12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004 |
- //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass identifies expensive constants to hoist and coalesces them to
- // better prepare it for SelectionDAG-based code generation. This works around
- // the limitations of the basic-block-at-a-time approach.
- //
- // First it scans all instructions for integer constants and calculates its
- // cost. If the constant can be folded into the instruction (the cost is
- // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
- // consider it expensive and leave it alone. This is the default behavior and
- // the default implementation of getIntImmCostInst will always return TCC_Free.
- //
- // If the cost is more than TCC_BASIC, then the integer constant can't be folded
- // into the instruction and it might be beneficial to hoist the constant.
- // Similar constants are coalesced to reduce register pressure and
- // materialization code.
- //
- // When a constant is hoisted, it is also hidden behind a bitcast to force it to
- // be live-out of the basic block. Otherwise the constant would be just
- // duplicated and each basic block would have its own copy in the SelectionDAG.
- // The SelectionDAG recognizes such constants as opaque and doesn't perform
- // certain transformations on them, which would create a new expensive constant.
- //
- // This optimization is only applied to integer constants in instructions and
- // simple (this means not nested) constant cast expressions. For example:
- // %0 = load i64* inttoptr (i64 big_constant to i64*)
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/ConstantHoisting.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/BlockFrequencyInfo.h"
- #include "llvm/Analysis/ProfileSummaryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DebugInfoMetadata.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/BlockFrequency.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include "llvm/Transforms/Utils/SizeOpts.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <tuple>
- #include <utility>
- using namespace llvm;
- using namespace consthoist;
- #define DEBUG_TYPE "consthoist"
- STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
- STATISTIC(NumConstantsRebased, "Number of constants rebased");
- static cl::opt<bool> ConstHoistWithBlockFrequency(
- "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
- cl::desc("Enable the use of the block frequency analysis to reduce the "
- "chance to execute const materialization more frequently than "
- "without hoisting."));
- static cl::opt<bool> ConstHoistGEP(
- "consthoist-gep", cl::init(false), cl::Hidden,
- cl::desc("Try hoisting constant gep expressions"));
- static cl::opt<unsigned>
- MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
- cl::desc("Do not rebase if number of dependent constants of a Base is less "
- "than this number."),
- cl::init(0), cl::Hidden);
- namespace {
- /// The constant hoisting pass.
- class ConstantHoistingLegacyPass : public FunctionPass {
- public:
- static char ID; // Pass identification, replacement for typeid
- ConstantHoistingLegacyPass() : FunctionPass(ID) {
- initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
- }
- bool runOnFunction(Function &Fn) override;
- StringRef getPassName() const override { return "Constant Hoisting"; }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- if (ConstHoistWithBlockFrequency)
- AU.addRequired<BlockFrequencyInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<ProfileSummaryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- }
- private:
- ConstantHoistingPass Impl;
- };
- } // end anonymous namespace
- char ConstantHoistingLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
- "Constant Hoisting", false, false)
- INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
- "Constant Hoisting", false, false)
- FunctionPass *llvm::createConstantHoistingPass() {
- return new ConstantHoistingLegacyPass();
- }
- /// Perform the constant hoisting optimization for the given function.
- bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
- if (skipFunction(Fn))
- return false;
- LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
- LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
- bool MadeChange =
- Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
- getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- ConstHoistWithBlockFrequency
- ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
- : nullptr,
- Fn.getEntryBlock(),
- &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
- if (MadeChange) {
- LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: "
- << Fn.getName() << '\n');
- LLVM_DEBUG(dbgs() << Fn);
- }
- LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
- return MadeChange;
- }
- /// Find the constant materialization insertion point.
- Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
- unsigned Idx) const {
- // If the operand is a cast instruction, then we have to materialize the
- // constant before the cast instruction.
- if (Idx != ~0U) {
- Value *Opnd = Inst->getOperand(Idx);
- if (auto CastInst = dyn_cast<Instruction>(Opnd))
- if (CastInst->isCast())
- return CastInst;
- }
- // The simple and common case. This also includes constant expressions.
- if (!isa<PHINode>(Inst) && !Inst->isEHPad())
- return Inst;
- // We can't insert directly before a phi node or an eh pad. Insert before
- // the terminator of the incoming or dominating block.
- assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
- BasicBlock *InsertionBlock = nullptr;
- if (Idx != ~0U && isa<PHINode>(Inst)) {
- InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
- if (!InsertionBlock->isEHPad()) {
- return InsertionBlock->getTerminator();
- }
- } else {
- InsertionBlock = Inst->getParent();
- }
- // This must be an EH pad. Iterate over immediate dominators until we find a
- // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
- // and terminators.
- auto *IDom = DT->getNode(InsertionBlock)->getIDom();
- while (IDom->getBlock()->isEHPad()) {
- assert(Entry != IDom->getBlock() && "eh pad in entry block");
- IDom = IDom->getIDom();
- }
- return IDom->getBlock()->getTerminator();
- }
- /// Given \p BBs as input, find another set of BBs which collectively
- /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
- /// set found in \p BBs.
- static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
- BasicBlock *Entry,
- SetVector<BasicBlock *> &BBs) {
- assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
- // Nodes on the current path to the root.
- SmallPtrSet<BasicBlock *, 8> Path;
- // Candidates includes any block 'BB' in set 'BBs' that is not strictly
- // dominated by any other blocks in set 'BBs', and all nodes in the path
- // in the dominator tree from Entry to 'BB'.
- SmallPtrSet<BasicBlock *, 16> Candidates;
- for (auto BB : BBs) {
- // Ignore unreachable basic blocks.
- if (!DT.isReachableFromEntry(BB))
- continue;
- Path.clear();
- // Walk up the dominator tree until Entry or another BB in BBs
- // is reached. Insert the nodes on the way to the Path.
- BasicBlock *Node = BB;
- // The "Path" is a candidate path to be added into Candidates set.
- bool isCandidate = false;
- do {
- Path.insert(Node);
- if (Node == Entry || Candidates.count(Node)) {
- isCandidate = true;
- break;
- }
- assert(DT.getNode(Node)->getIDom() &&
- "Entry doens't dominate current Node");
- Node = DT.getNode(Node)->getIDom()->getBlock();
- } while (!BBs.count(Node));
- // If isCandidate is false, Node is another Block in BBs dominating
- // current 'BB'. Drop the nodes on the Path.
- if (!isCandidate)
- continue;
- // Add nodes on the Path into Candidates.
- Candidates.insert(Path.begin(), Path.end());
- }
- // Sort the nodes in Candidates in top-down order and save the nodes
- // in Orders.
- unsigned Idx = 0;
- SmallVector<BasicBlock *, 16> Orders;
- Orders.push_back(Entry);
- while (Idx != Orders.size()) {
- BasicBlock *Node = Orders[Idx++];
- for (auto ChildDomNode : DT.getNode(Node)->children()) {
- if (Candidates.count(ChildDomNode->getBlock()))
- Orders.push_back(ChildDomNode->getBlock());
- }
- }
- // Visit Orders in bottom-up order.
- using InsertPtsCostPair =
- std::pair<SetVector<BasicBlock *>, BlockFrequency>;
- // InsertPtsMap is a map from a BB to the best insertion points for the
- // subtree of BB (subtree not including the BB itself).
- DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
- InsertPtsMap.reserve(Orders.size() + 1);
- for (BasicBlock *Node : llvm::reverse(Orders)) {
- bool NodeInBBs = BBs.count(Node);
- auto &InsertPts = InsertPtsMap[Node].first;
- BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
- // Return the optimal insert points in BBs.
- if (Node == Entry) {
- BBs.clear();
- if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
- (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
- BBs.insert(Entry);
- else
- BBs.insert(InsertPts.begin(), InsertPts.end());
- break;
- }
- BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
- // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
- // will update its parent's ParentInsertPts and ParentPtsFreq.
- auto &ParentInsertPts = InsertPtsMap[Parent].first;
- BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
- // Choose to insert in Node or in subtree of Node.
- // Don't hoist to EHPad because we may not find a proper place to insert
- // in EHPad.
- // If the total frequency of InsertPts is the same as the frequency of the
- // target Node, and InsertPts contains more than one nodes, choose hoisting
- // to reduce code size.
- if (NodeInBBs ||
- (!Node->isEHPad() &&
- (InsertPtsFreq > BFI.getBlockFreq(Node) ||
- (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
- ParentInsertPts.insert(Node);
- ParentPtsFreq += BFI.getBlockFreq(Node);
- } else {
- ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
- ParentPtsFreq += InsertPtsFreq;
- }
- }
- }
- /// Find an insertion point that dominates all uses.
- SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint(
- const ConstantInfo &ConstInfo) const {
- assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
- // Collect all basic blocks.
- SetVector<BasicBlock *> BBs;
- SetVector<Instruction *> InsertPts;
- for (auto const &RCI : ConstInfo.RebasedConstants)
- for (auto const &U : RCI.Uses)
- BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent());
- if (BBs.count(Entry)) {
- InsertPts.insert(&Entry->front());
- return InsertPts;
- }
- if (BFI) {
- findBestInsertionSet(*DT, *BFI, Entry, BBs);
- for (auto BB : BBs) {
- BasicBlock::iterator InsertPt = BB->begin();
- for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt)
- ;
- InsertPts.insert(&*InsertPt);
- }
- return InsertPts;
- }
- while (BBs.size() >= 2) {
- BasicBlock *BB, *BB1, *BB2;
- BB1 = BBs.pop_back_val();
- BB2 = BBs.pop_back_val();
- BB = DT->findNearestCommonDominator(BB1, BB2);
- if (BB == Entry) {
- InsertPts.insert(&Entry->front());
- return InsertPts;
- }
- BBs.insert(BB);
- }
- assert((BBs.size() == 1) && "Expected only one element.");
- Instruction &FirstInst = (*BBs.begin())->front();
- InsertPts.insert(findMatInsertPt(&FirstInst));
- return InsertPts;
- }
- /// Record constant integer ConstInt for instruction Inst at operand
- /// index Idx.
- ///
- /// The operand at index Idx is not necessarily the constant integer itself. It
- /// could also be a cast instruction or a constant expression that uses the
- /// constant integer.
- void ConstantHoistingPass::collectConstantCandidates(
- ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
- ConstantInt *ConstInt) {
- InstructionCost Cost;
- // Ask the target about the cost of materializing the constant for the given
- // instruction and operand index.
- if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
- Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
- ConstInt->getValue(), ConstInt->getType(),
- TargetTransformInfo::TCK_SizeAndLatency);
- else
- Cost = TTI->getIntImmCostInst(
- Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
- TargetTransformInfo::TCK_SizeAndLatency, Inst);
- // Ignore cheap integer constants.
- if (Cost > TargetTransformInfo::TCC_Basic) {
- ConstCandMapType::iterator Itr;
- bool Inserted;
- ConstPtrUnionType Cand = ConstInt;
- std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
- if (Inserted) {
- ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
- Itr->second = ConstIntCandVec.size() - 1;
- }
- ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
- LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
- << "Collect constant " << *ConstInt << " from " << *Inst
- << " with cost " << Cost << '\n';
- else dbgs() << "Collect constant " << *ConstInt
- << " indirectly from " << *Inst << " via "
- << *Inst->getOperand(Idx) << " with cost " << Cost
- << '\n';);
- }
- }
- /// Record constant GEP expression for instruction Inst at operand index Idx.
- void ConstantHoistingPass::collectConstantCandidates(
- ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
- ConstantExpr *ConstExpr) {
- // TODO: Handle vector GEPs
- if (ConstExpr->getType()->isVectorTy())
- return;
- GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
- if (!BaseGV)
- return;
- // Get offset from the base GV.
- PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
- IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace());
- APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true);
- auto *GEPO = cast<GEPOperator>(ConstExpr);
- // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a
- // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to
- // inbounds GEP for now -- alternatively, we could drop inbounds from the
- // constant expression,
- if (!GEPO->isInBounds())
- return;
- if (!GEPO->accumulateConstantOffset(*DL, Offset))
- return;
- if (!Offset.isIntN(32))
- return;
- // A constant GEP expression that has a GlobalVariable as base pointer is
- // usually lowered to a load from constant pool. Such operation is unlikely
- // to be cheaper than compute it by <Base + Offset>, which can be lowered to
- // an ADD instruction or folded into Load/Store instruction.
- InstructionCost Cost =
- TTI->getIntImmCostInst(Instruction::Add, 1, Offset, PtrIntTy,
- TargetTransformInfo::TCK_SizeAndLatency, Inst);
- ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
- ConstCandMapType::iterator Itr;
- bool Inserted;
- ConstPtrUnionType Cand = ConstExpr;
- std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
- if (Inserted) {
- ExprCandVec.push_back(ConstantCandidate(
- ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
- ConstExpr));
- Itr->second = ExprCandVec.size() - 1;
- }
- ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
- }
- /// Check the operand for instruction Inst at index Idx.
