123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690 |
- //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Place garbage collection safepoints at appropriate locations in the IR. This
- // does not make relocation semantics or variable liveness explicit. That's
- // done by RewriteStatepointsForGC.
- //
- // Terminology:
- // - A call is said to be "parseable" if there is a stack map generated for the
- // return PC of the call. A runtime can determine where values listed in the
- // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
- // on the stack when the code is suspended inside such a call. Every parse
- // point is represented by a call wrapped in an gc.statepoint intrinsic.
- // - A "poll" is an explicit check in the generated code to determine if the
- // runtime needs the generated code to cooperate by calling a helper routine
- // and thus suspending its execution at a known state. The call to the helper
- // routine will be parseable. The (gc & runtime specific) logic of a poll is
- // assumed to be provided in a function of the name "gc.safepoint_poll".
- //
- // We aim to insert polls such that running code can quickly be brought to a
- // well defined state for inspection by the collector. In the current
- // implementation, this is done via the insertion of poll sites at method entry
- // and the backedge of most loops. We try to avoid inserting more polls than
- // are necessary to ensure a finite period between poll sites. This is not
- // because the poll itself is expensive in the generated code; it's not. Polls
- // do tend to impact the optimizer itself in negative ways; we'd like to avoid
- // perturbing the optimization of the method as much as we can.
- //
- // We also need to make most call sites parseable. The callee might execute a
- // poll (or otherwise be inspected by the GC). If so, the entire stack
- // (including the suspended frame of the current method) must be parseable.
- //
- // This pass will insert:
- // - Call parse points ("call safepoints") for any call which may need to
- // reach a safepoint during the execution of the callee function.
- // - Backedge safepoint polls and entry safepoint polls to ensure that
- // executing code reaches a safepoint poll in a finite amount of time.
- //
- // We do not currently support return statepoints, but adding them would not
- // be hard. They are not required for correctness - entry safepoints are an
- // alternative - but some GCs may prefer them. Patches welcome.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LegacyPassManager.h"
- #include "llvm/IR/Statepoint.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Cloning.h"
- #define DEBUG_TYPE "safepoint-placement"
- STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
- STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
- STATISTIC(CallInLoop,
- "Number of loops without safepoints due to calls in loop");
- STATISTIC(FiniteExecution,
- "Number of loops without safepoints finite execution");
- using namespace llvm;
- // Ignore opportunities to avoid placing safepoints on backedges, useful for
- // validation
- static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
- cl::init(false));
- /// How narrow does the trip count of a loop have to be to have to be considered
- /// "counted"? Counted loops do not get safepoints at backedges.
- static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
- cl::Hidden, cl::init(32));
- // If true, split the backedge of a loop when placing the safepoint, otherwise
- // split the latch block itself. Both are useful to support for
- // experimentation, but in practice, it looks like splitting the backedge
- // optimizes better.
- static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
- cl::init(false));
- namespace {
- /// An analysis pass whose purpose is to identify each of the backedges in
- /// the function which require a safepoint poll to be inserted.
- struct PlaceBackedgeSafepointsImpl : public FunctionPass {
- static char ID;
- /// The output of the pass - gives a list of each backedge (described by
- /// pointing at the branch) which need a poll inserted.
- std::vector<Instruction *> PollLocations;
- /// True unless we're running spp-no-calls in which case we need to disable
- /// the call-dependent placement opts.
- bool CallSafepointsEnabled;
- ScalarEvolution *SE = nullptr;
- DominatorTree *DT = nullptr;
- LoopInfo *LI = nullptr;
- TargetLibraryInfo *TLI = nullptr;
- PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
- : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
- initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *);
- void runOnLoopAndSubLoops(Loop *L) {
- // Visit all the subloops
- for (Loop *I : *L)
- runOnLoopAndSubLoops(I);
- runOnLoop(L);
- }
- bool runOnFunction(Function &F) override {
- SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
- for (Loop *I : *LI) {
- runOnLoopAndSubLoops(I);
- }
- return false;
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- // We no longer modify the IR at all in this pass. Thus all
- // analysis are preserved.
- AU.setPreservesAll();
- }
- };
- }
- static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
- static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
- static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
- namespace {
- struct PlaceSafepoints : public FunctionPass {
- static char ID; // Pass identification, replacement for typeid
- PlaceSafepoints() : FunctionPass(ID) {
- initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- // We modify the graph wholesale (inlining, block insertion, etc). We
- // preserve nothing at the moment. We could potentially preserve dom tree
- // if that was worth doing
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- }
- };
- }
- // Insert a safepoint poll immediately before the given instruction. Does
- // not handle the parsability of state at the runtime call, that's the
- // callers job.
