123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 |
- //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a wrapper around MCSchedModel that allows the interface
- // to benefit from information currently only available in TargetInstrInfo.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/TargetSchedule.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/MC/MCInstrDesc.h"
- #include "llvm/MC/MCInstrItineraries.h"
- #include "llvm/MC/MCSchedule.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- using namespace llvm;
- static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true),
- cl::desc("Use TargetSchedModel for latency lookup"));
- static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true),
- cl::desc("Use InstrItineraryData for latency lookup"));
- bool TargetSchedModel::hasInstrSchedModel() const {
- return EnableSchedModel && SchedModel.hasInstrSchedModel();
- }
- bool TargetSchedModel::hasInstrItineraries() const {
- return EnableSchedItins && !InstrItins.isEmpty();
- }
- static unsigned gcd(unsigned Dividend, unsigned Divisor) {
- // Dividend and Divisor will be naturally swapped as needed.
- while (Divisor) {
- unsigned Rem = Dividend % Divisor;
- Dividend = Divisor;
- Divisor = Rem;
- };
- return Dividend;
- }
- static unsigned lcm(unsigned A, unsigned B) {
- unsigned LCM = (uint64_t(A) * B) / gcd(A, B);
- assert((LCM >= A && LCM >= B) && "LCM overflow");
- return LCM;
- }
- void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) {
- STI = TSInfo;
- SchedModel = TSInfo->getSchedModel();
- TII = TSInfo->getInstrInfo();
- STI->initInstrItins(InstrItins);
- unsigned NumRes = SchedModel.getNumProcResourceKinds();
- ResourceFactors.resize(NumRes);
- ResourceLCM = SchedModel.IssueWidth;
- for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
- unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
- if (NumUnits > 0)
- ResourceLCM = lcm(ResourceLCM, NumUnits);
- }
- MicroOpFactor = ResourceLCM / SchedModel.IssueWidth;
- for (unsigned Idx = 0; Idx < NumRes; ++Idx) {
- unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits;
- ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0;
- }
- }
- /// Returns true only if instruction is specified as single issue.
- bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI,
- const MCSchedClassDesc *SC) const {
- if (hasInstrSchedModel()) {
- if (!SC)
- SC = resolveSchedClass(MI);
- if (SC->isValid())
- return SC->BeginGroup;
- }
- return false;
- }
- bool TargetSchedModel::mustEndGroup(const MachineInstr *MI,
- const MCSchedClassDesc *SC) const {
- if (hasInstrSchedModel()) {
- if (!SC)
- SC = resolveSchedClass(MI);
- if (SC->isValid())
- return SC->EndGroup;
- }
- return false;
- }
- unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI,
- const MCSchedClassDesc *SC) const {
- if (hasInstrItineraries()) {
- int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass());
- return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, *MI);
- }
- if (hasInstrSchedModel()) {
- if (!SC)
- SC = resolveSchedClass(MI);
- if (SC->isValid())
- return SC->NumMicroOps;
- }
- return MI->isTransient() ? 0 : 1;
- }
- // The machine model may explicitly specify an invalid latency, which
- // effectively means infinite latency. Since users of the TargetSchedule API
- // don't know how to handle this, we convert it to a very large latency that is
- // easy to distinguish when debugging the DAG but won't induce overflow.
- static unsigned capLatency(int Cycles) {
- return Cycles >= 0 ? Cycles : 1000;
- }
- /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require
- /// evaluation of predicates that depend on instruction operands or flags.
- const MCSchedClassDesc *TargetSchedModel::
- resolveSchedClass(const MachineInstr *MI) const {
- // Get the definition's scheduling class descriptor from this machine model.
- unsigned SchedClass = MI->getDesc().getSchedClass();
- const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass);
- if (!SCDesc->isValid())
- return SCDesc;
- #ifndef NDEBUG
- unsigned NIter = 0;
- #endif
- while (SCDesc->isVariant()) {
- assert(++NIter < 6 && "Variants are nested deeper than the magic number");
- SchedClass = STI->resolveSchedClass(SchedClass, MI, this);
- SCDesc = SchedModel.getSchedClassDesc(SchedClass);
- }
- return SCDesc;
- }
- /// Find the def index of this operand. This index maps to the machine model and
- /// is independent of use operands. Def operands may be reordered with uses or
- /// merged with uses without affecting the def index (e.g. before/after
- /// regalloc). However, an instruction's def operands must never be reordered
- /// with respect to each other.
- static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) {
- unsigned DefIdx = 0;
- for (unsigned i = 0; i != DefOperIdx; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg() && MO.isDef())
- ++DefIdx;
- }
- return DefIdx;
- }
- /// Find the use index of this operand. This is independent of the instruction's
- /// def operands.
- ///
- /// Note that uses are not determined by the operand's isUse property, which
- /// is simply the inverse of isDef. Here we consider any readsReg operand to be
- /// a "use". The machine model allows an operand to be both a Def and Use.
- static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) {
- unsigned UseIdx = 0;
- for (unsigned i = 0; i != UseOperIdx; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- if (MO.isReg() && MO.readsReg() && !MO.isDef())
- ++UseIdx;
- }
- return UseIdx;
- }
- // Top-level API for clients that know the operand indices.
- unsigned TargetSchedModel::computeOperandLatency(
- const MachineInstr *DefMI, unsigned DefOperIdx,
- const MachineInstr *UseMI, unsigned UseOperIdx) const {
- if (!hasInstrSchedModel() && !hasInstrItineraries())
- return TII->defaultDefLatency(SchedModel, *DefMI);
- if (hasInstrItineraries()) {
- int OperLatency = 0;
- if (UseMI) {
- OperLatency = TII->getOperandLatency(&InstrItins, *DefMI, DefOperIdx,
- *UseMI, UseOperIdx);
- }
- else {
- unsigned DefClass = DefMI->getDesc().getSchedClass();
- OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx);
- }
- if (OperLatency >= 0)
- return OperLatency;
- // No operand latency was found.
