function returns a
- // run-time constant on all exits from the function. It is possible, though
- // unlikely, that the return returns something else (like constant 0), and
- // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
- // the function return the exact same value.
- // 4. If it can prove that callees do not access their caller stack frame,
- // they are marked as eligible for tail call elimination (by the code
- // generator).
- //
- // There are several improvements that could be made:
- //
- // 1. If the function has any alloca instructions, these instructions will be
- // moved out of the entry block of the function, causing them to be
- // evaluated each time through the tail recursion. Safely keeping allocas
- // in the entry block requires analysis to proves that the tail-called
- // function does not read or write the stack object.
- // 2. Tail recursion is only performed if the call immediately precedes the
- // return instruction. It's possible that there could be a jump between
- // the call and the return.
- // 3. There can be intervening operations between the call and the return that
- // prevent the TRE from occurring. For example, there could be GEP's and
- // stores to memory that will not be read or written by the call. This
- // requires some substantial analysis (such as with DSA) to prove safe to
- // move ahead of the call, but doing so could allow many more TREs to be
- // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
- // 4. The algorithm we use to detect if callees access their caller stack
- // frames is very primitive.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/TailRecursionElimination.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/InlineCost.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/PostDominators.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- #define DEBUG_TYPE "tailcallelim"
- STATISTIC(NumEliminated, "Number of tail calls removed");
- STATISTIC(NumRetDuped, "Number of return duplicated");
- STATISTIC(NumAccumAdded, "Number of accumulators introduced");
- /// Scan the specified function for alloca instructions.
- /// If it contains any dynamic allocas, returns false.
- static bool canTRE(Function &F) {
- // TODO: We don't do TRE if dynamic allocas are used.
- // Dynamic allocas allocate stack space which should be
- // deallocated before new iteration started. That is
- // currently not implemented.
- return llvm::all_of(instructions(F), [](Instruction &I) {
- auto *AI = dyn_cast<AllocaInst>(&I);
- return !AI || AI->isStaticAlloca();
- });
- }
- namespace {
- struct AllocaDerivedValueTracker {
- // Start at a root value and walk its use-def chain to mark calls that use the
- // value or a derived value in AllocaUsers, and places where it may escape in
- // EscapePoints.
- void walk(Value *Root) {
- SmallVector<Use *, 32> Worklist;
- SmallPtrSet<Use *, 32> Visited;
- auto AddUsesToWorklist = [&](Value *V) {
- for (auto &U : V->uses()) {
- if (!Visited.insert(&U).second)
- continue;
- Worklist.push_back(&U);
- }
- };
- AddUsesToWorklist(Root);
- while (!Worklist.empty()) {
- Use *U = Worklist.pop_back_val();
- Instruction *I = cast<Instruction>(U->getUser());
- switch (I->getOpcode()) {
- case Instruction::Call:
- case Instruction::Invoke: {
- auto &CB = cast<CallBase>(*I);
- // If the alloca-derived argument is passed byval it is not an escape
- // point, or a use of an alloca. Calling with byval copies the contents
- // of the alloca into argument registers or stack slots, which exist
- // beyond the lifetime of the current frame.
- if (CB.isArgOperand(U) && CB.isByValArgument(CB.getArgOperandNo(U)))
- continue;
- bool IsNocapture =
- CB.isDataOperand(U) && CB.doesNotCapture(CB.getDataOperandNo(U));
- callUsesLocalStack(CB, IsNocapture);
- if (IsNocapture) {
- // If the alloca-derived argument is passed in as nocapture, then it
- // can't propagate to the call's return. That would be capturing.
- continue;
- }
- break;
- }
- case Instruction::Load: {
- // The result of a load is not alloca-derived (unless an alloca has
- // otherwise escaped, but this is a local analysis).
- continue;
- }
- case Instruction::Store: {
- if (U->getOperandNo() == 0)
- EscapePoints.insert(I);
- continue; // Stores have no users to analyze.
- }
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::PHI:
- case Instruction::Select:
- case Instruction::AddrSpaceCast:
- break;
- default:
- EscapePoints.insert(I);
- break;
- }
- AddUsesToWorklist(I);
- }
- }
- void callUsesLocalStack(CallBase &CB, bool IsNocapture) {
- // Add it to the list of alloca users.
- AllocaUsers.insert(&CB);
- // If it's nocapture then it can't capture this alloca.