- static void
- InsertSafepointPoll(Instruction *InsertBefore,
- std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
- const TargetLibraryInfo &TLI);
- static bool needsStatepoint(CallBase *Call, const TargetLibraryInfo &TLI) {
- if (callsGCLeafFunction(Call, TLI))
- return false;
- if (auto *CI = dyn_cast<CallInst>(Call)) {
- if (CI->isInlineAsm())
- return false;
- }
- return !(isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
- isa<GCResultInst>(Call));
- }
- /// Returns true if this loop is known to contain a call safepoint which
- /// must unconditionally execute on any iteration of the loop which returns
- /// to the loop header via an edge from Pred. Returns a conservative correct
- /// answer; i.e. false is always valid.
- static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
- BasicBlock *Pred,
- DominatorTree &DT,
- const TargetLibraryInfo &TLI) {
- // In general, we're looking for any cut of the graph which ensures
- // there's a call safepoint along every edge between Header and Pred.
- // For the moment, we look only for the 'cuts' that consist of a single call
- // instruction in a block which is dominated by the Header and dominates the
- // loop latch (Pred) block. Somewhat surprisingly, walking the entire chain
- // of such dominating blocks gets substantially more occurrences than just
- // checking the Pred and Header blocks themselves. This may be due to the
- // density of loop exit conditions caused by range and null checks.
- // TODO: structure this as an analysis pass, cache the result for subloops,
- // avoid dom tree recalculations
- assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
- BasicBlock *Current = Pred;
- while (true) {
- for (Instruction &I : *Current) {
- if (auto *Call = dyn_cast<CallBase>(&I))
- // Note: Technically, needing a safepoint isn't quite the right
- // condition here. We should instead be checking if the target method
- // has an
- // unconditional poll. In practice, this is only a theoretical concern
- // since we don't have any methods with conditional-only safepoint
- // polls.
- if (needsStatepoint(Call, TLI))
- return true;
- }
- if (Current == Header)
- break;
- Current = DT.getNode(Current)->getIDom()->getBlock();
- }
- return false;
- }
- /// Returns true if this loop is known to terminate in a finite number of
- /// iterations. Note that this function may return false for a loop which
- /// does actual terminate in a finite constant number of iterations due to
- /// conservatism in the analysis.
- static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
- BasicBlock *Pred) {
- // A conservative bound on the loop as a whole.
- const SCEV *MaxTrips = SE->getConstantMaxBackedgeTakenCount(L);
- if (!isa<SCEVCouldNotCompute>(MaxTrips) &&
- SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
- CountedLoopTripWidth))
- return true;
- // If this is a conditional branch to the header with the alternate path
- // being outside the loop, we can ask questions about the execution frequency
- // of the exit block.
- if (L->isLoopExiting(Pred)) {
- // This returns an exact expression only. TODO: We really only need an
- // upper bound here, but SE doesn't expose that.
- const SCEV *MaxExec = SE->getExitCount(L, Pred);
- if (!isa<SCEVCouldNotCompute>(MaxExec) &&
- SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
- CountedLoopTripWidth))
- return true;
- }
- return /* not finite */ false;
- }
- static void scanOneBB(Instruction *Start, Instruction *End,
- std::vector<CallInst *> &Calls,
- DenseSet<BasicBlock *> &Seen,
- std::vector<BasicBlock *> &Worklist) {
- for (BasicBlock::iterator BBI(Start), BBE0 = Start->getParent()->end(),
- BBE1 = BasicBlock::iterator(End);
- BBI != BBE0 && BBI != BBE1; BBI++) {
- if (CallInst *CI = dyn_cast<CallInst>(&*BBI))
- Calls.push_back(CI);
- // FIXME: This code does not handle invokes
- assert(!isa<InvokeInst>(&*BBI) &&
- "support for invokes in poll code needed");
- // Only add the successor blocks if we reach the terminator instruction
- // without encountering end first
- if (BBI->isTerminator()) {
- BasicBlock *BB = BBI->getParent();
- for (BasicBlock *Succ : successors(BB)) {
- if (Seen.insert(Succ).second) {
- Worklist.push_back(Succ);
- }
- }
- }
- }
- }
- static void scanInlinedCode(Instruction *Start, Instruction *End,
- std::vector<CallInst *> &Calls,
- DenseSet<BasicBlock *> &Seen) {
- Calls.clear();
- std::vector<BasicBlock *> Worklist;
- Seen.insert(Start->getParent());
- scanOneBB(Start, End, Calls, Seen, Worklist);
- while (!Worklist.empty()) {
- BasicBlock *BB = Worklist.back();
- Worklist.pop_back();
- scanOneBB(&*BB->begin(), End, Calls, Seen, Worklist);
- }
- }
- bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
- // Loop through all loop latches (branches controlling backedges). We need
- // to place a safepoint on every backedge (potentially).
