12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369 |
- //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the TargetLoweringBase class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/StringRef.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineMemOperand.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/RuntimeLibcalls.h"
- #include "llvm/CodeGen/StackMaps.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetOpcodes.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MachineValueType.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Transforms/Utils/SizeOpts.h"
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <cstring>
- #include <iterator>
- #include <string>
- #include <tuple>
- #include <utility>
- using namespace llvm;
- static cl::opt<bool> JumpIsExpensiveOverride(
- "jump-is-expensive", cl::init(false),
- cl::desc("Do not create extra branches to split comparison logic."),
- cl::Hidden);
- static cl::opt<unsigned> MinimumJumpTableEntries
- ("min-jump-table-entries", cl::init(4), cl::Hidden,
- cl::desc("Set minimum number of entries to use a jump table."));
- static cl::opt<unsigned> MaximumJumpTableSize
- ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
- cl::desc("Set maximum size of jump tables."));
- /// Minimum jump table density for normal functions.
- static cl::opt<unsigned>
- JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
- cl::desc("Minimum density for building a jump table in "
- "a normal function"));
- /// Minimum jump table density for -Os or -Oz functions.
- static cl::opt<unsigned> OptsizeJumpTableDensity(
- "optsize-jump-table-density", cl::init(40), cl::Hidden,
- cl::desc("Minimum density for building a jump table in "
- "an optsize function"));
- // FIXME: This option is only to test if the strict fp operation processed
- // correctly by preventing mutating strict fp operation to normal fp operation
- // during development. When the backend supports strict float operation, this
- // option will be meaningless.
- static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
- cl::desc("Don't mutate strict-float node to a legalize node"),
- cl::init(false), cl::Hidden);
- static bool darwinHasSinCos(const Triple &TT) {
- assert(TT.isOSDarwin() && "should be called with darwin triple");
- // Don't bother with 32 bit x86.
- if (TT.getArch() == Triple::x86)
- return false;
- // Macos < 10.9 has no sincos_stret.
- if (TT.isMacOSX())
- return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
- // iOS < 7.0 has no sincos_stret.
- if (TT.isiOS())
- return !TT.isOSVersionLT(7, 0);
- // Any other darwin such as WatchOS/TvOS is new enough.
- return true;
- }
- void TargetLoweringBase::InitLibcalls(const Triple &TT) {
- #define HANDLE_LIBCALL(code, name) \
- setLibcallName(RTLIB::code, name);
- #include "llvm/IR/RuntimeLibcalls.def"
- #undef HANDLE_LIBCALL
- // Initialize calling conventions to their default.
- for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
- setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
- // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
- if (TT.isPPC()) {
- setLibcallName(RTLIB::ADD_F128, "__addkf3");
- setLibcallName(RTLIB::SUB_F128, "__subkf3");
- setLibcallName(RTLIB::MUL_F128, "__mulkf3");
- setLibcallName(RTLIB::DIV_F128, "__divkf3");
- setLibcallName(RTLIB::POWI_F128, "__powikf2");
- setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
- setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
- setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
- setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
- setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
- setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
- setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
- setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
- setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
- setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
- setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
- setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
- setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
- setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
- setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
- setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
- setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
- setLibcallName(RTLIB::UNE_F128, "__nekf2");
- setLibcallName(RTLIB::OGE_F128, "__gekf2");
- setLibcallName(RTLIB::OLT_F128, "__ltkf2");
- setLibcallName(RTLIB::OLE_F128, "__lekf2");
- setLibcallName(RTLIB::OGT_F128, "__gtkf2");
- setLibcallName(RTLIB::UO_F128, "__unordkf2");
- }
- // A few names are different on particular architectures or environments.
- if (TT.isOSDarwin()) {
- // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
- // of the gnueabi-style __gnu_*_ieee.
- // FIXME: What about other targets?
- setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
- setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
- // Some darwins have an optimized __bzero/bzero function.
- switch (TT.getArch()) {
- case Triple::x86:
- case Triple::x86_64:
- if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
- setLibcallName(RTLIB::BZERO, "__bzero");
- break;
- case Triple::aarch64:
- case Triple::aarch64_32:
- setLibcallName(RTLIB::BZERO, "bzero");
- break;
- default:
- break;
- }
- if (darwinHasSinCos(TT)) {
- setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
- setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
- if (TT.isWatchABI()) {
- setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
- CallingConv::ARM_AAPCS_VFP);
- setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
- CallingConv::ARM_AAPCS_VFP);
- }
- }
- } else {
- setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
- setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
- }
- if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
- (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
- setLibcallName(RTLIB::SINCOS_F32, "sincosf");
- setLibcallName(RTLIB::SINCOS_F64, "sincos");
- setLibcallName(RTLIB::SINCOS_F80, "sincosl");
- setLibcallName(RTLIB::SINCOS_F128, "sincosl");
- setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
- }
- if (TT.isPS4CPU()) {
- setLibcallName(RTLIB::SINCOS_F32, "sincosf");
- setLibcallName(RTLIB::SINCOS_F64, "sincos");
- }
- if (TT.isOSOpenBSD()) {
- setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
- }
- }
- /// GetFPLibCall - Helper to return the right libcall for the given floating
- /// point type, or UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
- RTLIB::Libcall Call_F32,
- RTLIB::Libcall Call_F64,
- RTLIB::Libcall Call_F80,
- RTLIB::Libcall Call_F128,
- RTLIB::Libcall Call_PPCF128) {
- return
- VT == MVT::f32 ? Call_F32 :
- VT == MVT::f64 ? Call_F64 :
- VT == MVT::f80 ? Call_F80 :
- VT == MVT::f128 ? Call_F128 :
- VT == MVT::ppcf128 ? Call_PPCF128 :
- RTLIB::UNKNOWN_LIBCALL;
- }
- /// getFPEXT - Return the FPEXT_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::f16) {
- if (RetVT == MVT::f32)
- return FPEXT_F16_F32;
- if (RetVT == MVT::f64)
- return FPEXT_F16_F64;
- if (RetVT == MVT::f80)
- return FPEXT_F16_F80;
- if (RetVT == MVT::f128)
- return FPEXT_F16_F128;
- } else if (OpVT == MVT::f32) {
- if (RetVT == MVT::f64)
- return FPEXT_F32_F64;
- if (RetVT == MVT::f128)
- return FPEXT_F32_F128;
- if (RetVT == MVT::ppcf128)
- return FPEXT_F32_PPCF128;
- } else if (OpVT == MVT::f64) {
- if (RetVT == MVT::f128)
- return FPEXT_F64_F128;
- else if (RetVT == MVT::ppcf128)
- return FPEXT_F64_PPCF128;
- } else if (OpVT == MVT::f80) {
- if (RetVT == MVT::f128)
- return FPEXT_F80_F128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getFPROUND - Return the FPROUND_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
- if (RetVT == MVT::f16) {
- if (OpVT == MVT::f32)
- return FPROUND_F32_F16;
- if (OpVT == MVT::f64)
- return FPROUND_F64_F16;
- if (OpVT == MVT::f80)
- return FPROUND_F80_F16;
- if (OpVT == MVT::f128)
- return FPROUND_F128_F16;
- if (OpVT == MVT::ppcf128)
- return FPROUND_PPCF128_F16;
- } else if (RetVT == MVT::f32) {
- if (OpVT == MVT::f64)
- return FPROUND_F64_F32;
- if (OpVT == MVT::f80)
- return FPROUND_F80_F32;
- if (OpVT == MVT::f128)
- return FPROUND_F128_F32;
- if (OpVT == MVT::ppcf128)
- return FPROUND_PPCF128_F32;
- } else if (RetVT == MVT::f64) {
- if (OpVT == MVT::f80)
- return FPROUND_F80_F64;
- if (OpVT == MVT::f128)
- return FPROUND_F128_F64;
- if (OpVT == MVT::ppcf128)
- return FPROUND_PPCF128_F64;
- } else if (RetVT == MVT::f80) {
- if (OpVT == MVT::f128)
- return FPROUND_F128_F80;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::f16) {
- if (RetVT == MVT::i32)
- return FPTOSINT_F16_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F16_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F16_I128;
- } else if (OpVT == MVT::f32) {
- if (RetVT == MVT::i32)
- return FPTOSINT_F32_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F32_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F32_I128;
- } else if (OpVT == MVT::f64) {
- if (RetVT == MVT::i32)
- return FPTOSINT_F64_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F64_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F64_I128;
- } else if (OpVT == MVT::f80) {
- if (RetVT == MVT::i32)