- void ConstantHoistingPass::collectConstantCandidates(
- ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
- Value *Opnd = Inst->getOperand(Idx);
- // Visit constant integers.
- if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
- collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
- return;
- }
- // Visit cast instructions that have constant integers.
- if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
- // Only visit cast instructions, which have been skipped. All other
- // instructions should have already been visited.
- if (!CastInst->isCast())
- return;
- if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
- // Pretend the constant is directly used by the instruction and ignore
- // the cast instruction.
- collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
- return;
- }
- }
- // Visit constant expressions that have constant integers.
- if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
- // Handle constant gep expressions.
- if (ConstHoistGEP && isa<GEPOperator>(ConstExpr))
- collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
- // Only visit constant cast expressions.
- if (!ConstExpr->isCast())
- return;
- if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
- // Pretend the constant is directly used by the instruction and ignore
- // the constant expression.
- collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
- return;
- }
- }
- }
- /// Scan the instruction for expensive integer constants and record them
- /// in the constant candidate vector.
- void ConstantHoistingPass::collectConstantCandidates(
- ConstCandMapType &ConstCandMap, Instruction *Inst) {
- // Skip all cast instructions. They are visited indirectly later on.
- if (Inst->isCast())
- return;
- // Scan all operands.
- for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
- // The cost of materializing the constants (defined in
- // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
- // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
- // So it's safe for us to collect constant candidates from all
- // IntrinsicInsts.
- if (canReplaceOperandWithVariable(Inst, Idx)) {
- collectConstantCandidates(ConstCandMap, Inst, Idx);
- }
- } // end of for all operands
- }
- /// Collect all integer constants in the function that cannot be folded
- /// into an instruction itself.
- void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
- ConstCandMapType ConstCandMap;
- for (BasicBlock &BB : Fn) {
- // Ignore unreachable basic blocks.
- if (!DT->isReachableFromEntry(&BB))
- continue;
- for (Instruction &Inst : BB)
- collectConstantCandidates(ConstCandMap, &Inst);
- }
- }
- // This helper function is necessary to deal with values that have different
- // bit widths (APInt Operator- does not like that). If the value cannot be
- // represented in uint64 we return an "empty" APInt. This is then interpreted
- // as the value is not in range.
- static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) {
- Optional<APInt> Res = None;
- unsigned BW = V1.getBitWidth() > V2.getBitWidth() ?
- V1.getBitWidth() : V2.getBitWidth();
- uint64_t LimVal1 = V1.getLimitedValue();
- uint64_t LimVal2 = V2.getLimitedValue();
- if (LimVal1 == ~0ULL || LimVal2 == ~0ULL)
- return Res;
- uint64_t Diff = LimVal1 - LimVal2;
- return APInt(BW, Diff, true);
- }
- // From a list of constants, one needs to picked as the base and the other
- // constants will be transformed into an offset from that base constant. The
- // question is which we can pick best? For example, consider these constants
- // and their number of uses:
- //
- // Constants| 2 | 4 | 12 | 42 |
- // NumUses | 3 | 2 | 8 | 7 |
- //
- // Selecting constant 12 because it has the most uses will generate negative
- // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
- // offsets lead to less optimal code generation, then there might be better
- // solutions. Suppose immediates in the range of 0..35 are most optimally
- // supported by the architecture, then selecting constant 2 is most optimal
- // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
- // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
- // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
- // selecting the base constant the range of the offsets is a very important
- // factor too that we take into account here. This algorithm calculates a total
- // costs for selecting a constant as the base and substract the costs if
- // immediates are out of range. It has quadratic complexity, so we call this
- // function only when we're optimising for size and there are less than 100
- // constants, we fall back to the straightforward algorithm otherwise
- // which does not do all the offset calculations.