- // Note: In common usage, there will be only one edge due to LoopSimplify
- // having run sometime earlier in the pipeline, but this code must be correct
- // w.r.t. loops with multiple backedges.
- BasicBlock *Header = L->getHeader();
- SmallVector<BasicBlock*, 16> LoopLatches;
- L->getLoopLatches(LoopLatches);
- for (BasicBlock *Pred : LoopLatches) {
- assert(L->contains(Pred));
- // Make a policy decision about whether this loop needs a safepoint or
- // not. Note that this is about unburdening the optimizer in loops, not
- // avoiding the runtime cost of the actual safepoint.
- if (!AllBackedges) {
- if (mustBeFiniteCountedLoop(L, SE, Pred)) {
- LLVM_DEBUG(dbgs() << "skipping safepoint placement in finite loop\n");
- FiniteExecution++;
- continue;
- }
- if (CallSafepointsEnabled &&
- containsUnconditionalCallSafepoint(L, Header, Pred, *DT, *TLI)) {
- // Note: This is only semantically legal since we won't do any further
- // IPO or inlining before the actual call insertion.. If we hadn't, we
- // might latter loose this call safepoint.
- LLVM_DEBUG(
- dbgs()
- << "skipping safepoint placement due to unconditional call\n");
- CallInLoop++;
- continue;
- }
- }
- // TODO: We can create an inner loop which runs a finite number of
- // iterations with an outer loop which contains a safepoint. This would
- // not help runtime performance that much, but it might help our ability to
- // optimize the inner loop.
- // Safepoint insertion would involve creating a new basic block (as the
- // target of the current backedge) which does the safepoint (of all live
- // variables) and branches to the true header
- Instruction *Term = Pred->getTerminator();
- LLVM_DEBUG(dbgs() << "[LSP] terminator instruction: " << *Term);
- PollLocations.push_back(Term);
- }
- return false;
- }
- /// Returns true if an entry safepoint is not required before this callsite in
- /// the caller function.
- static bool doesNotRequireEntrySafepointBefore(CallBase *Call) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::experimental_gc_statepoint:
- case Intrinsic::experimental_patchpoint_void:
- case Intrinsic::experimental_patchpoint_i64:
- // The can wrap an actual call which may grow the stack by an unbounded
- // amount or run forever.
- return false;
- default:
- // Most LLVM intrinsics are things which do not expand to actual calls, or
- // at least if they do, are leaf functions that cause only finite stack
- // growth. In particular, the optimizer likes to form things like memsets
- // out of stores in the original IR. Another important example is
- // llvm.localescape which must occur in the entry block. Inserting a
- // safepoint before it is not legal since it could push the localescape
- // out of the entry block.
- return true;
- }
- }
- return false;
- }
- static Instruction *findLocationForEntrySafepoint(Function &F,
- DominatorTree &DT) {
- // Conceptually, this poll needs to be on method entry, but in
- // practice, we place it as late in the entry block as possible. We
- // can place it as late as we want as long as it dominates all calls
- // that can grow the stack. This, combined with backedge polls,
- // give us all the progress guarantees we need.
- // hasNextInstruction and nextInstruction are used to iterate
- // through a "straight line" execution sequence.
- auto HasNextInstruction = [](Instruction *I) {
- if (!I->isTerminator())
- return true;
- BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
- return nextBB && (nextBB->getUniquePredecessor() != nullptr);
- };
- auto NextInstruction = [&](Instruction *I) {
- assert(HasNextInstruction(I) &&
- "first check if there is a next instruction!");
- if (I->isTerminator())
- return &I->getParent()->getUniqueSuccessor()->front();
- return &*++I->getIterator();
- };
- Instruction *Cursor = nullptr;
- for (Cursor = &F.getEntryBlock().front(); HasNextInstruction(Cursor);
- Cursor = NextInstruction(Cursor)) {
- // We need to ensure a safepoint poll occurs before any 'real' call. The
- // easiest way to ensure finite execution between safepoints in the face of
- // recursive and mutually recursive functions is to enforce that each take
- // a safepoint. Additionally, we need to ensure a poll before any call
- // which can grow the stack by an unbounded amount. This isn't required
- // for GC semantics per se, but is a common requirement for languages
- // which detect stack overflow via guard pages and then throw exceptions.