- return FPTOSINT_F80_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F80_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F80_I128;
- } else if (OpVT == MVT::f128) {
- if (RetVT == MVT::i32)
- return FPTOSINT_F128_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F128_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F128_I128;
- } else if (OpVT == MVT::ppcf128) {
- if (RetVT == MVT::i32)
- return FPTOSINT_PPCF128_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_PPCF128_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_PPCF128_I128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::f16) {
- if (RetVT == MVT::i32)
- return FPTOUINT_F16_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F16_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F16_I128;
- } else if (OpVT == MVT::f32) {
- if (RetVT == MVT::i32)
- return FPTOUINT_F32_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F32_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F32_I128;
- } else if (OpVT == MVT::f64) {
- if (RetVT == MVT::i32)
- return FPTOUINT_F64_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F64_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F64_I128;
- } else if (OpVT == MVT::f80) {
- if (RetVT == MVT::i32)
- return FPTOUINT_F80_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F80_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F80_I128;
- } else if (OpVT == MVT::f128) {
- if (RetVT == MVT::i32)
- return FPTOUINT_F128_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F128_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F128_I128;
- } else if (OpVT == MVT::ppcf128) {
- if (RetVT == MVT::i32)
- return FPTOUINT_PPCF128_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_PPCF128_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_PPCF128_I128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::i32) {
- if (RetVT == MVT::f16)
- return SINTTOFP_I32_F16;
- if (RetVT == MVT::f32)
- return SINTTOFP_I32_F32;
- if (RetVT == MVT::f64)
- return SINTTOFP_I32_F64;
- if (RetVT == MVT::f80)
- return SINTTOFP_I32_F80;
- if (RetVT == MVT::f128)
- return SINTTOFP_I32_F128;
- if (RetVT == MVT::ppcf128)
- return SINTTOFP_I32_PPCF128;
- } else if (OpVT == MVT::i64) {
- if (RetVT == MVT::f16)
- return SINTTOFP_I64_F16;
- if (RetVT == MVT::f32)
- return SINTTOFP_I64_F32;
- if (RetVT == MVT::f64)
- return SINTTOFP_I64_F64;
- if (RetVT == MVT::f80)
- return SINTTOFP_I64_F80;
- if (RetVT == MVT::f128)
- return SINTTOFP_I64_F128;
- if (RetVT == MVT::ppcf128)
- return SINTTOFP_I64_PPCF128;
- } else if (OpVT == MVT::i128) {
- if (RetVT == MVT::f16)
- return SINTTOFP_I128_F16;
- if (RetVT == MVT::f32)
- return SINTTOFP_I128_F32;
- if (RetVT == MVT::f64)
- return SINTTOFP_I128_F64;
- if (RetVT == MVT::f80)
- return SINTTOFP_I128_F80;
- if (RetVT == MVT::f128)
- return SINTTOFP_I128_F128;
- if (RetVT == MVT::ppcf128)
- return SINTTOFP_I128_PPCF128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::i32) {
- if (RetVT == MVT::f16)
- return UINTTOFP_I32_F16;
- if (RetVT == MVT::f32)
- return UINTTOFP_I32_F32;
- if (RetVT == MVT::f64)
- return UINTTOFP_I32_F64;
- if (RetVT == MVT::f80)
- return UINTTOFP_I32_F80;
- if (RetVT == MVT::f128)
- return UINTTOFP_I32_F128;
- if (RetVT == MVT::ppcf128)
- return UINTTOFP_I32_PPCF128;
- } else if (OpVT == MVT::i64) {
- if (RetVT == MVT::f16)
- return UINTTOFP_I64_F16;
- if (RetVT == MVT::f32)
- return UINTTOFP_I64_F32;
- if (RetVT == MVT::f64)
- return UINTTOFP_I64_F64;
- if (RetVT == MVT::f80)
- return UINTTOFP_I64_F80;
- if (RetVT == MVT::f128)
- return UINTTOFP_I64_F128;
- if (RetVT == MVT::ppcf128)
- return UINTTOFP_I64_PPCF128;
- } else if (OpVT == MVT::i128) {
- if (RetVT == MVT::f16)
- return UINTTOFP_I128_F16;
- if (RetVT == MVT::f32)
- return UINTTOFP_I128_F32;
- if (RetVT == MVT::f64)
- return UINTTOFP_I128_F64;
- if (RetVT == MVT::f80)
- return UINTTOFP_I128_F80;
- if (RetVT == MVT::f128)
- return UINTTOFP_I128_F128;
- if (RetVT == MVT::ppcf128)
- return UINTTOFP_I128_PPCF128;
- }
- return UNKNOWN_LIBCALL;
- }
- RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
- return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
- POWI_PPCF128);
- }
- RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
- MVT VT) {
- unsigned ModeN, ModelN;
- switch (VT.SimpleTy) {
- case MVT::i8:
- ModeN = 0;
- break;
- case MVT::i16:
- ModeN = 1;
- break;
- case MVT::i32:
- ModeN = 2;
- break;
- case MVT::i64:
- ModeN = 3;
- break;
- case MVT::i128:
- ModeN = 4;
- break;
- default:
- return UNKNOWN_LIBCALL;
- }
- switch (Order) {
- case AtomicOrdering::Monotonic:
- ModelN = 0;
- break;
- case AtomicOrdering::Acquire:
- ModelN = 1;
- break;
- case AtomicOrdering::Release:
- ModelN = 2;
- break;
- case AtomicOrdering::AcquireRelease:
- case AtomicOrdering::SequentiallyConsistent:
- ModelN = 3;
- break;
- default:
- return UNKNOWN_LIBCALL;
- }
- #define LCALLS(A, B) \
- { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
- #define LCALL5(A) \
- LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
- switch (Opc) {
- case ISD::ATOMIC_CMP_SWAP: {
- const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
- return LC[ModeN][ModelN];
- }
- case ISD::ATOMIC_SWAP: {
- const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
- return LC[ModeN][ModelN];
- }
- case ISD::ATOMIC_LOAD_ADD: {
- const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
- return LC[ModeN][ModelN];
- }
- case ISD::ATOMIC_LOAD_OR: {
- const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
- return LC[ModeN][ModelN];
- }
- case ISD::ATOMIC_LOAD_CLR: {
- const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
- return LC[ModeN][ModelN];
- }
- case ISD::ATOMIC_LOAD_XOR: {
- const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
- return LC[ModeN][ModelN];
- }
- default:
- return UNKNOWN_LIBCALL;
- }
- #undef LCALLS
- #undef LCALL5
- }
- RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
- #define OP_TO_LIBCALL(Name, Enum) \
- case Name: \
- switch (VT.SimpleTy) { \
- default: \
- return UNKNOWN_LIBCALL; \
- case MVT::i8: \
- return Enum##_1; \
- case MVT::i16: \
- return Enum##_2; \
- case MVT::i32: \
- return Enum##_4; \
- case MVT::i64: \
- return Enum##_8; \
- case MVT::i128: \
- return Enum##_16; \
- }
- switch (Opc) {
- OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
- OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
- OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
- }
- #undef OP_TO_LIBCALL
- return UNKNOWN_LIBCALL;
- }
- RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
- switch (ElementSize) {
- case 1:
- return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
- case 2:
- return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
- case 4:
- return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
- case 8:
- return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
- case 16:
- return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
- default:
- return UNKNOWN_LIBCALL;
- }
- }
- RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
- switch (ElementSize) {
- case 1:
- return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
- case 2:
- return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
- case 4:
- return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
- case 8:
- return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
- case 16:
- return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
- default:
- return UNKNOWN_LIBCALL;
- }
- }
- RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
- switch (ElementSize) {
- case 1:
- return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
- case 2:
- return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
- case 4:
- return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
- case 8:
- return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
- case 16:
- return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
- default:
- return UNKNOWN_LIBCALL;
- }
- }
- /// InitCmpLibcallCCs - Set default comparison libcall CC.
- static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
- std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
- CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
- CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
- CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
- CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
- CCs[RTLIB::UNE_F32] = ISD::SETNE;
- CCs[RTLIB::UNE_F64] = ISD::SETNE;
- CCs[RTLIB::UNE_F128] = ISD::SETNE;
- CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
- CCs[RTLIB::OGE_F32] = ISD::SETGE;
- CCs[RTLIB::OGE_F64] = ISD::SETGE;
- CCs[RTLIB::OGE_F128] = ISD::SETGE;
- CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
- CCs[RTLIB::OLT_F32] = ISD::SETLT;
- CCs[RTLIB::OLT_F64] = ISD::SETLT;
- CCs[RTLIB::OLT_F128] = ISD::SETLT;
- CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
- CCs[RTLIB::OLE_F32] = ISD::SETLE;
- CCs[RTLIB::OLE_F64] = ISD::SETLE;
- CCs[RTLIB::OLE_F128] = ISD::SETLE;
- CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
- CCs[RTLIB::OGT_F32] = ISD::SETGT;
- CCs[RTLIB::OGT_F64] = ISD::SETGT;
- CCs[RTLIB::OGT_F128] = ISD::SETGT;
- CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
- CCs[RTLIB::UO_F32] = ISD::SETNE;
- CCs[RTLIB::UO_F64] = ISD::SETNE;
- CCs[RTLIB::UO_F128] = ISD::SETNE;
- CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
- }
- /// NOTE: The TargetMachine owns TLOF.
- TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
- initActions();
- // Perform these initializations only once.
- MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
- MaxLoadsPerMemcmp = 8;
- MaxGluedStoresPerMemcpy = 0;
- MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
- MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
- HasMultipleConditionRegisters = false;
- HasExtractBitsInsn = false;
- JumpIsExpensive = JumpIsExpensiveOverride;
- PredictableSelectIsExpensive = false;
- EnableExtLdPromotion = false;
- StackPointerRegisterToSaveRestore = 0;
- BooleanContents = UndefinedBooleanContent;
- BooleanFloatContents = UndefinedBooleanContent;
- BooleanVectorContents = UndefinedBooleanContent;
- SchedPreferenceInfo = Sched::ILP;
- GatherAllAliasesMaxDepth = 18;
- IsStrictFPEnabled = DisableStrictNodeMutation;
- MaxBytesForAlignment = 0;
- // TODO: the default will be switched to 0 in the next commit, along
- // with the Target-specific changes necessary.
- MaxAtomicSizeInBitsSupported = 1024;
- MinCmpXchgSizeInBits = 0;
- SupportsUnalignedAtomics = false;
- std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
- InitLibcalls(TM.getTargetTriple());
- InitCmpLibcallCCs(CmpLibcallCCs);
- }
- void TargetLoweringBase::initActions() {
- // All operations default to being supported.
- memset(OpActions, 0, sizeof(OpActions));
- memset(LoadExtActions, 0, sizeof(LoadExtActions));
- memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
- memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
- memset(CondCodeActions, 0, sizeof(CondCodeActions));
- std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
- std::fill(std::begin(TargetDAGCombineArray),
- std::end(TargetDAGCombineArray), 0);
- for (MVT VT : MVT::fp_valuetypes()) {
- MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
- if (IntVT.isValid()) {
- setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
- AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
- }
- }
- // Set default actions for various operations.
- for (MVT VT : MVT::all_valuetypes()) {
- // Default all indexed load / store to expand.
- for (unsigned IM = (unsigned)ISD::PRE_INC;
- IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
- setIndexedLoadAction(IM, VT, Expand);
- setIndexedStoreAction(IM, VT, Expand);
- setIndexedMaskedLoadAction(IM, VT, Expand);
- setIndexedMaskedStoreAction(IM, VT, Expand);
- }
- // Most backends expect to see the node which just returns the value loaded.
- setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
- // These operations default to expand.
- setOperationAction(ISD::FGETSIGN, VT, Expand);
- setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
- setOperationAction(ISD::FMINNUM, VT, Expand);
- setOperationAction(ISD::FMAXNUM, VT, Expand);
- setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
- setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
- setOperationAction(ISD::FMINIMUM, VT, Expand);
- setOperationAction(ISD::FMAXIMUM, VT, Expand);
- setOperationAction(ISD::FMAD, VT, Expand);
- setOperationAction(ISD::SMIN, VT, Expand);
- setOperationAction(ISD::SMAX, VT, Expand);
- setOperationAction(ISD::UMIN, VT, Expand);
- setOperationAction(ISD::UMAX, VT, Expand);
- setOperationAction(ISD::ABS, VT, Expand);
- setOperationAction(ISD::FSHL, VT, Expand);
- setOperationAction(ISD::FSHR, VT, Expand);
- setOperationAction(ISD::SADDSAT, VT, Expand);
- setOperationAction(ISD::UADDSAT, VT, Expand);
- setOperationAction(ISD::SSUBSAT, VT, Expand);
- setOperationAction(ISD::USUBSAT, VT, Expand);
- setOperationAction(ISD::SSHLSAT, VT, Expand);
- setOperationAction(ISD::USHLSAT, VT, Expand);
- setOperationAction(ISD::SMULFIX, VT, Expand);
- setOperationAction(ISD::SMULFIXSAT, VT, Expand);
- setOperationAction(ISD::UMULFIX, VT, Expand);
- setOperationAction(ISD::UMULFIXSAT, VT, Expand);
- setOperationAction(ISD::SDIVFIX, VT, Expand);
- setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
- setOperationAction(ISD::UDIVFIX, VT, Expand);
- setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
- setOperationAction(ISD::FP_TO_SINT_SAT, VT, Expand);
- setOperationAction(ISD::FP_TO_UINT_SAT, VT, Expand);
- // Overflow operations default to expand
- setOperationAction(ISD::SADDO, VT, Expand);
- setOperationAction(ISD::SSUBO, VT, Expand);
- setOperationAction(ISD::UADDO, VT, Expand);
- setOperationAction(ISD::USUBO, VT, Expand);
- setOperationAction(ISD::SMULO, VT, Expand);
- setOperationAction(ISD::UMULO, VT, Expand);
- // ADDCARRY operations default to expand
- setOperationAction(ISD::ADDCARRY, VT, Expand);
- setOperationAction(ISD::SUBCARRY, VT, Expand);
- setOperationAction(ISD::SETCCCARRY, VT, Expand);
- setOperationAction(ISD::SADDO_CARRY, VT, Expand);
- setOperationAction(ISD::SSUBO_CARRY, VT, Expand);
- // ADDC/ADDE/SUBC/SUBE default to expand.
- setOperationAction(ISD::ADDC, VT, Expand);
- setOperationAction(ISD::ADDE, VT, Expand);
- setOperationAction(ISD::SUBC, VT, Expand);
- setOperationAction(ISD::SUBE, VT, Expand);
- // Absolute difference
- setOperationAction(ISD::ABDS, VT, Expand);
- setOperationAction(ISD::ABDU, VT, Expand);
- // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
- setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
- setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
- setOperationAction(ISD::BITREVERSE, VT, Expand);
- setOperationAction(ISD::PARITY, VT, Expand);
- // These library functions default to expand.
- setOperationAction(ISD::FROUND, VT, Expand);
- setOperationAction(ISD::FROUNDEVEN, VT, Expand);
- setOperationAction(ISD::FPOWI, VT, Expand);
- // These operations default to expand for vector types.
- if (VT.isVector()) {
- setOperationAction(ISD::FCOPYSIGN, VT, Expand);
- setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
- setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
- setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
- setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
- setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
- }
- // Constrained floating-point operations default to expand.
- #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
- setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
- #include "llvm/IR/ConstrainedOps.def"
- // For most targets @llvm.get.dynamic.area.offset just returns 0.
- setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
- // Vector reduction default to expand.
- setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
- setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
- setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
- setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
- setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
- setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
- setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
- setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
- setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
- setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
- setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
- setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
- setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
- setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Expand);
- setOperationAction(ISD::VECREDUCE_SEQ_FMUL, VT, Expand);
- // Named vector shuffles default to expand.
- setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
- }
- // Most targets ignore the @llvm.prefetch intrinsic.
- setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
- // Most targets also ignore the @llvm.readcyclecounter intrinsic.
- setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
- // ConstantFP nodes default to expand. Targets can either change this to
- // Legal, in which case all fp constants are legal, or use isFPImmLegal()
- // to optimize expansions for certain constants.
- setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
- // These library functions default to expand.
- for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
- setOperationAction(ISD::FCBRT, VT, Expand);
- setOperationAction(ISD::FLOG , VT, Expand);
- setOperationAction(ISD::FLOG2, VT, Expand);
- setOperationAction(ISD::FLOG10, VT, Expand);
- setOperationAction(ISD::FEXP , VT, Expand);
- setOperationAction(ISD::FEXP2, VT, Expand);
- setOperationAction(ISD::FFLOOR, VT, Expand);
- setOperationAction(ISD::FNEARBYINT, VT, Expand);
- setOperationAction(ISD::FCEIL, VT, Expand);
- setOperationAction(ISD::FRINT, VT, Expand);
- setOperationAction(ISD::FTRUNC, VT, Expand);
- setOperationAction(ISD::LROUND, VT, Expand);
- setOperationAction(ISD::LLROUND, VT, Expand);
- setOperationAction(ISD::LRINT, VT, Expand);
- setOperationAction(ISD::LLRINT, VT, Expand);
- }
- // Default ISD::TRAP to expand (which turns it into abort).
- setOperationAction(ISD::TRAP, MVT::Other, Expand);
- // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
- // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
- setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
- setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
- }
- MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
- EVT) const {
- return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
- }
- EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
- bool LegalTypes) const {
- assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
- if (LHSTy.isVector())
- return LHSTy;
- MVT ShiftVT =
- LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
- // If any possible shift value won't fit in the prefered type, just use
- // something safe. Assume it will be legalized when the shift is expanded.
- if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
- ShiftVT = MVT::i32;
- assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
- "ShiftVT is still too small!");
- return ShiftVT;
- }
- bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
- assert(isTypeLegal(VT));
- switch (Op) {
- default:
- return false;
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- return true;
- }
- }
- bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
- unsigned DestAS) const {
- return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
- }
- void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
- // If the command-line option was specified, ignore this request.
