123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903 |
- //===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the guard widening pass. The semantics of the
- // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
- // more often that it did before the transform. This optimization is called
- // "widening" and can be used hoist and common runtime checks in situations like
- // these:
- //
- // %cmp0 = 7 u< Length
- // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
- // call @unknown_side_effects()
- // %cmp1 = 9 u< Length
- // call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
- // ...
- //
- // =>
- //
- // %cmp0 = 9 u< Length
- // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
- // call @unknown_side_effects()
- // ...
- //
- // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
- // generic implementation of the same function, which will have the correct
- // semantics from that point onward. It is always _legal_ to deoptimize (so
- // replacing %cmp0 with false is "correct"), though it may not always be
- // profitable to do so.
- //
- // NB! This pass is a work in progress. It hasn't been tuned to be "production
- // ready" yet. It is known to have quadriatic running time and will not scale
- // to large numbers of guards
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/GuardWidening.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/Analysis/GuardUtils.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/PostDominators.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/GuardUtils.h"
- #include "llvm/Transforms/Utils/LoopUtils.h"
- #include <functional>
- using namespace llvm;
- #define DEBUG_TYPE "guard-widening"
- STATISTIC(GuardsEliminated, "Number of eliminated guards");
- STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
- static cl::opt<bool>
- WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
- cl::desc("Whether or not we should widen guards "
- "expressed as branches by widenable conditions"),
- cl::init(true));
- namespace {
- // Get the condition of \p I. It can either be a guard or a conditional branch.
- static Value *getCondition(Instruction *I) {
- if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
- assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
- "Bad guard intrinsic?");
- return GI->getArgOperand(0);
- }
- Value *Cond, *WC;
- BasicBlock *IfTrueBB, *IfFalseBB;
- if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
- return Cond;
- return cast<BranchInst>(I)->getCondition();
- }
- // Set the condition for \p I to \p NewCond. \p I can either be a guard or a
- // conditional branch.
- static void setCondition(Instruction *I, Value *NewCond) {
- if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
- assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
- "Bad guard intrinsic?");
- GI->setArgOperand(0, NewCond);
- return;
- }
- cast<BranchInst>(I)->setCondition(NewCond);
- }
- // Eliminates the guard instruction properly.
- static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
- GuardInst->eraseFromParent();
- if (MSSAU)
- MSSAU->removeMemoryAccess(GuardInst);
- ++GuardsEliminated;
- }
- class GuardWideningImpl {
- DominatorTree &DT;
- PostDominatorTree *PDT;
- LoopInfo &LI;
- MemorySSAUpdater *MSSAU;
- /// Together, these describe the region of interest. This might be all of
- /// the blocks within a function, or only a given loop's blocks and preheader.
- DomTreeNode *Root;
- std::function<bool(BasicBlock*)> BlockFilter;
- /// The set of guards and conditional branches whose conditions have been
- /// widened into dominating guards.
- SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
- /// The set of guards which have been widened to include conditions to other
- /// guards.
- DenseSet<Instruction *> WidenedGuards;
- /// Try to eliminate instruction \p Instr by widening it into an earlier
- /// dominating guard. \p DFSI is the DFS iterator on the dominator tree that
- /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
- /// maps BasicBlocks to the set of guards seen in that block.
- bool eliminateInstrViaWidening(
- Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
- const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
- GuardsPerBlock, bool InvertCondition = false);
- /// Used to keep track of which widening potential is more effective.
- enum WideningScore {
- /// Don't widen.
- WS_IllegalOrNegative,
- /// Widening is performance neutral as far as the cycles spent in check
- /// conditions goes (but can still help, e.g., code layout, having less
- /// deopt state).
- WS_Neutral,
- /// Widening is profitable.
- WS_Positive,
- /// Widening is very profitable. Not significantly different from \c
- /// WS_Positive, except by the order.
- WS_VeryPositive
- };
- static StringRef scoreTypeToString(WideningScore WS);
- /// Compute the score for widening the condition in \p DominatedInstr
- /// into \p DominatingGuard. If \p InvertCond is set, then we widen the
- /// inverted condition of the dominating guard.