- if (auto *Call = dyn_cast<CallBase>(Cursor)) {
- if (doesNotRequireEntrySafepointBefore(Call))
- continue;
- break;
- }
- }
- assert((HasNextInstruction(Cursor) || Cursor->isTerminator()) &&
- "either we stopped because of a call, or because of terminator");
- return Cursor;
- }
- const char GCSafepointPollName[] = "gc.safepoint_poll";
- static bool isGCSafepointPoll(Function &F) {
- return F.getName().equals(GCSafepointPollName);
- }
- /// Returns true if this function should be rewritten to include safepoint
- /// polls and parseable call sites. The main point of this function is to be
- /// an extension point for custom logic.
- static bool shouldRewriteFunction(Function &F) {
- // TODO: This should check the GCStrategy
- if (F.hasGC()) {
- const auto &FunctionGCName = F.getGC();
- const StringRef StatepointExampleName("statepoint-example");
- const StringRef CoreCLRName("coreclr");
- return (StatepointExampleName == FunctionGCName) ||
- (CoreCLRName == FunctionGCName);
- } else
- return false;
- }
- // TODO: These should become properties of the GCStrategy, possibly with
- // command line overrides.
- static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
- static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
- static bool enableCallSafepoints(Function &F) { return !NoCall; }
- bool PlaceSafepoints::runOnFunction(Function &F) {
- if (F.isDeclaration() || F.empty()) {
- // This is a declaration, nothing to do. Must exit early to avoid crash in
- // dom tree calculation
- return false;
- }
- if (isGCSafepointPoll(F)) {
- // Given we're inlining this inside of safepoint poll insertion, this
- // doesn't make any sense. Note that we do make any contained calls
- // parseable after we inline a poll.
- return false;
- }
- if (!shouldRewriteFunction(F))
- return false;
- const TargetLibraryInfo &TLI =
- getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
- bool Modified = false;
- // In various bits below, we rely on the fact that uses are reachable from
- // defs. When there are basic blocks unreachable from the entry, dominance
- // and reachablity queries return non-sensical results. Thus, we preprocess
- // the function to ensure these properties hold.
- Modified |= removeUnreachableBlocks(F);
- // STEP 1 - Insert the safepoint polling locations. We do not need to
- // actually insert parse points yet. That will be done for all polls and
- // calls in a single pass.
- DominatorTree DT;
- DT.recalculate(F);
- SmallVector<Instruction *, 16> PollsNeeded;
- std::vector<CallBase *> ParsePointNeeded;
- if (enableBackedgeSafepoints(F)) {
- // Construct a pass manager to run the LoopPass backedge logic. We
- // need the pass manager to handle scheduling all the loop passes
- // appropriately. Doing this by hand is painful and just not worth messing
- // with for the moment.
- legacy::FunctionPassManager FPM(F.getParent());
- bool CanAssumeCallSafepoints = enableCallSafepoints(F);
- auto *PBS = new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
- FPM.add(PBS);
- FPM.run(F);
- // We preserve dominance information when inserting the poll, otherwise
- // we'd have to recalculate this on every insert
- DT.recalculate(F);
- auto &PollLocations = PBS->PollLocations;
- auto OrderByBBName = [](Instruction *a, Instruction *b) {
- return a->getParent()->getName() < b->getParent()->getName();
- };
- // We need the order of list to be stable so that naming ends up stable
- // when we split edges. This makes test cases much easier to write.
- llvm::sort(PollLocations, OrderByBBName);
- // We can sometimes end up with duplicate poll locations. This happens if
- // a single loop is visited more than once. The fact this happens seems
- // wrong, but it does happen for the split-backedge.ll test case.
- PollLocations.erase(std::unique(PollLocations.begin(),
- PollLocations.end()),
- PollLocations.end());
- // Insert a poll at each point the analysis pass identified
- // The poll location must be the terminator of a loop latch block.
- for (Instruction *Term : PollLocations) {
- // We are inserting a poll, the function is modified
- Modified = true;
- if (SplitBackedge) {
- // Split the backedge of the loop and insert the poll within that new
- // basic block. This creates a loop with two latches per original
- // latch (which is non-ideal), but this appears to be easier to
- // optimize in practice than inserting the poll immediately before the
- // latch test.
- // Since this is a latch, at least one of the successors must dominate
- // it. Its possible that we have a) duplicate edges to the same header
- // and b) edges to distinct loop headers. We need to insert pools on
- // each.