- unsigned InstrLatency = TII->getInstrLatency(&InstrItins, *DefMI);
- // Expected latency is the max of the stage latency and itinerary props.
- // Rather than directly querying InstrItins stage latency, we call a TII
- // hook to allow subtargets to specialize latency. This hook is only
- // applicable to the InstrItins model. InstrSchedModel should model all
- // special cases without TII hooks.
- InstrLatency =
- std::max(InstrLatency, TII->defaultDefLatency(SchedModel, *DefMI));
- return InstrLatency;
- }
- // hasInstrSchedModel()
- const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
- unsigned DefIdx = findDefIdx(DefMI, DefOperIdx);
- if (DefIdx < SCDesc->NumWriteLatencyEntries) {
- // Lookup the definition's write latency in SubtargetInfo.
- const MCWriteLatencyEntry *WLEntry =
- STI->getWriteLatencyEntry(SCDesc, DefIdx);
- unsigned WriteID = WLEntry->WriteResourceID;
- unsigned Latency = capLatency(WLEntry->Cycles);
- if (!UseMI)
- return Latency;
- // Lookup the use's latency adjustment in SubtargetInfo.
- const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI);
- if (UseDesc->NumReadAdvanceEntries == 0)
- return Latency;
- unsigned UseIdx = findUseIdx(UseMI, UseOperIdx);
- int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID);
- if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap
- return 0;
- return Latency - Advance;
- }
- // If DefIdx does not exist in the model (e.g. implicit defs), then return
- // unit latency (defaultDefLatency may be too conservative).
- #ifndef NDEBUG
- if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit()
- && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef()
- && SchedModel.isComplete()) {
- errs() << "DefIdx " << DefIdx << " exceeds machine model writes for "
- << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)";
- llvm_unreachable("incomplete machine model");
- }
- #endif
- // FIXME: Automatically giving all implicit defs defaultDefLatency is
- // undesirable. We should only do it for defs that are known to the MC
- // desc like flags. Truly implicit defs should get 1 cycle latency.
- return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, *DefMI);
- }
- unsigned
- TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const {
- return capLatency(MCSchedModel::computeInstrLatency(*STI, SCDesc));
- }
- unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const {
- assert(hasInstrSchedModel() && "Only call this function with a SchedModel");
- unsigned SCIdx = TII->get(Opcode).getSchedClass();
- return capLatency(SchedModel.computeInstrLatency(*STI, SCIdx));
- }
- unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const {
- if (hasInstrSchedModel())
- return capLatency(SchedModel.computeInstrLatency(*STI, *TII, Inst));
- return computeInstrLatency(Inst.getOpcode());
- }
- unsigned
- TargetSchedModel::computeInstrLatency(const MachineInstr *MI,
- bool UseDefaultDefLatency) const {
- // For the itinerary model, fall back to the old subtarget hook.
- // Allow subtargets to compute Bundle latencies outside the machine model.
- if (hasInstrItineraries() || MI->isBundle() ||
- (!hasInstrSchedModel() && !UseDefaultDefLatency))
- return TII->getInstrLatency(&InstrItins, *MI);
- if (hasInstrSchedModel()) {
- const MCSchedClassDesc *SCDesc = resolveSchedClass(MI);
- if (SCDesc->isValid())
- return computeInstrLatency(*SCDesc);
- }
- return TII->defaultDefLatency(SchedModel, *MI);
- }
- unsigned TargetSchedModel::
- computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx,
- const MachineInstr *DepMI) const {
- if (!SchedModel.isOutOfOrder())
- return 1;
- // Out-of-order processor can dispatch WAW dependencies in the same cycle.
- // Treat predication as a data dependency for out-of-order cpus. In-order
- // cpus do not need to treat predicated writes specially.
- //
- // TODO: The following hack exists because predication passes do not
- // correctly append imp-use operands, and readsReg() strangely returns false
- // for predicated defs.
- Register Reg = DefMI->getOperand(DefOperIdx).getReg();
- const MachineFunction &MF = *DefMI->getMF();
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(*DepMI))
- return computeInstrLatency(DefMI);
- // If we have a per operand scheduling model, check if this def is writing
- // an unbuffered resource. If so, it treated like an in-order cpu.
- if (hasInstrSchedModel()) {
- const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI);
- if (SCDesc->isValid()) {
- for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc),
- *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) {
- if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize)
- return 1;
- }
- }
- }
- return 0;
- }
- double
- TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const {
- if (hasInstrItineraries()) {
- unsigned SchedClass = MI->getDesc().getSchedClass();
- return MCSchedModel::getReciprocalThroughput(SchedClass,
- *getInstrItineraries());
- }
- if (hasInstrSchedModel())
- return MCSchedModel::getReciprocalThroughput(*STI, *resolveSchedClass(MI));
- return 0.0;
- }
- double
- TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const {
- unsigned SchedClass = TII->get(Opcode).getSchedClass();
- if (hasInstrItineraries())
- return MCSchedModel::getReciprocalThroughput(SchedClass,
- *getInstrItineraries());
- if (hasInstrSchedModel()) {
- const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClass);
- if (SCDesc.isValid() && !SCDesc.isVariant())
- return MCSchedModel::getReciprocalThroughput(*STI, SCDesc);
- }
- return 0.0;
- }
- double
- TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const {
- if (hasInstrSchedModel())
- return SchedModel.getReciprocalThroughput(*STI, *TII, MI);
- return computeReciprocalThroughput(MI.getOpcode());
- }
|