- if (!JumpIsExpensiveOverride.getNumOccurrences())
- JumpIsExpensive = isExpensive;
- }
- TargetLoweringBase::LegalizeKind
- TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
- // If this is a simple type, use the ComputeRegisterProp mechanism.
- if (VT.isSimple()) {
- MVT SVT = VT.getSimpleVT();
- assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
- MVT NVT = TransformToType[SVT.SimpleTy];
- LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
- assert((LA == TypeLegal || LA == TypeSoftenFloat ||
- LA == TypeSoftPromoteHalf ||
- (NVT.isVector() ||
- ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
- "Promote may not follow Expand or Promote");
- if (LA == TypeSplitVector)
- return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
- if (LA == TypeScalarizeVector)
- return LegalizeKind(LA, SVT.getVectorElementType());
- return LegalizeKind(LA, NVT);
- }
- // Handle Extended Scalar Types.
- if (!VT.isVector()) {
- assert(VT.isInteger() && "Float types must be simple");
- unsigned BitSize = VT.getSizeInBits();
- // First promote to a power-of-two size, then expand if necessary.
- if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
- EVT NVT = VT.getRoundIntegerType(Context);
- assert(NVT != VT && "Unable to round integer VT");
- LegalizeKind NextStep = getTypeConversion(Context, NVT);
- // Avoid multi-step promotion.
- if (NextStep.first == TypePromoteInteger)
- return NextStep;
- // Return rounded integer type.
- return LegalizeKind(TypePromoteInteger, NVT);
- }
- return LegalizeKind(TypeExpandInteger,
- EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
- }
- // Handle vector types.
- ElementCount NumElts = VT.getVectorElementCount();
- EVT EltVT = VT.getVectorElementType();
- // Vectors with only one element are always scalarized.
- if (NumElts.isScalar())
- return LegalizeKind(TypeScalarizeVector, EltVT);
- // Try to widen vector elements until the element type is a power of two and
- // promote it to a legal type later on, for example:
- // <3 x i8> -> <4 x i8> -> <4 x i32>
- if (EltVT.isInteger()) {
- // Vectors with a number of elements that is not a power of two are always
- // widened, for example <3 x i8> -> <4 x i8>.
- if (!VT.isPow2VectorType()) {
- NumElts = NumElts.coefficientNextPowerOf2();
- EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
- return LegalizeKind(TypeWidenVector, NVT);
- }
- // Examine the element type.
- LegalizeKind LK = getTypeConversion(Context, EltVT);
- // If type is to be expanded, split the vector.
- // <4 x i140> -> <2 x i140>
- if (LK.first == TypeExpandInteger) {
- if (VT.getVectorElementCount().isScalable())
- return LegalizeKind(TypeScalarizeScalableVector, EltVT);
- return LegalizeKind(TypeSplitVector,
- VT.getHalfNumVectorElementsVT(Context));
- }
- // Promote the integer element types until a legal vector type is found
- // or until the element integer type is too big. If a legal type was not
- // found, fallback to the usual mechanism of widening/splitting the
- // vector.
- EVT OldEltVT = EltVT;
- while (true) {
- // Increase the bitwidth of the element to the next pow-of-two
- // (which is greater than 8 bits).
- EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
- .getRoundIntegerType(Context);
- // Stop trying when getting a non-simple element type.
- // Note that vector elements may be greater than legal vector element
- // types. Example: X86 XMM registers hold 64bit element on 32bit
- // systems.
- if (!EltVT.isSimple())
- break;
- // Build a new vector type and check if it is legal.
- MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
- // Found a legal promoted vector type.
- if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
- return LegalizeKind(TypePromoteInteger,
- EVT::getVectorVT(Context, EltVT, NumElts));
- }
- // Reset the type to the unexpanded type if we did not find a legal vector
- // type with a promoted vector element type.
- EltVT = OldEltVT;
- }
- // Try to widen the vector until a legal type is found.
- // If there is no wider legal type, split the vector.
- while (true) {
- // Round up to the next power of 2.
- NumElts = NumElts.coefficientNextPowerOf2();
- // If there is no simple vector type with this many elements then there
- // cannot be a larger legal vector type. Note that this assumes that
- // there are no skipped intermediate vector types in the simple types.
- if (!EltVT.isSimple())
- break;
- MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
- if (LargerVector == MVT())
- break;
- // If this type is legal then widen the vector.
- if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
- return LegalizeKind(TypeWidenVector, LargerVector);
- }
- // Widen odd vectors to next power of two.
- if (!VT.isPow2VectorType()) {
- EVT NVT = VT.getPow2VectorType(Context);
- return LegalizeKind(TypeWidenVector, NVT);
- }
- if (VT.getVectorElementCount() == ElementCount::getScalable(1))
- return LegalizeKind(TypeScalarizeScalableVector, EltVT);
- // Vectors with illegal element types are expanded.
- EVT NVT = EVT::getVectorVT(Context, EltVT,
- VT.getVectorElementCount().divideCoefficientBy(2));
- return LegalizeKind(TypeSplitVector, NVT);
- }
- static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
- unsigned &NumIntermediates,
- MVT &RegisterVT,
- TargetLoweringBase *TLI) {
- // Figure out the right, legal destination reg to copy into.
- ElementCount EC = VT.getVectorElementCount();
- MVT EltTy = VT.getVectorElementType();
- unsigned NumVectorRegs = 1;
- // Scalable vectors cannot be scalarized, so splitting or widening is
- // required.
- if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
- llvm_unreachable(
- "Splitting or widening of non-power-of-2 MVTs is not implemented.");
- // FIXME: We don't support non-power-of-2-sized vectors for now.
- // Ideally we could break down into LHS/RHS like LegalizeDAG does.
- if (!isPowerOf2_32(EC.getKnownMinValue())) {
- // Split EC to unit size (scalable property is preserved).
- NumVectorRegs = EC.getKnownMinValue();
- EC = ElementCount::getFixed(1);
- }
- // Divide the input until we get to a supported size. This will
- // always end up with an EC that represent a scalar or a scalable
- // scalar.
- while (EC.getKnownMinValue() > 1 &&
- !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
- EC = EC.divideCoefficientBy(2);
- NumVectorRegs <<= 1;
- }
- NumIntermediates = NumVectorRegs;
- MVT NewVT = MVT::getVectorVT(EltTy, EC);
- if (!TLI->isTypeLegal(NewVT))
- NewVT = EltTy;
- IntermediateVT = NewVT;
- unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
- // Convert sizes such as i33 to i64.
- if (!isPowerOf2_32(LaneSizeInBits))
- LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
- MVT DestVT = TLI->getRegisterType(NewVT);
- RegisterVT = DestVT;
- if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
- return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
- // Otherwise, promotion or legal types use the same number of registers as
- // the vector decimated to the appropriate level.
- return NumVectorRegs;
- }
- /// isLegalRC - Return true if the value types that can be represented by the
- /// specified register class are all legal.
- bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
- const TargetRegisterClass &RC) const {
- for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
- if (isTypeLegal(*I))
- return true;
- return false;
- }
- /// Replace/modify any TargetFrameIndex operands with a targte-dependent
- /// sequence of memory operands that is recognized by PrologEpilogInserter.
- MachineBasicBlock *
- TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
- MachineBasicBlock *MBB) const {
- MachineInstr *MI = &InitialMI;
- MachineFunction &MF = *MI->getMF();
- MachineFrameInfo &MFI = MF.getFrameInfo();
- // We're handling multiple types of operands here:
- // PATCHPOINT MetaArgs - live-in, read only, direct
- // STATEPOINT Deopt Spill - live-through, read only, indirect
- // STATEPOINT Deopt Alloca - live-through, read only, direct
- // (We're currently conservative and mark the deopt slots read/write in
- // practice.)
- // STATEPOINT GC Spill - live-through, read/write, indirect
- // STATEPOINT GC Alloca - live-through, read/write, direct
- // The live-in vs live-through is handled already (the live through ones are
- // all stack slots), but we need to handle the different type of stackmap
- // operands and memory effects here.
- if (llvm::none_of(MI->operands(),
- [](MachineOperand &Operand) { return Operand.isFI(); }))
- return MBB;
- MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
- // Inherit previous memory operands.
- MIB.cloneMemRefs(*MI);
- for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isFI()) {
- // Index of Def operand this Use it tied to.
- // Since Defs are coming before Uses, if Use is tied, then
- // index of Def must be smaller that index of that Use.
- // Also, Defs preserve their position in new MI.
- unsigned TiedTo = i;
- if (MO.isReg() && MO.isTied())
- TiedTo = MI->findTiedOperandIdx(i);
- MIB.add(MO);
- if (TiedTo < i)
- MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
- continue;
- }
- // foldMemoryOperand builds a new MI after replacing a single FI operand
- // with the canonical set of five x86 addressing-mode operands.