- if (IsNocapture)
- return;
- // If it can write to memory, it can leak the alloca value.
- if (!CB.onlyReadsMemory())
- EscapePoints.insert(&CB);
- }
- SmallPtrSet<Instruction *, 32> AllocaUsers;
- SmallPtrSet<Instruction *, 32> EscapePoints;
- };
- }
- static bool markTails(Function &F, OptimizationRemarkEmitter *ORE) {
- if (F.callsFunctionThatReturnsTwice())
- return false;
- // The local stack holds all alloca instructions and all byval arguments.
- AllocaDerivedValueTracker Tracker;
- for (Argument &Arg : F.args()) {
- if (Arg.hasByValAttr())
- Tracker.walk(&Arg);
- }
- for (auto &BB : F) {
- for (auto &I : BB)
- if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
- Tracker.walk(AI);
- }
- bool Modified = false;
- // Track whether a block is reachable after an alloca has escaped. Blocks that
- // contain the escaping instruction will be marked as being visited without an
- // escaped alloca, since that is how the block began.
- enum VisitType {
- UNVISITED,
- UNESCAPED,
- ESCAPED
- };
- DenseMap<BasicBlock *, VisitType> Visited;
- // We propagate the fact that an alloca has escaped from block to successor.
- // Visit the blocks that are propagating the escapedness first. To do this, we
- // maintain two worklists.
- SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
- // We may enter a block and visit it thinking that no alloca has escaped yet,
- // then see an escape point and go back around a loop edge and come back to
- // the same block twice. Because of this, we defer setting tail on calls when
- // we first encounter them in a block. Every entry in this list does not
- // statically use an alloca via use-def chain analysis, but may find an alloca
- // through other means if the block turns out to be reachable after an escape
- // point.
- SmallVector<CallInst *, 32> DeferredTails;
- BasicBlock *BB = &F.getEntryBlock();
- VisitType Escaped = UNESCAPED;
- do {
- for (auto &I : *BB) {
- if (Tracker.EscapePoints.count(&I))
- Escaped = ESCAPED;
- CallInst *CI = dyn_cast<CallInst>(&I);
- // A PseudoProbeInst has the IntrInaccessibleMemOnly tag hence it is
- // considered accessing memory and will be marked as a tail call if we
- // don't bail out here.
- if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I) ||
- isa<PseudoProbeInst>(&I))
- continue;
- // Special-case operand bundle "clang.arc.attachedcall".
- bool IsNoTail =
- CI->isNoTailCall() || CI->hasOperandBundlesOtherThan(
- LLVMContext::OB_clang_arc_attachedcall);
- if (!IsNoTail && CI->doesNotAccessMemory()) {
- // A call to a readnone function whose arguments are all things computed
- // outside this function can be marked tail. Even if you stored the
- // alloca address into a global, a readnone function can't load the
- // global anyhow.
- //
- // Note that this runs whether we know an alloca has escaped or not. If
- // it has, then we can't trust Tracker.AllocaUsers to be accurate.
- bool SafeToTail = true;
- for (auto &Arg : CI->args()) {
- if (isa<Constant>(Arg.getUser()))
- continue;
- if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
- if (!A->hasByValAttr())
- continue;
- SafeToTail = false;
- break;
- }
- if (SafeToTail) {
- using namespace ore;
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
- << "marked as tail call candidate (readnone)";
- });
- CI->setTailCall();
- Modified = true;
- continue;
- }
- }
- if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI))
- DeferredTails.push_back(CI);
- }
- for (auto *SuccBB : successors(BB)) {
- auto &State = Visited[SuccBB];
- if (State < Escaped) {
- State = Escaped;
- if (State == ESCAPED)
- WorklistEscaped.push_back(SuccBB);
- else
- WorklistUnescaped.push_back(SuccBB);
- }
- }
- if (!WorklistEscaped.empty()) {
- BB = WorklistEscaped.pop_back_val();
- Escaped = ESCAPED;
- } else {
- BB = nullptr;
- while (!WorklistUnescaped.empty()) {
- auto *NextBB = WorklistUnescaped.pop_back_val();
- if (Visited[NextBB] == UNESCAPED) {
- BB = NextBB;
- Escaped = UNESCAPED;
- break;
- }
- }
- }
- } while (BB);
- for (CallInst *CI : DeferredTails) {
- if (Visited[CI->getParent()] != ESCAPED) {
- // If the escape point was part way through the block, calls after the
- // escape point wouldn't have been put into DeferredTails.
- LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
- CI->setTailCall();
- Modified = true;
- }
- }
- return Modified;
- }
- /// Return true if it is safe to move the specified
- /// instruction from after the call to before the call, assuming that all
- /// instructions between the call and this instruction are movable.
- ///
- static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
- if (isa<DbgInfoIntrinsic>(I))
- return true;
- if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
- if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
- llvm::findAllocaForValue(II->getArgOperand(1)))
- return true;
- // FIXME: We can move load/store/call/free instructions above the call if the
- // call does not mod/ref the memory location being processed.
- if (I->mayHaveSideEffects()) // This also handles volatile loads.
- return false;
- if (LoadInst *L = dyn_cast<LoadInst>(I)) {
- // Loads may always be moved above calls without side effects.
- if (CI->mayHaveSideEffects()) {
- // Non-volatile loads may be moved above a call with side effects if it
- // does not write to memory and the load provably won't trap.
- // Writes to memory only matter if they may alias the pointer
- // being loaded from.
- const DataLayout &DL = L->getModule()->getDataLayout();
- if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
- !isSafeToLoadUnconditionally(L->getPointerOperand(), L->getType(),
- L->getAlign(), DL, L))
- return false;
- }
- }
- // Otherwise, if this is a side-effect free instruction, check to make sure
- // that it does not use the return value of the call. If it doesn't use the
- // return value of the call, it must only use things that are defined before
- // the call, or movable instructions between the call and the instruction
- // itself.
- return !is_contained(I->operands(), CI);
- }
- static bool canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
- if (!I->isAssociative() || !I->isCommutative())
- return false;
- assert(I->getNumOperands() == 2 &&
- "Associative/commutative operations should have 2 args!");
- // Exactly one operand should be the result of the call instruction.
- if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
- (I->getOperand(0) != CI && I->getOperand(1) != CI))
- return false;
- // The only user of this instruction we allow is a single return instruction.
- if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
- return false;
- return true;
- }
- static Instruction *firstNonDbg(BasicBlock::iterator I) {
- while (isa<DbgInfoIntrinsic>(I))
- ++I;
- return &*I;
- }
- namespace {
- class TailRecursionEliminator {
- Function &F;
- const TargetTransformInfo *TTI;
- AliasAnalysis *AA;
- OptimizationRemarkEmitter *ORE;
- DomTreeUpdater &DTU;
- // The below are shared state we want to have available when eliminating any
- // calls in the function. There values should be populated by
- // createTailRecurseLoopHeader the first time we find a call we can eliminate.
- BasicBlock *HeaderBB = nullptr;
- SmallVector<PHINode *, 8> ArgumentPHIs;
- // PHI node to store our return value.
- PHINode *RetPN = nullptr;
- // i1 PHI node to track if we have a valid return value stored in RetPN.
- PHINode *RetKnownPN = nullptr;
- // Vector of select instructions we insereted. These selects use RetKnownPN
- // to either propagate RetPN or select a new return value.
- SmallVector<SelectInst *, 8> RetSelects;
- // The below are shared state needed when performing accumulator recursion.
- // There values should be populated by insertAccumulator the first time we
- // find an elimination that requires an accumulator.
- // PHI node to store our current accumulated value.
- PHINode *AccPN = nullptr;
- // The instruction doing the accumulating.
- Instruction *AccumulatorRecursionInstr = nullptr;
- TailRecursionEliminator(Function &F, const TargetTransformInfo *TTI,
- AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
- DomTreeUpdater &DTU)
- : F(F), TTI(TTI), AA(AA), ORE(ORE), DTU(DTU) {}
- CallInst *findTRECandidate(BasicBlock *BB);
- void createTailRecurseLoopHeader(CallInst *CI);
- void insertAccumulator(Instruction *AccRecInstr);
- bool eliminateCall(CallInst *CI);
- void cleanupAndFinalize();
- bool processBlock(BasicBlock &BB);
- void copyByValueOperandIntoLocalTemp(CallInst *CI, int OpndIdx);
- void copyLocalTempOfByValueOperandIntoArguments(CallInst *CI, int OpndIdx);
- public:
- static bool eliminate(Function &F, const TargetTransformInfo *TTI,
- AliasAnalysis *AA, OptimizationRemarkEmitter *ORE,
- DomTreeUpdater &DTU);
- };
- } // namespace
- CallInst *TailRecursionEliminator::findTRECandidate(BasicBlock *BB) {
- Instruction *TI = BB->getTerminator();
- if (&BB->front() == TI) // Make sure there is something before the terminator.