- WideningScore computeWideningScore(Instruction *DominatedInstr,
- Instruction *DominatingGuard,
- bool InvertCond);
- /// Helper to check if \p V can be hoisted to \p InsertPos.
- bool isAvailableAt(const Value *V, const Instruction *InsertPos) const {
- SmallPtrSet<const Instruction *, 8> Visited;
- return isAvailableAt(V, InsertPos, Visited);
- }
- bool isAvailableAt(const Value *V, const Instruction *InsertPos,
- SmallPtrSetImpl<const Instruction *> &Visited) const;
- /// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c
- /// isAvailableAt returned true.
- void makeAvailableAt(Value *V, Instruction *InsertPos) const;
- /// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try
- /// to generate an expression computing the logical AND of \p Cond0 and (\p
- /// Cond1 XOR \p InvertCondition).
- /// Return true if the expression computing the AND is only as
- /// expensive as computing one of the two. If \p InsertPt is true then
- /// actually generate the resulting expression, make it available at \p
- /// InsertPt and return it in \p Result (else no change to the IR is made).
- bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
- Value *&Result, bool InvertCondition);
- /// Represents a range check of the form \c Base + \c Offset u< \c Length,
- /// with the constraint that \c Length is not negative. \c CheckInst is the
- /// pre-existing instruction in the IR that computes the result of this range
- /// check.
- class RangeCheck {
- const Value *Base;
- const ConstantInt *Offset;
- const Value *Length;
- ICmpInst *CheckInst;
- public:
- explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
- const Value *Length, ICmpInst *CheckInst)
- : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
- void setBase(const Value *NewBase) { Base = NewBase; }
- void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
- const Value *getBase() const { return Base; }
- const ConstantInt *getOffset() const { return Offset; }
- const APInt &getOffsetValue() const { return getOffset()->getValue(); }
- const Value *getLength() const { return Length; };
- ICmpInst *getCheckInst() const { return CheckInst; }
- void print(raw_ostream &OS, bool PrintTypes = false) {
- OS << "Base: ";
- Base->printAsOperand(OS, PrintTypes);
- OS << " Offset: ";
- Offset->printAsOperand(OS, PrintTypes);
- OS << " Length: ";
- Length->printAsOperand(OS, PrintTypes);
- }
- LLVM_DUMP_METHOD void dump() {
- print(dbgs());
- dbgs() << "\n";
- }
- };
- /// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
- /// append them to \p Checks. Returns true on success, may clobber \c Checks
- /// on failure.
- bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
- SmallPtrSet<const Value *, 8> Visited;
- return parseRangeChecks(CheckCond, Checks, Visited);
- }
- bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
- SmallPtrSetImpl<const Value *> &Visited);
- /// Combine the checks in \p Checks into a smaller set of checks and append
- /// them into \p CombinedChecks. Return true on success (i.e. all of checks
- /// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks
- /// and \p CombinedChecks on success and on failure.
- bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
- SmallVectorImpl<RangeCheck> &CombinedChecks) const;
- /// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
- /// computing only one of the two expressions?
- bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
- Value *ResultUnused;
- return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
- InvertCond);
- }
- /// If \p InvertCondition is false, Widen \p ToWiden to fail if
- /// \p NewCondition is false, otherwise make it fail if \p NewCondition is
- /// true (in addition to whatever it is already checking).
- void widenGuard(Instruction *ToWiden, Value *NewCondition,
- bool InvertCondition) {
- Value *Result;
-
- widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result,
- InvertCondition);
- if (isGuardAsWidenableBranch(ToWiden)) {
- setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
- return;
- }
- setCondition(ToWiden, Result);
- }
- public:
- explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
- LoopInfo &LI, MemorySSAUpdater *MSSAU,
- DomTreeNode *Root,
- std::function<bool(BasicBlock*)> BlockFilter)
- : DT(DT), PDT(PDT), LI(LI), MSSAU(MSSAU), Root(Root),
- BlockFilter(BlockFilter) {}
- /// The entry point for this pass.