- int FI = MO.getIndex();
- // Add frame index operands recognized by stackmaps.cpp
- if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
- // indirect-mem-ref tag, size, #FI, offset.
- // Used for spills inserted by StatepointLowering. This codepath is not
- // used for patchpoints/stackmaps at all, for these spilling is done via
- // foldMemoryOperand callback only.
- assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
- MIB.addImm(StackMaps::IndirectMemRefOp);
- MIB.addImm(MFI.getObjectSize(FI));
- MIB.add(MO);
- MIB.addImm(0);
- } else {
- // direct-mem-ref tag, #FI, offset.
- // Used by patchpoint, and direct alloca arguments to statepoints
- MIB.addImm(StackMaps::DirectMemRefOp);
- MIB.add(MO);
- MIB.addImm(0);
- }
- assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
- // Add a new memory operand for this FI.
- assert(MFI.getObjectOffset(FI) != -1);
- // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and
- // PATCHPOINT should be updated to do the same. (TODO)
- if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
- auto Flags = MachineMemOperand::MOLoad;
- MachineMemOperand *MMO = MF.getMachineMemOperand(
- MachinePointerInfo::getFixedStack(MF, FI), Flags,
- MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
- MIB->addMemOperand(MF, MMO);
- }
- }
- MBB->insert(MachineBasicBlock::iterator(MI), MIB);
- MI->eraseFromParent();
- return MBB;
- }
- /// findRepresentativeClass - Return the largest legal super-reg register class
- /// of the register class for the specified type and its associated "cost".
- // This function is in TargetLowering because it uses RegClassForVT which would
- // need to be moved to TargetRegisterInfo and would necessitate moving
- // isTypeLegal over as well - a massive change that would just require
- // TargetLowering having a TargetRegisterInfo class member that it would use.
- std::pair<const TargetRegisterClass *, uint8_t>
- TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
- MVT VT) const {
- const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
- if (!RC)
- return std::make_pair(RC, 0);
- // Compute the set of all super-register classes.
- BitVector SuperRegRC(TRI->getNumRegClasses());
- for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
- SuperRegRC.setBitsInMask(RCI.getMask());
- // Find the first legal register class with the largest spill size.
- const TargetRegisterClass *BestRC = RC;
- for (unsigned i : SuperRegRC.set_bits()) {
- const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
- // We want the largest possible spill size.
- if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
- continue;
- if (!isLegalRC(*TRI, *SuperRC))
- continue;
- BestRC = SuperRC;
- }
- return std::make_pair(BestRC, 1);
- }
- /// computeRegisterProperties - Once all of the register classes are added,
- /// this allows us to compute derived properties we expose.
- void TargetLoweringBase::computeRegisterProperties(
- const TargetRegisterInfo *TRI) {
- static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
- "Too many value types for ValueTypeActions to hold!");
- // Everything defaults to needing one register.
- for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
- NumRegistersForVT[i] = 1;
- RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
- }
- // ...except isVoid, which doesn't need any registers.
- NumRegistersForVT[MVT::isVoid] = 0;
- // Find the largest integer register class.
- unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
- for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
- assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
- // Every integer value type larger than this largest register takes twice as
- // many registers to represent as the previous ValueType.
- for (unsigned ExpandedReg = LargestIntReg + 1;
- ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
- NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
- RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
- TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
- ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
- TypeExpandInteger);
- }
- // Inspect all of the ValueType's smaller than the largest integer
- // register to see which ones need promotion.
- unsigned LegalIntReg = LargestIntReg;
- for (unsigned IntReg = LargestIntReg - 1;
- IntReg >= (unsigned)MVT::i1; --IntReg) {
- MVT IVT = (MVT::SimpleValueType)IntReg;
- if (isTypeLegal(IVT)) {
- LegalIntReg = IntReg;
- } else {
- RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
- (MVT::SimpleValueType)LegalIntReg;
- ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
- }
- }
- // ppcf128 type is really two f64's.
- if (!isTypeLegal(MVT::ppcf128)) {
- if (isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
- RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
- TransformToType[MVT::ppcf128] = MVT::f64;
- ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
- } else {
- NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
- RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
- TransformToType[MVT::ppcf128] = MVT::i128;
- ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
- }
- }
- // Decide how to handle f128. If the target does not have native f128 support,
- // expand it to i128 and we will be generating soft float library calls.
- if (!isTypeLegal(MVT::f128)) {
- NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
- RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
- TransformToType[MVT::f128] = MVT::i128;
- ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
- }
- // Decide how to handle f64. If the target does not have native f64 support,
- // expand it to i64 and we will be generating soft float library calls.
- if (!isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
- RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
- TransformToType[MVT::f64] = MVT::i64;
- ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
- }
- // Decide how to handle f32. If the target does not have native f32 support,
- // expand it to i32 and we will be generating soft float library calls.
- if (!isTypeLegal(MVT::f32)) {
- NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
- RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
- TransformToType[MVT::f32] = MVT::i32;
- ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
- }
- // Decide how to handle f16. If the target does not have native f16 support,
- // promote it to f32, because there are no f16 library calls (except for
- // conversions).
- if (!isTypeLegal(MVT::f16)) {
- // Allow targets to control how we legalize half.
- if (softPromoteHalfType()) {
- NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
- RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
- TransformToType[MVT::f16] = MVT::f32;
- ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
- } else {
- NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
- RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
- TransformToType[MVT::f16] = MVT::f32;
- ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
- }
- }
- // Loop over all of the vector value types to see which need transformations.
- for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
- i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType) i;
- if (isTypeLegal(VT))
- continue;
- MVT EltVT = VT.getVectorElementType();
- ElementCount EC = VT.getVectorElementCount();
- bool IsLegalWiderType = false;
- bool IsScalable = VT.isScalableVector();
- LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
- switch (PreferredAction) {
- case TypePromoteInteger: {
- MVT::SimpleValueType EndVT = IsScalable ?
- MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
- MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
- // Try to promote the elements of integer vectors. If no legal
- // promotion was found, fall through to the widen-vector method.
- for (unsigned nVT = i + 1;
- (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
- MVT SVT = (MVT::SimpleValueType) nVT;
- // Promote vectors of integers to vectors with the same number
- // of elements, with a wider element type.
- if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
- SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
- TransformToType[i] = SVT;
- RegisterTypeForVT[i] = SVT;
- NumRegistersForVT[i] = 1;
- ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
- IsLegalWiderType = true;
- break;
- }
- }
- if (IsLegalWiderType)
- break;
- LLVM_FALLTHROUGH;
- }
- case TypeWidenVector:
- if (isPowerOf2_32(EC.getKnownMinValue())) {
- // Try to widen the vector.
- for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- MVT SVT = (MVT::SimpleValueType) nVT;
- if (SVT.getVectorElementType() == EltVT &&
- SVT.isScalableVector() == IsScalable &&
- SVT.getVectorElementCount().getKnownMinValue() >
- EC.getKnownMinValue() &&
- isTypeLegal(SVT)) {
- TransformToType[i] = SVT;
- RegisterTypeForVT[i] = SVT;
- NumRegistersForVT[i] = 1;
- ValueTypeActions.setTypeAction(VT, TypeWidenVector);
- IsLegalWiderType = true;
- break;
- }
- }
- if (IsLegalWiderType)
- break;
- } else {
- // Only widen to the next power of 2 to keep consistency with EVT.
- MVT NVT = VT.getPow2VectorType();
- if (isTypeLegal(NVT)) {
- TransformToType[i] = NVT;
- ValueTypeActions.setTypeAction(VT, TypeWidenVector);
- RegisterTypeForVT[i] = NVT;
- NumRegistersForVT[i] = 1;
- break;
- }
- }
- LLVM_FALLTHROUGH;
- case TypeSplitVector:
- case TypeScalarizeVector: {
- MVT IntermediateVT;
- MVT RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
- NumIntermediates, RegisterVT, this);
- NumRegistersForVT[i] = NumRegisters;
- assert(NumRegistersForVT[i] == NumRegisters &&
- "NumRegistersForVT size cannot represent NumRegisters!");
- RegisterTypeForVT[i] = RegisterVT;
- MVT NVT = VT.getPow2VectorType();
- if (NVT == VT) {
- // Type is already a power of 2. The default action is to split.
- TransformToType[i] = MVT::Other;
- if (PreferredAction == TypeScalarizeVector)
- ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
- else if (PreferredAction == TypeSplitVector)
- ValueTypeActions.setTypeAction(VT, TypeSplitVector);
- else if (EC.getKnownMinValue() > 1)
- ValueTypeActions.setTypeAction(VT, TypeSplitVector);
- else
- ValueTypeActions.setTypeAction(VT, EC.isScalable()
- ? TypeScalarizeScalableVector
- : TypeScalarizeVector);
- } else {
- TransformToType[i] = NVT;
- ValueTypeActions.setTypeAction(VT, TypeWidenVector);
- }
- break;
- }
- default:
- llvm_unreachable("Unknown vector legalization action!");
- }
- }
- // Determine the 'representative' register class for each value type.