- return nullptr;
- // Scan backwards from the return, checking to see if there is a tail call in
- // this block. If so, set CI to it.
- CallInst *CI = nullptr;
- BasicBlock::iterator BBI(TI);
- while (true) {
- CI = dyn_cast<CallInst>(BBI);
- if (CI && CI->getCalledFunction() == &F)
- break;
- if (BBI == BB->begin())
- return nullptr; // Didn't find a potential tail call.
- --BBI;
- }
- assert((!CI->isTailCall() || !CI->isNoTailCall()) &&
- "Incompatible call site attributes(Tail,NoTail)");
- if (!CI->isTailCall())
- return nullptr;
- // As a special case, detect code like this:
- // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
- // and disable this xform in this case, because the code generator will
- // lower the call to fabs into inline code.
- if (BB == &F.getEntryBlock() &&
- firstNonDbg(BB->front().getIterator()) == CI &&
- firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
- !TTI->isLoweredToCall(CI->getCalledFunction())) {
- // A single-block function with just a call and a return. Check that
- // the arguments match.
- auto I = CI->arg_begin(), E = CI->arg_end();
- Function::arg_iterator FI = F.arg_begin(), FE = F.arg_end();
- for (; I != E && FI != FE; ++I, ++FI)
- if (*I != &*FI) break;
- if (I == E && FI == FE)
- return nullptr;
- }
- return CI;
- }
- void TailRecursionEliminator::createTailRecurseLoopHeader(CallInst *CI) {
- HeaderBB = &F.getEntryBlock();
- BasicBlock *NewEntry = BasicBlock::Create(F.getContext(), "", &F, HeaderBB);
- NewEntry->takeName(HeaderBB);
- HeaderBB->setName("tailrecurse");
- BranchInst *BI = BranchInst::Create(HeaderBB, NewEntry);
- BI->setDebugLoc(CI->getDebugLoc());
- // Move all fixed sized allocas from HeaderBB to NewEntry.
- for (BasicBlock::iterator OEBI = HeaderBB->begin(), E = HeaderBB->end(),
- NEBI = NewEntry->begin();
- OEBI != E;)
- if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
- if (isa<ConstantInt>(AI->getArraySize()))
- AI->moveBefore(&*NEBI);
- // Now that we have created a new block, which jumps to the entry
- // block, insert a PHI node for each argument of the function.
- // For now, we initialize each PHI to only have the real arguments
- // which are passed in.
- Instruction *InsertPos = &HeaderBB->front();
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
- PHINode *PN =
- PHINode::Create(I->getType(), 2, I->getName() + ".tr", InsertPos);
- I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
- PN->addIncoming(&*I, NewEntry);
- ArgumentPHIs.push_back(PN);
- }
- // If the function doen't return void, create the RetPN and RetKnownPN PHI
- // nodes to track our return value. We initialize RetPN with undef and
- // RetKnownPN with false since we can't know our return value at function
- // entry.
- Type *RetType = F.getReturnType();
- if (!RetType->isVoidTy()) {
- Type *BoolType = Type::getInt1Ty(F.getContext());
- RetPN = PHINode::Create(RetType, 2, "ret.tr", InsertPos);
- RetKnownPN = PHINode::Create(BoolType, 2, "ret.known.tr", InsertPos);
- RetPN->addIncoming(UndefValue::get(RetType), NewEntry);
- RetKnownPN->addIncoming(ConstantInt::getFalse(BoolType), NewEntry);
- }
- // The entry block was changed from HeaderBB to NewEntry.
- // The forward DominatorTree needs to be recalculated when the EntryBB is
- // changed. In this corner-case we recalculate the entire tree.
- DTU.recalculate(*NewEntry->getParent());
- }
- void TailRecursionEliminator::insertAccumulator(Instruction *AccRecInstr) {
- assert(!AccPN && "Trying to insert multiple accumulators");
- AccumulatorRecursionInstr = AccRecInstr;
- // Start by inserting a new PHI node for the accumulator.