- bool run();
- };
- }
- static bool isSupportedGuardInstruction(const Instruction *Insn) {
- if (isGuard(Insn))
- return true;
- if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
- return true;
- return false;
- }
- bool GuardWideningImpl::run() {
- DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
- bool Changed = false;
- for (auto DFI = df_begin(Root), DFE = df_end(Root);
- DFI != DFE; ++DFI) {
- auto *BB = (*DFI)->getBlock();
- if (!BlockFilter(BB))
- continue;
- auto &CurrentList = GuardsInBlock[BB];
- for (auto &I : *BB)
- if (isSupportedGuardInstruction(&I))
- CurrentList.push_back(cast<Instruction>(&I));
- for (auto *II : CurrentList)
- Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
- }
- assert(EliminatedGuardsAndBranches.empty() || Changed);
- for (auto *I : EliminatedGuardsAndBranches)
- if (!WidenedGuards.count(I)) {
- assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
- if (isSupportedGuardInstruction(I))
- eliminateGuard(I, MSSAU);
- else {
- assert(isa<BranchInst>(I) &&
- "Eliminated something other than guard or branch?");
- ++CondBranchEliminated;
- }
- }
- return Changed;
- }
- bool GuardWideningImpl::eliminateInstrViaWidening(
- Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
- const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
- GuardsInBlock, bool InvertCondition) {
- // Ignore trivial true or false conditions. These instructions will be
- // trivially eliminated by any cleanup pass. Do not erase them because other
- // guards can possibly be widened into them.
- if (isa<ConstantInt>(getCondition(Instr)))
- return false;
- Instruction *BestSoFar = nullptr;
- auto BestScoreSoFar = WS_IllegalOrNegative;
- // In the set of dominating guards, find the one we can merge GuardInst with
- // for the most profit.
- for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
- auto *CurBB = DFSI.getPath(i)->getBlock();
- if (!BlockFilter(CurBB))
- break;
- assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
- const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
- auto I = GuardsInCurBB.begin();
- auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
- : GuardsInCurBB.end();
- #ifndef NDEBUG
- {
- unsigned Index = 0;
- for (auto &I : *CurBB) {
- if (Index == GuardsInCurBB.size())
- break;
- if (GuardsInCurBB[Index] == &I)
- Index++;
- }
- assert(Index == GuardsInCurBB.size() &&
- "Guards expected to be in order!");
- }
- #endif
- assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
- for (auto *Candidate : make_range(I, E)) {
- auto Score = computeWideningScore(Instr, Candidate, InvertCondition);
- LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr)
- << " and " << *getCondition(Candidate) << " is "
- << scoreTypeToString(Score) << "\n");
- if (Score > BestScoreSoFar) {
- BestScoreSoFar = Score;
- BestSoFar = Candidate;
- }
- }
- }
- if (BestScoreSoFar == WS_IllegalOrNegative) {
- LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
- return false;
- }
- assert(BestSoFar != Instr && "Should have never visited same guard!");
- assert(DT.dominates(BestSoFar, Instr) && "Should be!");
- LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
- << " with score " << scoreTypeToString(BestScoreSoFar)
- << "\n");
- widenGuard(BestSoFar, getCondition(Instr), InvertCondition);
- auto NewGuardCondition = InvertCondition
- ? ConstantInt::getFalse(Instr->getContext())
- : ConstantInt::getTrue(Instr->getContext());
- setCondition(Instr, NewGuardCondition);
- EliminatedGuardsAndBranches.push_back(Instr);
- WidenedGuards.insert(BestSoFar);
- return true;
- }
- GuardWideningImpl::WideningScore
- GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr,
- Instruction *DominatingGuard,
- bool InvertCond) {
- Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
- Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent());
- bool HoistingOutOfLoop = false;
- if (DominatingGuardLoop != DominatedInstrLoop) {
- // Be conservative and don't widen into a sibling loop. TODO: If the
- // sibling is colder, we should consider allowing this.