- // An representative register class is the largest (meaning one which is
- // not a sub-register class / subreg register class) legal register class for
- // a group of value types. For example, on i386, i8, i16, and i32
- // representative would be GR32; while on x86_64 it's GR64.
- for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
- const TargetRegisterClass* RRC;
- uint8_t Cost;
- std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
- RepRegClassForVT[i] = RRC;
- RepRegClassCostForVT[i] = Cost;
- }
- }
- EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
- EVT VT) const {
- assert(!VT.isVector() && "No default SetCC type for vectors!");
- return getPointerTy(DL).SimpleTy;
- }
- MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
- return MVT::i32; // return the default value
- }
- /// getVectorTypeBreakdown - Vector types are broken down into some number of
- /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
- /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
- /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
- ///
- /// This method returns the number of registers needed, and the VT for each
- /// register. It also returns the VT and quantity of the intermediate values
- /// before they are promoted/expanded.
- unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
- EVT VT, EVT &IntermediateVT,
- unsigned &NumIntermediates,
- MVT &RegisterVT) const {
- ElementCount EltCnt = VT.getVectorElementCount();
- // If there is a wider vector type with the same element type as this one,
- // or a promoted vector type that has the same number of elements which
- // are wider, then we should convert to that legal vector type.
- // This handles things like <2 x float> -> <4 x float> and
- // <4 x i1> -> <4 x i32>.
- LegalizeTypeAction TA = getTypeAction(Context, VT);
- if (!EltCnt.isScalar() &&
- (TA == TypeWidenVector || TA == TypePromoteInteger)) {
- EVT RegisterEVT = getTypeToTransformTo(Context, VT);
- if (isTypeLegal(RegisterEVT)) {
- IntermediateVT = RegisterEVT;
- RegisterVT = RegisterEVT.getSimpleVT();
- NumIntermediates = 1;
- return 1;
- }
- }
- // Figure out the right, legal destination reg to copy into.
- EVT EltTy = VT.getVectorElementType();
- unsigned NumVectorRegs = 1;
- // Scalable vectors cannot be scalarized, so handle the legalisation of the
- // types like done elsewhere in SelectionDAG.
- if (EltCnt.isScalable()) {
- LegalizeKind LK;
- EVT PartVT = VT;
- do {
- // Iterate until we've found a legal (part) type to hold VT.
- LK = getTypeConversion(Context, PartVT);
- PartVT = LK.second;
- } while (LK.first != TypeLegal);
- if (!PartVT.isVector()) {
- report_fatal_error(
- "Don't know how to legalize this scalable vector type");
- }
- NumIntermediates =
- divideCeil(VT.getVectorElementCount().getKnownMinValue(),
- PartVT.getVectorElementCount().getKnownMinValue());
- IntermediateVT = PartVT;
- RegisterVT = getRegisterType(Context, IntermediateVT);
- return NumIntermediates;
- }
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally
- // we could break down into LHS/RHS like LegalizeDAG does.
- if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
- NumVectorRegs = EltCnt.getKnownMinValue();
- EltCnt = ElementCount::getFixed(1);
- }
- // Divide the input until we get to a supported size. This will always
- // end with a scalar if the target doesn't support vectors.
- while (EltCnt.getKnownMinValue() > 1 &&
- !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
- EltCnt = EltCnt.divideCoefficientBy(2);
- NumVectorRegs <<= 1;
- }
- NumIntermediates = NumVectorRegs;
- EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
- if (!isTypeLegal(NewVT))
- NewVT = EltTy;
- IntermediateVT = NewVT;
- MVT DestVT = getRegisterType(Context, NewVT);
- RegisterVT = DestVT;
- if (EVT(DestVT).bitsLT(NewVT)) { // Value is expanded, e.g. i64 -> i16.
- TypeSize NewVTSize = NewVT.getSizeInBits();
- // Convert sizes such as i33 to i64.
- if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
- NewVTSize = NewVTSize.coefficientNextPowerOf2();
- return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
- }
- // Otherwise, promotion or legal types use the same number of registers as
- // the vector decimated to the appropriate level.
- return NumVectorRegs;
- }
- bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
- uint64_t NumCases,
- uint64_t Range,
- ProfileSummaryInfo *PSI,
- BlockFrequencyInfo *BFI) const {
- // FIXME: This function check the maximum table size and density, but the
- // minimum size is not checked. It would be nice if the minimum size is
- // also combined within this function. Currently, the minimum size check is
- // performed in findJumpTable() in SelectionDAGBuiler and
- // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
- const bool OptForSize =
- SI->getParent()->getParent()->hasOptSize() ||
- llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
- const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
- const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
- // Check whether the number of cases is small enough and
- // the range is dense enough for a jump table.
- return (OptForSize || Range <= MaxJumpTableSize) &&
- (NumCases * 100 >= Range * MinDensity);
- }
- /// Get the EVTs and ArgFlags collections that represent the legalized return
- /// type of the given function. This does not require a DAG or a return value,
- /// and is suitable for use before any DAGs for the function are constructed.
- /// TODO: Move this out of TargetLowering.cpp.
- void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
- AttributeList attr,
- SmallVectorImpl<ISD::OutputArg> &Outs,
- const TargetLowering &TLI, const DataLayout &DL) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0) return;
- for (unsigned j = 0, f = NumValues; j != f; ++j) {
- EVT VT = ValueVTs[j];
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- if (attr.hasRetAttr(Attribute::SExt))
- ExtendKind = ISD::SIGN_EXTEND;
- else if (attr.hasRetAttr(Attribute::ZExt))
- ExtendKind = ISD::ZERO_EXTEND;
- // FIXME: C calling convention requires the return type to be promoted to
- // at least 32-bit. But this is not necessary for non-C calling
- // conventions. The frontend should mark functions whose return values
- // require promoting with signext or zeroext attributes.
- if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
- MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
- if (VT.bitsLT(MinVT))
- VT = MinVT;
- }
- unsigned NumParts =
- TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
- MVT PartVT =
- TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
- // 'inreg' on function refers to return value
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (attr.hasRetAttr(Attribute::InReg))
- Flags.setInReg();
- // Propagate extension type if any
- if (attr.hasRetAttr(Attribute::SExt))
- Flags.setSExt();
- else if (attr.hasRetAttr(Attribute::ZExt))
- Flags.setZExt();
- for (unsigned i = 0; i < NumParts; ++i)
- Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
- }
- }
- /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
- /// function arguments in the caller parameter area. This is the actual
- /// alignment, not its logarithm.
- uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
- const DataLayout &DL) const {
- return DL.getABITypeAlign(Ty).value();
- }
- bool TargetLoweringBase::allowsMemoryAccessForAlignment(
- LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
- Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
- // Check if the specified alignment is sufficient based on the data layout.
- // TODO: While using the data layout works in practice, a better solution
- // would be to implement this check directly (make this a virtual function).
- // For example, the ABI alignment may change based on software platform while
- // this function should only be affected by hardware implementation.
- Type *Ty = VT.getTypeForEVT(Context);
- if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
- // Assume that an access that meets the ABI-specified alignment is fast.
- if (Fast != nullptr)
- *Fast = true;
- return true;
- }
- // This is a misaligned access.