- pred_iterator PB = pred_begin(HeaderBB), PE = pred_end(HeaderBB);
- AccPN = PHINode::Create(F.getReturnType(), std::distance(PB, PE) + 1,
- "accumulator.tr", &HeaderBB->front());
- // Loop over all of the predecessors of the tail recursion block. For the
- // real entry into the function we seed the PHI with the identity constant for
- // the accumulation operation. For any other existing branches to this block
- // (due to other tail recursions eliminated) the accumulator is not modified.
- // Because we haven't added the branch in the current block to HeaderBB yet,
- // it will not show up as a predecessor.
- for (pred_iterator PI = PB; PI != PE; ++PI) {
- BasicBlock *P = *PI;
- if (P == &F.getEntryBlock()) {
- Constant *Identity = ConstantExpr::getBinOpIdentity(
- AccRecInstr->getOpcode(), AccRecInstr->getType());
- AccPN->addIncoming(Identity, P);
- } else {
- AccPN->addIncoming(AccPN, P);
- }
- }
- ++NumAccumAdded;
- }
- // Creates a copy of contents of ByValue operand of the specified
- // call instruction into the newly created temporarily variable.
- void TailRecursionEliminator::copyByValueOperandIntoLocalTemp(CallInst *CI,
- int OpndIdx) {
- Type *AggTy = CI->getParamByValType(OpndIdx);
- assert(AggTy);
- const DataLayout &DL = F.getParent()->getDataLayout();
- // Get alignment of byVal operand.
- Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
- // Create alloca for temporarily byval operands.
- // Put alloca into the entry block.
- Value *NewAlloca = new AllocaInst(
- AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
- CI->getArgOperand(OpndIdx)->getName(), &*F.getEntryBlock().begin());
- IRBuilder<> Builder(CI);
- Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
- // Copy data from byvalue operand into the temporarily variable.
- Builder.CreateMemCpy(NewAlloca, /*DstAlign*/ Alignment,
- CI->getArgOperand(OpndIdx),
- /*SrcAlign*/ Alignment, Size);
- CI->setArgOperand(OpndIdx, NewAlloca);
- }
- // Creates a copy from temporarily variable(keeping value of ByVal argument)
- // into the corresponding function argument location.
- void TailRecursionEliminator::copyLocalTempOfByValueOperandIntoArguments(
- CallInst *CI, int OpndIdx) {
- Type *AggTy = CI->getParamByValType(OpndIdx);
- assert(AggTy);
- const DataLayout &DL = F.getParent()->getDataLayout();
- // Get alignment of byVal operand.
- Align Alignment(CI->getParamAlign(OpndIdx).valueOrOne());
- IRBuilder<> Builder(CI);
- Value *Size = Builder.getInt64(DL.getTypeAllocSize(AggTy));
- // Copy data from the temporarily variable into corresponding
- // function argument location.
- Builder.CreateMemCpy(F.getArg(OpndIdx), /*DstAlign*/ Alignment,
- CI->getArgOperand(OpndIdx),
- /*SrcAlign*/ Alignment, Size);
- }
- bool TailRecursionEliminator::eliminateCall(CallInst *CI) {
- ReturnInst *Ret = cast<ReturnInst>(CI->getParent()->getTerminator());
- // Ok, we found a potential tail call. We can currently only transform the
- // tail call if all of the instructions between the call and the return are
- // movable to above the call itself, leaving the call next to the return.
- // Check that this is the case now.
- Instruction *AccRecInstr = nullptr;
- BasicBlock::iterator BBI(CI);
- for (++BBI; &*BBI != Ret; ++BBI) {
- if (canMoveAboveCall(&*BBI, CI, AA))
- continue;
- // If we can't move the instruction above the call, it might be because it
- // is an associative and commutative operation that could be transformed
- // using accumulator recursion elimination. Check to see if this is the
- // case, and if so, remember which instruction accumulates for later.
- if (AccPN || !canTransformAccumulatorRecursion(&*BBI, CI))
- return false; // We cannot eliminate the tail recursion!
- // Yes, this is accumulator recursion. Remember which instruction
- // accumulates.
- AccRecInstr = &*BBI;
- }
- BasicBlock *BB = Ret->getParent();
- using namespace ore;
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
- << "transforming tail recursion into loop";
- });
- // OK! We can transform this tail call. If this is the first one found,
- // create the new entry block, allowing us to branch back to the old entry.