- if (DominatingGuardLoop &&
- !DominatingGuardLoop->contains(DominatedInstrLoop))
- return WS_IllegalOrNegative;
- HoistingOutOfLoop = true;
- }
- if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard))
- return WS_IllegalOrNegative;
- // If the guard was conditional executed, it may never be reached
- // dynamically. There are two potential downsides to hoisting it out of the
- // conditionally executed region: 1) we may spuriously deopt without need and
- // 2) we have the extra cost of computing the guard condition in the common
- // case. At the moment, we really only consider the second in our heuristic
- // here. TODO: evaluate cost model for spurious deopt
- // NOTE: As written, this also lets us hoist right over another guard which
- // is essentially just another spelling for control flow.
- if (isWideningCondProfitable(getCondition(DominatedInstr),
- getCondition(DominatingGuard), InvertCond))
- return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
- if (HoistingOutOfLoop)
- return WS_Positive;
- // Returns true if we might be hoisting above explicit control flow. Note
- // that this completely ignores implicit control flow (guards, calls which
- // throw, etc...). That choice appears arbitrary.
- auto MaybeHoistingOutOfIf = [&]() {
- auto *DominatingBlock = DominatingGuard->getParent();
- auto *DominatedBlock = DominatedInstr->getParent();
- if (isGuardAsWidenableBranch(DominatingGuard))
- DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0);
- // Same Block?
- if (DominatedBlock == DominatingBlock)
- return false;
- // Obvious successor (common loop header/preheader case)
- if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
- return false;
- // TODO: diamond, triangle cases
- if (!PDT) return true;
- return !PDT->dominates(DominatedBlock, DominatingBlock);
- };
- return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
- }
- bool GuardWideningImpl::isAvailableAt(
- const Value *V, const Instruction *Loc,
- SmallPtrSetImpl<const Instruction *> &Visited) const {
- auto *Inst = dyn_cast<Instruction>(V);
- if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
- return true;
- if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) ||
- Inst->mayReadFromMemory())
- return false;
- Visited.insert(Inst);
- // We only want to go _up_ the dominance chain when recursing.
- assert(!isa<PHINode>(Loc) &&
- "PHIs should return false for isSafeToSpeculativelyExecute");
- assert(DT.isReachableFromEntry(Inst->getParent()) &&
- "We did a DFS from the block entry!");
- return all_of(Inst->operands(),
- [&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
- }
- void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
- auto *Inst = dyn_cast<Instruction>(V);
- if (!Inst || DT.dominates(Inst, Loc))
- return;
- assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) &&
- !Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");
- for (Value *Op : Inst->operands())
- makeAvailableAt(Op, Loc);
- Inst->moveBefore(Loc);
- }
- bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
- Instruction *InsertPt, Value *&Result,
- bool InvertCondition) {
- using namespace llvm::PatternMatch;
- {
- // L >u C0 && L >u C1 -> L >u max(C0, C1)
- ConstantInt *RHS0, *RHS1;
- Value *LHS;
- ICmpInst::Predicate Pred0, Pred1;
- if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
- match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
- if (InvertCondition)
- Pred1 = ICmpInst::getInversePredicate(Pred1);
- ConstantRange CR0 =
- ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
- ConstantRange CR1 =
- ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
- // Given what we're doing here and the semantics of guards, it would
- // be correct to use a subset intersection, but that may be too
- // aggressive in cases we care about.
- if (Optional<ConstantRange> Intersect = CR0.exactIntersectWith(CR1)) {
- APInt NewRHSAP;
- CmpInst::Predicate Pred;
- if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
- if (InsertPt) {
- ConstantInt *NewRHS =
- ConstantInt::get(Cond0->getContext(), NewRHSAP);
- Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
- }
- return true;
- }
- }
- }
- }
- {
- SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
- // TODO: Support InvertCondition case?
- if (!InvertCondition &&
- parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
- combineRangeChecks(Checks, CombinedChecks)) {
- if (InsertPt) {
- Result = nullptr;
- for (auto &RC : CombinedChecks) {
- makeAvailableAt(RC.getCheckInst(), InsertPt);
- if (Result)
- Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
- InsertPt);
- else
- Result = RC.getCheckInst();
- }
- assert(Result && "Failed to find result value");
- Result->setName("wide.chk");
- }
- return true;
- }
- }
- // Base case -- just logical-and the two conditions together.