- return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
- }
- bool TargetLoweringBase::allowsMemoryAccessForAlignment(
- LLVMContext &Context, const DataLayout &DL, EVT VT,
- const MachineMemOperand &MMO, bool *Fast) const {
- return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
- MMO.getAlign(), MMO.getFlags(), Fast);
- }
- bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
- const DataLayout &DL, EVT VT,
- unsigned AddrSpace, Align Alignment,
- MachineMemOperand::Flags Flags,
- bool *Fast) const {
- return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
- Flags, Fast);
- }
- bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
- const DataLayout &DL, EVT VT,
- const MachineMemOperand &MMO,
- bool *Fast) const {
- return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
- MMO.getFlags(), Fast);
- }
- bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
- const DataLayout &DL, LLT Ty,
- const MachineMemOperand &MMO,
- bool *Fast) const {
- EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
- return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
- MMO.getFlags(), Fast);
- }
- //===----------------------------------------------------------------------===//
- // TargetTransformInfo Helpers
- //===----------------------------------------------------------------------===//
- int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
- enum InstructionOpcodes {
- #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
- #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
- #include "llvm/IR/Instruction.def"
- };
- switch (static_cast<InstructionOpcodes>(Opcode)) {
- case Ret: return 0;
- case Br: return 0;
- case Switch: return 0;
- case IndirectBr: return 0;
- case Invoke: return 0;
- case CallBr: return 0;
- case Resume: return 0;
- case Unreachable: return 0;
- case CleanupRet: return 0;
- case CatchRet: return 0;
- case CatchPad: return 0;
- case CatchSwitch: return 0;
- case CleanupPad: return 0;
- case FNeg: return ISD::FNEG;
- case Add: return ISD::ADD;
- case FAdd: return ISD::FADD;
- case Sub: return ISD::SUB;
- case FSub: return ISD::FSUB;
- case Mul: return ISD::MUL;
- case FMul: return ISD::FMUL;
- case UDiv: return ISD::UDIV;
- case SDiv: return ISD::SDIV;
- case FDiv: return ISD::FDIV;
- case URem: return ISD::UREM;
- case SRem: return ISD::SREM;
- case FRem: return ISD::FREM;
- case Shl: return ISD::SHL;
- case LShr: return ISD::SRL;
- case AShr: return ISD::SRA;
- case And: return ISD::AND;
- case Or: return ISD::OR;
- case Xor: return ISD::XOR;
- case Alloca: return 0;
- case Load: return ISD::LOAD;
- case Store: return ISD::STORE;
- case GetElementPtr: return 0;
- case Fence: return 0;
- case AtomicCmpXchg: return 0;
- case AtomicRMW: return 0;
- case Trunc: return ISD::TRUNCATE;
- case ZExt: return ISD::ZERO_EXTEND;
- case SExt: return ISD::SIGN_EXTEND;
- case FPToUI: return ISD::FP_TO_UINT;
- case FPToSI: return ISD::FP_TO_SINT;
- case UIToFP: return ISD::UINT_TO_FP;
- case SIToFP: return ISD::SINT_TO_FP;
- case FPTrunc: return ISD::FP_ROUND;
- case FPExt: return ISD::FP_EXTEND;
- case PtrToInt: return ISD::BITCAST;
- case IntToPtr: return ISD::BITCAST;
- case BitCast: return ISD::BITCAST;
- case AddrSpaceCast: return ISD::ADDRSPACECAST;
- case ICmp: return ISD::SETCC;
- case FCmp: return ISD::SETCC;
- case PHI: return 0;
- case Call: return 0;
- case Select: return ISD::SELECT;
- case UserOp1: return 0;
- case UserOp2: return 0;
- case VAArg: return 0;
- case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
- case InsertElement: return ISD::INSERT_VECTOR_ELT;
- case ShuffleVector: return ISD::VECTOR_SHUFFLE;
- case ExtractValue: return ISD::MERGE_VALUES;
- case InsertValue: return ISD::MERGE_VALUES;
- case LandingPad: return 0;
- case Freeze: return ISD::FREEZE;
- }
- llvm_unreachable("Unknown instruction type encountered!");
- }
- std::pair<InstructionCost, MVT>
- TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
- Type *Ty) const {
- LLVMContext &C = Ty->getContext();
- EVT MTy = getValueType(DL, Ty);
- InstructionCost Cost = 1;
- // We keep legalizing the type until we find a legal kind. We assume that
- // the only operation that costs anything is the split. After splitting
- // we need to handle two types.
- while (true) {
- LegalizeKind LK = getTypeConversion(C, MTy);
- if (LK.first == TypeScalarizeScalableVector) {
- // Ensure we return a sensible simple VT here, since many callers of this
- // function require it.
- MVT VT = MTy.isSimple() ? MTy.getSimpleVT() : MVT::i64;
- return std::make_pair(InstructionCost::getInvalid(), VT);
- }
- if (LK.first == TypeLegal)
- return std::make_pair(Cost, MTy.getSimpleVT());
- if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
- Cost *= 2;
- // Do not loop with f128 type.
- if (MTy == LK.second)
- return std::make_pair(Cost, MTy.getSimpleVT());
- // Keep legalizing the type.
- MTy = LK.second;
- }
- }
- Value *
- TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
- bool UseTLS) const {
- // compiler-rt provides a variable with a magic name. Targets that do not
- // link with compiler-rt may also provide such a variable.
- Module *M = IRB.GetInsertBlock()->getParent()->getParent();
- const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
- auto UnsafeStackPtr =
- dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
- Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
- if (!UnsafeStackPtr) {
- auto TLSModel = UseTLS ?
- GlobalValue::InitialExecTLSModel :
- GlobalValue::NotThreadLocal;
- // The global variable is not defined yet, define it ourselves.
- // We use the initial-exec TLS model because we do not support the
- // variable living anywhere other than in the main executable.
- UnsafeStackPtr = new GlobalVariable(
- *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
- UnsafeStackPtrVar, nullptr, TLSModel);
- } else {
- // The variable exists, check its type and attributes.
- if (UnsafeStackPtr->getValueType() != StackPtrTy)
- report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
- if (UseTLS != UnsafeStackPtr->isThreadLocal())
- report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
- (UseTLS ? "" : "not ") + "be thread-local");
- }
- return UnsafeStackPtr;
- }
- Value *
- TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
- if (!TM.getTargetTriple().isAndroid())
- return getDefaultSafeStackPointerLocation(IRB, true);
- // Android provides a libc function to retrieve the address of the current
- // thread's unsafe stack pointer.
- Module *M = IRB.GetInsertBlock()->getParent()->getParent();
- Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
- FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
- StackPtrTy->getPointerTo(0));
- return IRB.CreateCall(Fn);
- }
- //===----------------------------------------------------------------------===//
- // Loop Strength Reduction hooks
- //===----------------------------------------------------------------------===//
- /// isLegalAddressingMode - Return true if the addressing mode represented
- /// by AM is legal for this target, for a load/store of the specified type.
- bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
- const AddrMode &AM, Type *Ty,
- unsigned AS, Instruction *I) const {
- // The default implementation of this implements a conservative RISCy, r+r and
- // r+i addr mode.
- // Allows a sign-extended 16-bit immediate field.
- if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
- return false;
- // No global is ever allowed as a base.
- if (AM.BaseGV)
- return false;
- // Only support r+r,
- switch (AM.Scale) {
- case 0: // "r+i" or just "i", depending on HasBaseReg.
- break;
- case 1:
- if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
- return false;
- // Otherwise we have r+r or r+i.
- break;
- case 2:
- if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
- return false;
- // Allow 2*r as r+r.
- break;
- default: // Don't allow n * r
- return false;
- }
- return true;
- }
- //===----------------------------------------------------------------------===//
- // Stack Protector
- //===----------------------------------------------------------------------===//
- // For OpenBSD return its special guard variable. Otherwise return nullptr,
- // so that SelectionDAG handle SSP.
- Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
- if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
- Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
- PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
- Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
- if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
- G->setVisibility(GlobalValue::HiddenVisibility);
- return C;
- }
- return nullptr;
- }
- // Currently only support "standard" __stack_chk_guard.
- // TODO: add LOAD_STACK_GUARD support.
- void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
- if (!M.getNamedValue("__stack_chk_guard")) {
- auto *GV = new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
- GlobalVariable::ExternalLinkage, nullptr,
- "__stack_chk_guard");
- // FreeBSD has "__stack_chk_guard" defined externally on libc.so
- if (TM.getRelocationModel() == Reloc::Static &&
- !TM.getTargetTriple().isWindowsGNUEnvironment() &&
- !TM.getTargetTriple().isOSFreeBSD())
- GV->setDSOLocal(true);
- }
- }
- // Currently only support "standard" __stack_chk_guard.
- // TODO: add LOAD_STACK_GUARD support.
- Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
- return M.getNamedValue("__stack_chk_guard");
- }
- Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
- return nullptr;
- }
- unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
- return MinimumJumpTableEntries;
- }
- void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
- MinimumJumpTableEntries = Val;
- }
- unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
- return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
- }
- unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
- return MaximumJumpTableSize;
- }
- void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
- MaximumJumpTableSize = Val;
- }
- bool TargetLoweringBase::isJumpTableRelative() const {
- return getTargetMachine().isPositionIndependent();
- }
- Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
- if (TM.Options.LoopAlignment)
- return Align(TM.Options.LoopAlignment);
- return PrefLoopAlignment;
- }
- unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
- MachineBasicBlock *MBB) const {
- return MaxBytesForAlignment;
- }
- //===----------------------------------------------------------------------===//
- // Reciprocal Estimates
- //===----------------------------------------------------------------------===//
- /// Get the reciprocal estimate attribute string for a function that will
- /// override the target defaults.
- static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
- const Function &F = MF.getFunction();
- return F.getFnAttribute("reciprocal-estimates").getValueAsString();
- }
- /// Construct a string for the given reciprocal operation of the given type.
- /// This string should match the corresponding option to the front-end's
- /// "-mrecip" flag assuming those strings have been passed through in an
- /// attribute string. For example, "vec-divf" for a division of a vXf32.
- static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
- std::string Name = VT.isVector() ? "vec-" : "";
- Name += IsSqrt ? "sqrt" : "div";
- // TODO: Handle "half" or other float types?
- if (VT.getScalarType() == MVT::f64) {
- Name += "d";
- } else {
- assert(VT.getScalarType() == MVT::f32 &&
- "Unexpected FP type for reciprocal estimate");
- Name += "f";
- }
- return Name;
- }
- /// Return the character position and value (a single numeric character) of a
- /// customized refinement operation in the input string if it exists. Return
- /// false if there is no customized refinement step count.