- unsigned
- ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
- ConstCandVecType::iterator E,
- ConstCandVecType::iterator &MaxCostItr) {
- unsigned NumUses = 0;
- bool OptForSize = Entry->getParent()->hasOptSize() ||
- llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI,
- PGSOQueryType::IRPass);
- if (!OptForSize || std::distance(S,E) > 100) {
- for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
- NumUses += ConstCand->Uses.size();
- if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
- MaxCostItr = ConstCand;
- }
- return NumUses;
- }
- LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
- InstructionCost MaxCost = -1;
- for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
- auto Value = ConstCand->ConstInt->getValue();
- Type *Ty = ConstCand->ConstInt->getType();
- InstructionCost Cost = 0;
- NumUses += ConstCand->Uses.size();
- LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
- << "\n");
- for (auto User : ConstCand->Uses) {
- unsigned Opcode = User.Inst->getOpcode();
- unsigned OpndIdx = User.OpndIdx;
- Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
- TargetTransformInfo::TCK_SizeAndLatency);
- LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
- for (auto C2 = S; C2 != E; ++C2) {
- Optional<APInt> Diff = calculateOffsetDiff(
- C2->ConstInt->getValue(),
- ConstCand->ConstInt->getValue());
- if (Diff) {
- const InstructionCost ImmCosts =
- TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty);
- Cost -= ImmCosts;
- LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " "
- << "has penalty: " << ImmCosts << "\n"
- << "Adjusted cost: " << Cost << "\n");
- }
- }
- }
- LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
- if (Cost > MaxCost) {
- MaxCost = Cost;
- MaxCostItr = ConstCand;
- LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
- << "\n");
- }
- }
- return NumUses;
- }
- /// Find the base constant within the given range and rebase all other
- /// constants with respect to the base constant.
- void ConstantHoistingPass::findAndMakeBaseConstant(
- ConstCandVecType::iterator S, ConstCandVecType::iterator E,
- SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
- auto MaxCostItr = S;
- unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
- // Don't hoist constants that have only one use.
- if (NumUses <= 1)
- return;
- ConstantInt *ConstInt = MaxCostItr->ConstInt;
- ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
- ConstantInfo ConstInfo;
- ConstInfo.BaseInt = ConstInt;
- ConstInfo.BaseExpr = ConstExpr;
- Type *Ty = ConstInt->getType();
- // Rebase the constants with respect to the base constant.
- for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
- APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
- Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
- Type *ConstTy =
- ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
- ConstInfo.RebasedConstants.push_back(
- RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
- }
- ConstInfoVec.push_back(std::move(ConstInfo));
- }
- /// Finds and combines constant candidates that can be easily
- /// rematerialized with an add from a common base constant.
- void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
- // If BaseGV is nullptr, find base among candidate constant integers;
- // Otherwise find base among constant GEPs that share the same BaseGV.
- ConstCandVecType &ConstCandVec = BaseGV ?
- ConstGEPCandMap[BaseGV] : ConstIntCandVec;
- ConstInfoVecType &ConstInfoVec = BaseGV ?
- ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
- // Sort the constants by value and type. This invalidates the mapping!
- llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
- const ConstantCandidate &RHS) {
- if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
- return LHS.ConstInt->getType()->getBitWidth() <
- RHS.ConstInt->getType()->getBitWidth();
- return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
- });
- // Simple linear scan through the sorted constant candidate vector for viable
- // merge candidates.
- auto MinValItr = ConstCandVec.begin();
- for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
- CC != E; ++CC) {
- if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
- Type *MemUseValTy = nullptr;
- for (auto &U : CC->Uses) {
- auto *UI = U.Inst;
- if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
- MemUseValTy = LI->getType();
- break;
- } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
- // Make sure the constant is used as pointer operand of the StoreInst.
- if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
- MemUseValTy = SI->getValueOperand()->getType();
- break;
- }
- }
- }
- // Check if the constant is in range of an add with immediate.
- APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
- if ((Diff.getBitWidth() <= 64) &&
- TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
- // Check if Diff can be used as offset in addressing mode of the user
- // memory instruction.
- (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
- /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
- /*HasBaseReg*/true, /*Scale*/0)))
- continue;
- }
- // We either have now a different constant type or the constant is not in
- // range of an add with immediate anymore.
- findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
- // Start a new base constant search.
- MinValItr = CC;
- }
- // Finalize the last base constant search.
- findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
- }
- /// Updates the operand at Idx in instruction Inst with the result of
- /// instruction Mat. If the instruction is a PHI node then special
- /// handling for duplicate values form the same incoming basic block is
- /// required.
- /// \return The update will always succeed, but the return value indicated if
- /// Mat was used for the update or not.