- if (InsertPt) {
- makeAvailableAt(Cond0, InsertPt);
- makeAvailableAt(Cond1, InsertPt);
- if (InvertCondition)
- Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
- Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
- }
- // We were not able to compute Cond0 AND Cond1 for the price of one.
- return false;
- }
- bool GuardWideningImpl::parseRangeChecks(
- Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
- SmallPtrSetImpl<const Value *> &Visited) {
- if (!Visited.insert(CheckCond).second)
- return true;
- using namespace llvm::PatternMatch;
- {
- Value *AndLHS, *AndRHS;
- if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
- return parseRangeChecks(AndLHS, Checks) &&
- parseRangeChecks(AndRHS, Checks);
- }
- auto *IC = dyn_cast<ICmpInst>(CheckCond);
- if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
- (IC->getPredicate() != ICmpInst::ICMP_ULT &&
- IC->getPredicate() != ICmpInst::ICMP_UGT))
- return false;
- const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
- if (IC->getPredicate() == ICmpInst::ICMP_UGT)
- std::swap(CmpLHS, CmpRHS);
- auto &DL = IC->getModule()->getDataLayout();
- GuardWideningImpl::RangeCheck Check(
- CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
- CmpRHS, IC);
- if (!isKnownNonNegative(Check.getLength(), DL))
- return false;
- // What we have in \c Check now is a correct interpretation of \p CheckCond.
- // Try to see if we can move some constant offsets into the \c Offset field.
- bool Changed;
- auto &Ctx = CheckCond->getContext();
- do {
- Value *OpLHS;
- ConstantInt *OpRHS;
- Changed = false;
- #ifndef NDEBUG
- auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
- assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
- "Unreachable instruction?");
- #endif
- if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
- Check.setBase(OpLHS);
- APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
- Check.setOffset(ConstantInt::get(Ctx, NewOffset));
- Changed = true;
- } else if (match(Check.getBase(),
- m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
- KnownBits Known = computeKnownBits(OpLHS, DL);
- if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
- Check.setBase(OpLHS);
- APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
- Check.setOffset(ConstantInt::get(Ctx, NewOffset));
- Changed = true;
- }
- }
- } while (Changed);
- Checks.push_back(Check);
- return true;
- }
- bool GuardWideningImpl::combineRangeChecks(
- SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
- SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
- unsigned OldCount = Checks.size();
- while (!Checks.empty()) {
- // Pick all of the range checks with a specific base and length, and try to
- // merge them.
- const Value *CurrentBase = Checks.front().getBase();
- const Value *CurrentLength = Checks.front().getLength();
- SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
- auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
- return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
- };
- copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
- erase_if(Checks, IsCurrentCheck);
- assert(CurrentChecks.size() != 0 && "We know we have at least one!");
- if (CurrentChecks.size() < 3) {
- llvm::append_range(RangeChecksOut, CurrentChecks);
- continue;
- }
- // CurrentChecks.size() will typically be 3 here, but so far there has been
- // no need to hard-code that fact.
- llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
- const GuardWideningImpl::RangeCheck &RHS) {
- return LHS.getOffsetValue().slt(RHS.getOffsetValue());
- });
- // Note: std::sort should not invalidate the ChecksStart iterator.
- const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
- const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
- unsigned BitWidth = MaxOffset->getValue().getBitWidth();
- if ((MaxOffset->getValue() - MinOffset->getValue())
- .ugt(APInt::getSignedMinValue(BitWidth)))
- return false;
- APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
- const APInt &HighOffset = MaxOffset->getValue();
- auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
- return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
- };
- if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
- return false;
- // We have a series of f+1 checks as:
- //
- // I+k_0 u< L ... Chk_0
- // I+k_1 u< L ... Chk_1
- // ...