- static bool parseRefinementStep(StringRef In, size_t &Position,
- uint8_t &Value) {
- const char RefStepToken = ':';
- Position = In.find(RefStepToken);
- if (Position == StringRef::npos)
- return false;
- StringRef RefStepString = In.substr(Position + 1);
- // Allow exactly one numeric character for the additional refinement
- // step parameter.
- if (RefStepString.size() == 1) {
- char RefStepChar = RefStepString[0];
- if (isDigit(RefStepChar)) {
- Value = RefStepChar - '0';
- return true;
- }
- }
- report_fatal_error("Invalid refinement step for -recip.");
- }
- /// For the input attribute string, return one of the ReciprocalEstimate enum
- /// status values (enabled, disabled, or not specified) for this operation on
- /// the specified data type.
- static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
- if (Override.empty())
- return TargetLoweringBase::ReciprocalEstimate::Unspecified;
- SmallVector<StringRef, 4> OverrideVector;
- Override.split(OverrideVector, ',');
- unsigned NumArgs = OverrideVector.size();
- // Check if "all", "none", or "default" was specified.
- if (NumArgs == 1) {
- // Look for an optional setting of the number of refinement steps needed
- // for this type of reciprocal operation.
- size_t RefPos;
- uint8_t RefSteps;
- if (parseRefinementStep(Override, RefPos, RefSteps)) {
- // Split the string for further processing.
- Override = Override.substr(0, RefPos);
- }
- // All reciprocal types are enabled.
- if (Override == "all")
- return TargetLoweringBase::ReciprocalEstimate::Enabled;
- // All reciprocal types are disabled.
- if (Override == "none")
- return TargetLoweringBase::ReciprocalEstimate::Disabled;
- // Target defaults for enablement are used.
- if (Override == "default")
- return TargetLoweringBase::ReciprocalEstimate::Unspecified;
- }
- // The attribute string may omit the size suffix ('f'/'d').
- std::string VTName = getReciprocalOpName(IsSqrt, VT);
- std::string VTNameNoSize = VTName;
- VTNameNoSize.pop_back();
- static const char DisabledPrefix = '!';
- for (StringRef RecipType : OverrideVector) {
- size_t RefPos;
- uint8_t RefSteps;
- if (parseRefinementStep(RecipType, RefPos, RefSteps))
- RecipType = RecipType.substr(0, RefPos);
- // Ignore the disablement token for string matching.
- bool IsDisabled = RecipType[0] == DisabledPrefix;
- if (IsDisabled)
- RecipType = RecipType.substr(1);
- if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
- return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
- : TargetLoweringBase::ReciprocalEstimate::Enabled;
- }
- return TargetLoweringBase::ReciprocalEstimate::Unspecified;
- }
- /// For the input attribute string, return the customized refinement step count
- /// for this operation on the specified data type. If the step count does not
- /// exist, return the ReciprocalEstimate enum value for unspecified.
- static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
- if (Override.empty())
- return TargetLoweringBase::ReciprocalEstimate::Unspecified;
- SmallVector<StringRef, 4> OverrideVector;
- Override.split(OverrideVector, ',');
- unsigned NumArgs = OverrideVector.size();
- // Check if "all", "default", or "none" was specified.
- if (NumArgs == 1) {
- // Look for an optional setting of the number of refinement steps needed
- // for this type of reciprocal operation.
- size_t RefPos;
- uint8_t RefSteps;
- if (!parseRefinementStep(Override, RefPos, RefSteps))
- return TargetLoweringBase::ReciprocalEstimate::Unspecified;
- // Split the string for further processing.
- Override = Override.substr(0, RefPos);
- assert(Override != "none" &&
- "Disabled reciprocals, but specifed refinement steps?");
- // If this is a general override, return the specified number of steps.
- if (Override == "all" || Override == "default")
- return RefSteps;
- }
- // The attribute string may omit the size suffix ('f'/'d').
- std::string VTName = getReciprocalOpName(IsSqrt, VT);
- std::string VTNameNoSize = VTName;
- VTNameNoSize.pop_back();
- for (StringRef RecipType : OverrideVector) {
- size_t RefPos;
- uint8_t RefSteps;
- if (!parseRefinementStep(RecipType, RefPos, RefSteps))
- continue;
- RecipType = RecipType.substr(0, RefPos);
- if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
- return RefSteps;
- }
- return TargetLoweringBase::ReciprocalEstimate::Unspecified;
- }
- int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
- MachineFunction &MF) const {
- return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
- }
- int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
- MachineFunction &MF) const {
- return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
- }
- int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
- MachineFunction &MF) const {
- return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
- }
- int TargetLoweringBase::getDivRefinementSteps(EVT VT,
- MachineFunction &MF) const {
- return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
- }
- void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
- MF.getRegInfo().freezeReservedRegs(MF);
- }
- MachineMemOperand::Flags
- TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
- const DataLayout &DL) const {
- MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
- if (LI.isVolatile())
- Flags |= MachineMemOperand::MOVolatile;
- if (LI.hasMetadata(LLVMContext::MD_nontemporal))
- Flags |= MachineMemOperand::MONonTemporal;
- if (LI.hasMetadata(LLVMContext::MD_invariant_load))
- Flags |= MachineMemOperand::MOInvariant;
- if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
- Flags |= MachineMemOperand::MODereferenceable;
- Flags |= getTargetMMOFlags(LI);
- return Flags;
- }
- MachineMemOperand::Flags
- TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
- const DataLayout &DL) const {
- MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
- if (SI.isVolatile())
- Flags |= MachineMemOperand::MOVolatile;
- if (SI.hasMetadata(LLVMContext::MD_nontemporal))
- Flags |= MachineMemOperand::MONonTemporal;
- // FIXME: Not preserving dereferenceable
- Flags |= getTargetMMOFlags(SI);
- return Flags;
- }
- MachineMemOperand::Flags
- TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
- const DataLayout &DL) const {
- auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
- if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
- if (RMW->isVolatile())
- Flags |= MachineMemOperand::MOVolatile;
- } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
- if (CmpX->isVolatile())
- Flags |= MachineMemOperand::MOVolatile;
- } else
- llvm_unreachable("not an atomic instruction");
- // FIXME: Not preserving dereferenceable
- Flags |= getTargetMMOFlags(AI);
- return Flags;
- }
- Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
- Instruction *Inst,
- AtomicOrdering Ord) const {
- if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
- return Builder.CreateFence(Ord);
- else
- return nullptr;
- }
- Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
- Instruction *Inst,
- AtomicOrdering Ord) const {
- if (isAcquireOrStronger(Ord))
- return Builder.CreateFence(Ord);
- else
- return nullptr;
- }
- //===----------------------------------------------------------------------===//
- // GlobalISel Hooks
- //===----------------------------------------------------------------------===//
- bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
- const TargetTransformInfo *TTI) const {
- auto &MF = *MI.getMF();
- auto &MRI = MF.getRegInfo();
- // Assuming a spill and reload of a value has a cost of 1 instruction each,
- // this helper function computes the maximum number of uses we should consider
- // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
- // break even in terms of code size when the original MI has 2 users vs
- // choosing to potentially spill. Any more than 2 users we we have a net code
- // size increase. This doesn't take into account register pressure though.
- auto maxUses = [](unsigned RematCost) {
- // A cost of 1 means remats are basically free.
- if (RematCost == 1)
- return UINT_MAX;
- if (RematCost == 2)
- return 2U;
- // Remat is too expensive, only sink if there's one user.
- if (RematCost > 2)
- return 1U;
- llvm_unreachable("Unexpected remat cost");
- };
- // Helper to walk through uses and terminate if we've reached a limit. Saves
- // us spending time traversing uses if all we want to know is if it's >= min.
- auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
- unsigned NumUses = 0;
- auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
- for (; UI != UE && NumUses < MaxUses; ++UI) {
- NumUses++;
- }
- // If we haven't reached the end yet then there are more than MaxUses users.
- return UI == UE;
- };
- switch (MI.getOpcode()) {
- default:
- return false;
- // Constants-like instructions should be close to their users.
- // We don't want long live-ranges for them.
- case TargetOpcode::G_CONSTANT:
- case TargetOpcode::G_FCONSTANT:
- case TargetOpcode::G_FRAME_INDEX:
- case TargetOpcode::G_INTTOPTR:
- return true;
- case TargetOpcode::G_GLOBAL_VALUE: {
- unsigned RematCost = TTI->getGISelRematGlobalCost();
- Register Reg = MI.getOperand(0).getReg();
- unsigned MaxUses = maxUses(RematCost);
- if (MaxUses == UINT_MAX)
- return true; // Remats are "free" so always localize.
- bool B = isUsesAtMost(Reg, MaxUses);
- return B;
- }
- }
- }
|