- static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
- if (auto PHI = dyn_cast<PHINode>(Inst)) {
- // Check if any previous operand of the PHI node has the same incoming basic
- // block. This is a very odd case that happens when the incoming basic block
- // has a switch statement. In this case use the same value as the previous
- // operand(s), otherwise we will fail verification due to different values.
- // The values are actually the same, but the variable names are different
- // and the verifier doesn't like that.
- BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
- for (unsigned i = 0; i < Idx; ++i) {
- if (PHI->getIncomingBlock(i) == IncomingBB) {
- Value *IncomingVal = PHI->getIncomingValue(i);
- Inst->setOperand(Idx, IncomingVal);
- return false;
- }
- }
- }
- Inst->setOperand(Idx, Mat);
- return true;
- }
- /// Emit materialization code for all rebased constants and update their
- /// users.
- void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
- Constant *Offset,
- Type *Ty,
- const ConstantUser &ConstUser) {
- Instruction *Mat = Base;
- // The same offset can be dereferenced to different types in nested struct.
- if (!Offset && Ty && Ty != Base->getType())
- Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
- if (Offset) {
- Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst,
- ConstUser.OpndIdx);
- if (Ty) {
- // Constant being rebased is a ConstantExpr.
- PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx,
- cast<PointerType>(Ty)->getAddressSpace());
- Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt);
- Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base,
- Offset, "mat_gep", InsertionPt);
- Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt);
- } else
- // Constant being rebased is a ConstantInt.
- Mat = BinaryOperator::Create(Instruction::Add, Base, Offset,
- "const_mat", InsertionPt);
- LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
- << " + " << *Offset << ") in BB "
- << Mat->getParent()->getName() << '\n'
- << *Mat << '\n');
- Mat->setDebugLoc(ConstUser.Inst->getDebugLoc());
- }
- Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx);
- // Visit constant integer.
- if (isa<ConstantInt>(Opnd)) {
- LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
- if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset)
- Mat->eraseFromParent();
- LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
- return;
- }
- // Visit cast instruction.
- if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
- assert(CastInst->isCast() && "Expected an cast instruction!");
- // Check if we already have visited this cast instruction before to avoid
- // unnecessary cloning.
- Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
- if (!ClonedCastInst) {
- ClonedCastInst = CastInst->clone();
- ClonedCastInst->setOperand(0, Mat);
- ClonedCastInst->insertAfter(CastInst);
- // Use the same debug location as the original cast instruction.
- ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
- LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
- << "To : " << *ClonedCastInst << '\n');
- }
- LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
- updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst);
- LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
- return;
- }
- // Visit constant expression.
- if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
- if (isa<GEPOperator>(ConstExpr)) {
- // Operand is a ConstantGEP, replace it.
- updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat);
- return;
- }
- // Aside from constant GEPs, only constant cast expressions are collected.
- assert(ConstExpr->isCast() && "ConstExpr should be a cast");
- Instruction *ConstExprInst = ConstExpr->getAsInstruction(
- findMatInsertPt(ConstUser.Inst, ConstUser.OpndIdx));
- ConstExprInst->setOperand(0, Mat);
- // Use the same debug location as the instruction we are about to update.
- ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc());
- LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
- << "From : " << *ConstExpr << '\n');
- LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n');
- if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) {
- ConstExprInst->eraseFromParent();
- if (Offset)
- Mat->eraseFromParent();
- }
- LLVM_DEBUG(dbgs() << "To : " << *ConstUser.Inst << '\n');
- return;
- }
- }
- /// Hoist and hide the base constant behind a bitcast and emit
- /// materialization code for derived constants.
- bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
- bool MadeChange = false;
- SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
- BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
- for (auto const &ConstInfo : ConstInfoVec) {
- SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo);
- // We can have an empty set if the function contains unreachable blocks.
- if (IPSet.empty())
- continue;
- unsigned UsesNum = 0;
- unsigned ReBasesNum = 0;
- unsigned NotRebasedNum = 0;
- for (Instruction *IP : IPSet) {
- // First, collect constants depending on this IP of the base.
- unsigned Uses = 0;
- using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>;
- SmallVector<RebasedUse, 4> ToBeRebased;
- for (auto const &RCI : ConstInfo.RebasedConstants) {
- for (auto const &U : RCI.Uses) {
- Uses++;
- BasicBlock *OrigMatInsertBB =
- findMatInsertPt(U.Inst, U.OpndIdx)->getParent();
- // If Base constant is to be inserted in multiple places,
- // generate rebase for U using the Base dominating U.