- // I+k_f u< L ... Chk_f
- //
- // with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0
- // k_f-k_0 u< INT_MIN+k_f ... Precond_1
- // k_f != k_0 ... Precond_2
- //
- // Claim:
- // Chk_0 AND Chk_f implies all the other checks
- //
- // Informal proof sketch:
- //
- // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
- // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
- // thus I+k_f is the greatest unsigned value in that range.
- //
- // This combined with Ckh_(f+1) shows that everything in that range is u< L.
- // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
- // lie in [I+k_0,I+k_f], this proving our claim.
- //
- // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
- // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
- // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping
- // range by definition, and the latter case is impossible:
- //
- // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
- // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
- //
- // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
- // with 'x' above) to be at least >u INT_MIN.
- RangeChecksOut.emplace_back(CurrentChecks.front());
- RangeChecksOut.emplace_back(CurrentChecks.back());
- }
- assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
- return RangeChecksOut.size() != OldCount;
- }
- #ifndef NDEBUG
- StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
- switch (WS) {
- case WS_IllegalOrNegative:
- return "IllegalOrNegative";
- case WS_Neutral:
- return "Neutral";
- case WS_Positive:
- return "Positive";
- case WS_VeryPositive:
- return "VeryPositive";
- }
- llvm_unreachable("Fully covered switch above!");
- }
- #endif
- PreservedAnalyses GuardWideningPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &LI = AM.getResult<LoopAnalysis>(F);
- auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
- auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- if (MSSAA)
- MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
- if (!GuardWideningImpl(DT, &PDT, LI, MSSAU ? MSSAU.get() : nullptr,
- DT.getRootNode(), [](BasicBlock *) { return true; })
- .run())
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &U) {
- BasicBlock *RootBB = L.getLoopPredecessor();
- if (!RootBB)
- RootBB = L.getHeader();
- auto BlockFilter = [&](BasicBlock *BB) {
- return BB == RootBB || L.contains(BB);
- };
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- if (AR.MSSA)
- MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
- if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, MSSAU ? MSSAU.get() : nullptr,
- AR.DT.getNode(RootBB), BlockFilter).run())
- return PreservedAnalyses::all();
- auto PA = getLoopPassPreservedAnalyses();
- if (AR.MSSA)
- PA.preserve<MemorySSAAnalysis>();
- return PA;
- }
- namespace {
- struct GuardWideningLegacyPass : public FunctionPass {
- static char ID;
- GuardWideningLegacyPass() : FunctionPass(ID) {
- initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
- auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- if (MSSAWP)
- MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
- return GuardWideningImpl(DT, &PDT, LI, MSSAU ? MSSAU.get() : nullptr,
- DT.getRootNode(),
- [](BasicBlock *) { return true; })
- .run();
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<PostDominatorTreeWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- };
- /// Same as above, but restricted to a single loop at a time. Can be
- /// scheduled with other loop passes w/o breaking out of LPM
- struct LoopGuardWideningLegacyPass : public LoopPass {
- static char ID;
- LoopGuardWideningLegacyPass() : LoopPass(ID) {
- initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L))
- return false;
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
- auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
- auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- if (MSSAWP)
- MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
- BasicBlock *RootBB = L->getLoopPredecessor();
- if (!RootBB)
- RootBB = L->getHeader();
- auto BlockFilter = [&](BasicBlock *BB) {
- return BB == RootBB || L->contains(BB);
- };
- return GuardWideningImpl(DT, PDT, LI, MSSAU ? MSSAU.get() : nullptr,
- DT.getNode(RootBB), BlockFilter).run();
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- getLoopAnalysisUsage(AU);
- AU.addPreserved<PostDominatorTreeWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- };
- }
- char GuardWideningLegacyPass::ID = 0;
- char LoopGuardWideningLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
- false, false)
- INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
- "Widen guards (within a single loop, as a loop pass)",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
- "Widen guards (within a single loop, as a loop pass)",
- false, false)
- FunctionPass *llvm::createGuardWideningPass() {
- return new GuardWideningLegacyPass();
- }
- Pass *llvm::createLoopGuardWideningPass() {
- return new LoopGuardWideningLegacyPass();
- }
|