123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- //===-- Sink.cpp - Code Sinking -------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass moves instructions into successor blocks, when possible, so that
- // they aren't executed on paths where their results aren't needed.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/Sink.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Module.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- using namespace llvm;
- #define DEBUG_TYPE "sink"
- STATISTIC(NumSunk, "Number of instructions sunk");
- STATISTIC(NumSinkIter, "Number of sinking iterations");
- static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA,
- SmallPtrSetImpl<Instruction *> &Stores) {
- if (Inst->mayWriteToMemory()) {
- Stores.insert(Inst);
- return false;
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
- MemoryLocation Loc = MemoryLocation::get(L);
- for (Instruction *S : Stores)
- if (isModSet(AA.getModRefInfo(S, Loc)))
- return false;
- }
- if (Inst->isTerminator() || isa<PHINode>(Inst) || Inst->isEHPad() ||
- Inst->mayThrow())
- return false;
- if (auto *Call = dyn_cast<CallBase>(Inst)) {
- // Convergent operations cannot be made control-dependent on additional
- // values.
- if (Call->isConvergent())
- return false;
- for (Instruction *S : Stores)
- if (isModSet(AA.getModRefInfo(S, Call)))
- return false;
- }
- return true;
- }
- /// IsAcceptableTarget - Return true if it is possible to sink the instruction
- /// in the specified basic block.
- static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo,
- DominatorTree &DT, LoopInfo &LI) {
- assert(Inst && "Instruction to be sunk is null");
- assert(SuccToSinkTo && "Candidate sink target is null");
- // It's never legal to sink an instruction into a block which terminates in an
- // EH-pad.
- if (SuccToSinkTo->getTerminator()->isExceptionalTerminator())
- return false;
- // If the block has multiple predecessors, this would introduce computation
- // on different code paths. We could split the critical edge, but for now we
- // just punt.
- // FIXME: Split critical edges if not backedges.
- if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
- // We cannot sink a load across a critical edge - there may be stores in
- // other code paths.
- if (Inst->mayReadFromMemory())
- return false;
- // We don't want to sink across a critical edge if we don't dominate the
- // successor. We could be introducing calculations to new code paths.
- if (!DT.dominates(Inst->getParent(), SuccToSinkTo))
- return false;
- // Don't sink instructions into a loop.
- Loop *succ = LI.getLoopFor(SuccToSinkTo);
- Loop *cur = LI.getLoopFor(Inst->getParent());
- if (succ != nullptr && succ != cur)
- return false;
- }
- return true;
- }
- /// SinkInstruction - Determine whether it is safe to sink the specified machine
- /// instruction out of its current block into a successor.
- static bool SinkInstruction(Instruction *Inst,
- SmallPtrSetImpl<Instruction *> &Stores,
- DominatorTree &DT, LoopInfo &LI, AAResults &AA) {
- // Don't sink static alloca instructions. CodeGen assumes allocas outside the
- // entry block are dynamically sized stack objects.
- if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
- if (AI->isStaticAlloca())
- return false;
- // Check if it's safe to move the instruction.
- if (!isSafeToMove(Inst, AA, Stores))
- return false;
- // FIXME: This should include support for sinking instructions within the
- // block they are currently in to shorten the live ranges. We often get
- // instructions sunk into the top of a large block, but it would be better to
- // also sink them down before their first use in the block. This xform has to
- // be careful not to *increase* register pressure though, e.g. sinking
- // "x = y + z" down if it kills y and z would increase the live ranges of y
- // and z and only shrink the live range of x.
- // SuccToSinkTo - This is the successor to sink this instruction to, once we
- // decide.
- BasicBlock *SuccToSinkTo = nullptr;
- // Find the nearest common dominator of all users as the candidate.
- BasicBlock *BB = Inst->getParent();
- for (Use &U : Inst->uses()) {
- Instruction *UseInst = cast<Instruction>(U.getUser());
- BasicBlock *UseBlock = UseInst->getParent();
- // Don't worry about dead users.