- if (IPSet.size() == 1 ||
- DT->dominates(IP->getParent(), OrigMatInsertBB))
- ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U));
- }
- }
- UsesNum = Uses;
- // If only few constants depend on this IP of base, skip rebasing,
- // assuming the base and the rebased have the same materialization cost.
- if (ToBeRebased.size() < MinNumOfDependentToRebase) {
- NotRebasedNum += ToBeRebased.size();
- continue;
- }
- // Emit an instance of the base at this IP.
- Instruction *Base = nullptr;
- // Hoist and hide the base constant behind a bitcast.
- if (ConstInfo.BaseExpr) {
- assert(BaseGV && "A base constant expression must have an base GV");
- Type *Ty = ConstInfo.BaseExpr->getType();
- Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
- } else {
- IntegerType *Ty = ConstInfo.BaseInt->getType();
- Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
- }
- Base->setDebugLoc(IP->getDebugLoc());
- LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
- << ") to BB " << IP->getParent()->getName() << '\n'
- << *Base << '\n');
- // Emit materialization code for rebased constants depending on this IP.
- for (auto const &R : ToBeRebased) {
- Constant *Off = std::get<0>(R);
- Type *Ty = std::get<1>(R);
- ConstantUser U = std::get<2>(R);
- emitBaseConstants(Base, Off, Ty, U);
- ReBasesNum++;
- // Use the same debug location as the last user of the constant.
- Base->setDebugLoc(DILocation::getMergedLocation(
- Base->getDebugLoc(), U.Inst->getDebugLoc()));
- }
- assert(!Base->use_empty() && "The use list is empty!?");
- assert(isa<Instruction>(Base->user_back()) &&
- "All uses should be instructions.");
- }
- (void)UsesNum;
- (void)ReBasesNum;
- (void)NotRebasedNum;
- // Expect all uses are rebased after rebase is done.
- assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
- "Not all uses are rebased");
- NumConstantsHoisted++;
- // Base constant is also included in ConstInfo.RebasedConstants, so
- // deduct 1 from ConstInfo.RebasedConstants.size().
- NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
- MadeChange = true;
- }
- return MadeChange;
- }
- /// Check all cast instructions we made a copy of and remove them if they
- /// have no more users.
- void ConstantHoistingPass::deleteDeadCastInst() const {
- for (auto const &I : ClonedCastMap)
- if (I.first->use_empty())
- I.first->eraseFromParent();
- }
- /// Optimize expensive integer constants in the given function.
- bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
- DominatorTree &DT, BlockFrequencyInfo *BFI,
- BasicBlock &Entry, ProfileSummaryInfo *PSI) {
- this->TTI = &TTI;
- this->DT = &DT;
- this->BFI = BFI;
- this->DL = &Fn.getParent()->getDataLayout();
- this->Ctx = &Fn.getContext();
- this->Entry = &Entry;
- this->PSI = PSI;
- // Collect all constant candidates.
- collectConstantCandidates(Fn);
- // Combine constants that can be easily materialized with an add from a common
- // base constant.
- if (!ConstIntCandVec.empty())
- findBaseConstants(nullptr);
- for (const auto &MapEntry : ConstGEPCandMap)
- if (!MapEntry.second.empty())
- findBaseConstants(MapEntry.first);
- // Finally hoist the base constant and emit materialization code for dependent
- // constants.
- bool MadeChange = false;
- if (!ConstIntInfoVec.empty())
- MadeChange = emitBaseConstants(nullptr);
- for (const auto &MapEntry : ConstGEPInfoMap)
- if (!MapEntry.second.empty())
- MadeChange |= emitBaseConstants(MapEntry.first);
- // Cleanup dead instructions.
- deleteDeadCastInst();
- cleanup();
- return MadeChange;
- }
- PreservedAnalyses ConstantHoistingPass::run(Function &F,
- FunctionAnalysisManager &AM) {
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &TTI = AM.getResult<TargetIRAnalysis>(F);
- auto BFI = ConstHoistWithBlockFrequency
- ? &AM.getResult<BlockFrequencyAnalysis>(F)
- : nullptr;
- auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
- auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
- if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserveSet<CFGAnalyses>();
- return PA;
- }
|