- if (!HeaderBB)
- createTailRecurseLoopHeader(CI);
- // Copy values of ByVal operands into local temporarily variables.
- for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
- if (CI->isByValArgument(I))
- copyByValueOperandIntoLocalTemp(CI, I);
- }
- // Ok, now that we know we have a pseudo-entry block WITH all of the
- // required PHI nodes, add entries into the PHI node for the actual
- // parameters passed into the tail-recursive call.
- for (unsigned I = 0, E = CI->arg_size(); I != E; ++I) {
- if (CI->isByValArgument(I)) {
- copyLocalTempOfByValueOperandIntoArguments(CI, I);
- ArgumentPHIs[I]->addIncoming(F.getArg(I), BB);
- } else
- ArgumentPHIs[I]->addIncoming(CI->getArgOperand(I), BB);
- }
- if (AccRecInstr) {
- insertAccumulator(AccRecInstr);
- // Rewrite the accumulator recursion instruction so that it does not use
- // the result of the call anymore, instead, use the PHI node we just
- // inserted.
- AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
- }
- // Update our return value tracking
- if (RetPN) {
- if (Ret->getReturnValue() == CI || AccRecInstr) {
- // Defer selecting a return value
- RetPN->addIncoming(RetPN, BB);
- RetKnownPN->addIncoming(RetKnownPN, BB);
- } else {
- // We found a return value we want to use, insert a select instruction to
- // select it if we don't already know what our return value will be and
- // store the result in our return value PHI node.
- SelectInst *SI = SelectInst::Create(
- RetKnownPN, RetPN, Ret->getReturnValue(), "current.ret.tr", Ret);
- RetSelects.push_back(SI);
- RetPN->addIncoming(SI, BB);
- RetKnownPN->addIncoming(ConstantInt::getTrue(RetKnownPN->getType()), BB);
- }
- if (AccPN)
- AccPN->addIncoming(AccRecInstr ? AccRecInstr : AccPN, BB);
- }
- // Now that all of the PHI nodes are in place, remove the call and
- // ret instructions, replacing them with an unconditional branch.
- BranchInst *NewBI = BranchInst::Create(HeaderBB, Ret);
- NewBI->setDebugLoc(CI->getDebugLoc());
- BB->getInstList().erase(Ret); // Remove return.
- BB->getInstList().erase(CI); // Remove call.
- DTU.applyUpdates({{DominatorTree::Insert, BB, HeaderBB}});
- ++NumEliminated;
- return true;
- }
- void TailRecursionEliminator::cleanupAndFinalize() {
- // If we eliminated any tail recursions, it's possible that we inserted some
- // silly PHI nodes which just merge an initial value (the incoming operand)
- // with themselves. Check to see if we did and clean up our mess if so. This
- // occurs when a function passes an argument straight through to its tail
- // call.
- for (PHINode *PN : ArgumentPHIs) {
- // If the PHI Node is a dynamic constant, replace it with the value it is.
- if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
- PN->replaceAllUsesWith(PNV);
- PN->eraseFromParent();
- }
- }
- if (RetPN) {
- if (RetSelects.empty()) {
- // If we didn't insert any select instructions, then we know we didn't
- // store a return value and we can remove the PHI nodes we inserted.
- RetPN->dropAllReferences();
- RetPN->eraseFromParent();
- RetKnownPN->dropAllReferences();
- RetKnownPN->eraseFromParent();
- if (AccPN) {
- // We need to insert a copy of our accumulator instruction before any
- // return in the function, and return its result instead.
- Instruction *AccRecInstr = AccumulatorRecursionInstr;
- for (BasicBlock &BB : F) {
- ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
- if (!RI)
- continue;
- Instruction *AccRecInstrNew = AccRecInstr->clone();
- AccRecInstrNew->setName("accumulator.ret.tr");
- AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
- RI->getOperand(0));
- AccRecInstrNew->insertBefore(RI);
- RI->setOperand(0, AccRecInstrNew);
- }
- }
- } else {
- // We need to insert a select instruction before any return left in the
- // function to select our stored return value if we have one.