- SetVector<BasicBlock *> Headers;
- for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
- BasicBlock *Succ = Term->getSuccessor(i);
- if (DT.dominates(Succ, Term->getParent())) {
- Headers.insert(Succ);
- }
- }
- assert(!Headers.empty() && "poll location is not a loop latch?");
- // The split loop structure here is so that we only need to recalculate
- // the dominator tree once. Alternatively, we could just keep it up to
- // date and use a more natural merged loop.
- SetVector<BasicBlock *> SplitBackedges;
- for (BasicBlock *Header : Headers) {
- BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
- PollsNeeded.push_back(NewBB->getTerminator());
- NumBackedgeSafepoints++;
- }
- } else {
- // Split the latch block itself, right before the terminator.
- PollsNeeded.push_back(Term);
- NumBackedgeSafepoints++;
- }
- }
- }
- if (enableEntrySafepoints(F)) {
- if (Instruction *Location = findLocationForEntrySafepoint(F, DT)) {
- PollsNeeded.push_back(Location);
- Modified = true;
- NumEntrySafepoints++;
- }
- // TODO: else we should assert that there was, in fact, a policy choice to
- // not insert a entry safepoint poll.
- }
- // Now that we've identified all the needed safepoint poll locations, insert
- // safepoint polls themselves.
- for (Instruction *PollLocation : PollsNeeded) {
- std::vector<CallBase *> RuntimeCalls;
- InsertSafepointPoll(PollLocation, RuntimeCalls, TLI);
- llvm::append_range(ParsePointNeeded, RuntimeCalls);
- }
- return Modified;
- }
- char PlaceBackedgeSafepointsImpl::ID = 0;
- char PlaceSafepoints::ID = 0;
- FunctionPass *llvm::createPlaceSafepointsPass() {
- return new PlaceSafepoints();
- }
- INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
- "place-backedge-safepoints-impl",
- "Place Backedge Safepoints", false, false)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
- "place-backedge-safepoints-impl",
- "Place Backedge Safepoints", false, false)
- INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
- false, false)
- INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
- false, false)
- static void
- InsertSafepointPoll(Instruction *InsertBefore,
- std::vector<CallBase *> &ParsePointsNeeded /*rval*/,
- const TargetLibraryInfo &TLI) {
- BasicBlock *OrigBB = InsertBefore->getParent();
- Module *M = InsertBefore->getModule();
- assert(M && "must be part of a module");
- // Inline the safepoint poll implementation - this will get all the branch,
- // control flow, etc.. Most importantly, it will introduce the actual slow
- // path call - where we need to insert a safepoint (parsepoint).
- auto *F = M->getFunction(GCSafepointPollName);
- assert(F && "gc.safepoint_poll function is missing");
- assert(F->getValueType() ==
- FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
- "gc.safepoint_poll declared with wrong type");
- assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
- CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
- // Record some information about the call site we're replacing
- BasicBlock::iterator Before(PollCall), After(PollCall);
- bool IsBegin = false;
- if (Before == OrigBB->begin())
- IsBegin = true;
- else
- Before--;
- After++;
- assert(After != OrigBB->end() && "must have successor");
- // Do the actual inlining
- InlineFunctionInfo IFI;
- bool InlineStatus = InlineFunction(*PollCall, IFI).isSuccess();
- assert(InlineStatus && "inline must succeed");
- (void)InlineStatus; // suppress warning in release-asserts
- // Check post-conditions
- assert(IFI.StaticAllocas.empty() && "can't have allocs");
- std::vector<CallInst *> Calls; // new calls
- DenseSet<BasicBlock *> BBs; // new BBs + insertee
- // Include only the newly inserted instructions, Note: begin may not be valid
- // if we inserted to the beginning of the basic block
- BasicBlock::iterator Start = IsBegin ? OrigBB->begin() : std::next(Before);
- // If your poll function includes an unreachable at the end, that's not
- // valid. Bugpoint likes to create this, so check for it.
- assert(isPotentiallyReachable(&*Start, &*After) &&
- "malformed poll function");
- scanInlinedCode(&*Start, &*After, Calls, BBs);
- assert(!Calls.empty() && "slow path not found for safepoint poll");
- // Record the fact we need a parsable state at the runtime call contained in
- // the poll function. This is required so that the runtime knows how to
- // parse the last frame when we actually take the safepoint (i.e. execute
- // the slow path)
- assert(ParsePointsNeeded.empty());
- for (auto *CI : Calls) {
- // No safepoint needed or wanted
- if (!needsStatepoint(CI, TLI))
- continue;
- // These are likely runtime calls. Should we assert that via calling
- // convention or something?
- ParsePointsNeeded.push_back(CI);
- }
- assert(ParsePointsNeeded.size() <= Calls.size());
- }
|