- if (!DT.isReachableFromEntry(UseBlock))
- continue;
- if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
- // PHI nodes use the operand in the predecessor block, not the block with
- // the PHI.
- unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
- UseBlock = PN->getIncomingBlock(Num);
- }
- if (SuccToSinkTo)
- SuccToSinkTo = DT.findNearestCommonDominator(SuccToSinkTo, UseBlock);
- else
- SuccToSinkTo = UseBlock;
- // The current basic block needs to dominate the candidate.
- if (!DT.dominates(BB, SuccToSinkTo))
- return false;
- }
- if (SuccToSinkTo) {
- // The nearest common dominator may be in a parent loop of BB, which may not
- // be beneficial. Find an ancestor.
- while (SuccToSinkTo != BB &&
- !IsAcceptableTarget(Inst, SuccToSinkTo, DT, LI))
- SuccToSinkTo = DT.getNode(SuccToSinkTo)->getIDom()->getBlock();
- if (SuccToSinkTo == BB)
- SuccToSinkTo = nullptr;
- }
- // If we couldn't find a block to sink to, ignore this instruction.
- if (!SuccToSinkTo)
- return false;
- LLVM_DEBUG(dbgs() << "Sink" << *Inst << " (";
- Inst->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> ";
- SuccToSinkTo->printAsOperand(dbgs(), false); dbgs() << ")\n");
- // Move the instruction.
- Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt());
- return true;
- }
- static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI,
- AAResults &AA) {
- // Can't sink anything out of a block that has less than two successors.
- if (BB.getTerminator()->getNumSuccessors() <= 1) return false;
- // Don't bother sinking code out of unreachable blocks. In addition to being
- // unprofitable, it can also lead to infinite looping, because in an
- // unreachable loop there may be nowhere to stop.
- if (!DT.isReachableFromEntry(&BB)) return false;
- bool MadeChange = false;
- // Walk the basic block bottom-up. Remember if we saw a store.
- BasicBlock::iterator I = BB.end();
- --I;
- bool ProcessedBegin = false;
- SmallPtrSet<Instruction *, 8> Stores;
- do {
- Instruction *Inst = &*I; // The instruction to sink.
- // Predecrement I (if it's not begin) so that it isn't invalidated by
- // sinking.
- ProcessedBegin = I == BB.begin();
- if (!ProcessedBegin)
- --I;
- if (Inst->isDebugOrPseudoInst())
- continue;
- if (SinkInstruction(Inst, Stores, DT, LI, AA)) {
- ++NumSunk;
- MadeChange = true;
- }
- // If we just processed the first instruction in the block, we're done.
- } while (!ProcessedBegin);
- return MadeChange;
- }
- static bool iterativelySinkInstructions(Function &F, DominatorTree &DT,
- LoopInfo &LI, AAResults &AA) {
- bool MadeChange, EverMadeChange = false;
- do {
- MadeChange = false;
- LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
- // Process all basic blocks.
- for (BasicBlock &I : F)
- MadeChange |= ProcessBlock(I, DT, LI, AA);
- EverMadeChange |= MadeChange;
- NumSinkIter++;
- } while (MadeChange);
- return EverMadeChange;
- }
- PreservedAnalyses SinkingPass::run(Function &F, FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &LI = AM.getResult<LoopAnalysis>(F);
- auto &AA = AM.getResult<AAManager>(F);
- if (!iterativelySinkInstructions(F, DT, LI, AA))
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- return PA;
- }
- namespace {
- class SinkingLegacyPass : public FunctionPass {
- public:
- static char ID; // Pass identification
- SinkingLegacyPass() : FunctionPass(ID) {
- initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
- return iterativelySinkInstructions(F, DT, LI, AA);
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- FunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AAResultsWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- }
- };
- } // end anonymous namespace
- char SinkingLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
- INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false)
- FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); }
|