- for (BasicBlock &BB : F) {
- ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
- if (!RI)
- continue;
- SelectInst *SI = SelectInst::Create(
- RetKnownPN, RetPN, RI->getOperand(0), "current.ret.tr", RI);
- RetSelects.push_back(SI);
- RI->setOperand(0, SI);
- }
- if (AccPN) {
- // We need to insert a copy of our accumulator instruction before any
- // of the selects we inserted, and select its result instead.
- Instruction *AccRecInstr = AccumulatorRecursionInstr;
- for (SelectInst *SI : RetSelects) {
- Instruction *AccRecInstrNew = AccRecInstr->clone();
- AccRecInstrNew->setName("accumulator.ret.tr");
- AccRecInstrNew->setOperand(AccRecInstr->getOperand(0) == AccPN,
- SI->getFalseValue());
- AccRecInstrNew->insertBefore(SI);
- SI->setFalseValue(AccRecInstrNew);
- }
- }
- }
- }
- }
- bool TailRecursionEliminator::processBlock(BasicBlock &BB) {
- Instruction *TI = BB.getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isConditional())
- return false;
- BasicBlock *Succ = BI->getSuccessor(0);
- ReturnInst *Ret = dyn_cast<ReturnInst>(Succ->getFirstNonPHIOrDbg(true));
- if (!Ret)
- return false;
- CallInst *CI = findTRECandidate(&BB);
- if (!CI)
- return false;
- LLVM_DEBUG(dbgs() << "FOLDING: " << *Succ
- << "INTO UNCOND BRANCH PRED: " << BB);
- FoldReturnIntoUncondBranch(Ret, Succ, &BB, &DTU);
- ++NumRetDuped;
- // If all predecessors of Succ have been eliminated by
- // FoldReturnIntoUncondBranch, delete it. It is important to empty it,
- // because the ret instruction in there is still using a value which
- // eliminateCall will attempt to remove. This block can only contain
- // instructions that can't have uses, therefore it is safe to remove.
- if (pred_empty(Succ))
- DTU.deleteBB(Succ);
- eliminateCall(CI);
- return true;
- } else if (isa<ReturnInst>(TI)) {
- CallInst *CI = findTRECandidate(&BB);
- if (CI)
- return eliminateCall(CI);
- }
- return false;
- }
- bool TailRecursionEliminator::eliminate(Function &F,
- const TargetTransformInfo *TTI,
- AliasAnalysis *AA,
- OptimizationRemarkEmitter *ORE,
- DomTreeUpdater &DTU) {
- if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
- return false;
- bool MadeChange = false;
- MadeChange |= markTails(F, ORE);
- // If this function is a varargs function, we won't be able to PHI the args
- // right, so don't even try to convert it...
- if (F.getFunctionType()->isVarArg())
- return MadeChange;
- if (!canTRE(F))
- return MadeChange;
- // Change any tail recursive calls to loops.
- TailRecursionEliminator TRE(F, TTI, AA, ORE, DTU);
- for (BasicBlock &BB : F)
- MadeChange |= TRE.processBlock(BB);
- TRE.cleanupAndFinalize();
- return MadeChange;
- }
- namespace {
- struct TailCallElim : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- TailCallElim() : FunctionPass(ID) {
- initializeTailCallElimPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- AU.addPreserved<GlobalsAAWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<PostDominatorTreeWrapperPass>();
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
- auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
- auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
- auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
- // There is no noticable performance difference here between Lazy and Eager
- // UpdateStrategy based on some test results. It is feasible to switch the
- // UpdateStrategy to Lazy if we find it profitable later.
- DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
- return TailRecursionEliminator::eliminate(
- F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
- &getAnalysis<AAResultsWrapperPass>().getAAResults(),
- &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
- }
- };
- }
- char TailCallElim::ID = 0;
- INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
- false, false)
- // Public interface to the TailCallElimination pass
- FunctionPass *llvm::createTailCallEliminationPass() {
- return new TailCallElim();
- }
- PreservedAnalyses TailCallElimPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
- AliasAnalysis &AA = AM.getResult<AAManager>(F);
- auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
- auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
- // There is no noticable performance difference here between Lazy and Eager
- // UpdateStrategy based on some test results. It is feasible to switch the
- // UpdateStrategy to Lazy if we find it profitable later.
- DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
- bool Changed = TailRecursionEliminator::eliminate(F, &TTI, &AA, &ORE, DTU);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<PostDominatorTreeAnalysis>();
- return PA;
- }
|