123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the LatencyPriorityQueue class, which is a
- // SchedulingPriorityQueue that schedules using latency information to
- // reduce the length of the critical path through the basic block.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/LatencyPriorityQueue.h"
- #include "llvm/Config/llvm-config.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- #define DEBUG_TYPE "scheduler"
- bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
- // The isScheduleHigh flag allows nodes with wraparound dependencies that
- // cannot easily be modeled as edges with latencies to be scheduled as
- // soon as possible in a top-down schedule.
- if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
- return false;
- if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
- return true;
- unsigned LHSNum = LHS->NodeNum;
- unsigned RHSNum = RHS->NodeNum;
- // The most important heuristic is scheduling the critical path.
- unsigned LHSLatency = PQ->getLatency(LHSNum);
- unsigned RHSLatency = PQ->getLatency(RHSNum);
- if (LHSLatency < RHSLatency) return true;
- if (LHSLatency > RHSLatency) return false;
- // After that, if two nodes have identical latencies, look to see if one will
- // unblock more other nodes than the other.
- unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
- unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
- if (LHSBlocked < RHSBlocked) return true;
- if (LHSBlocked > RHSBlocked) return false;
- // Finally, just to provide a stable ordering, use the node number as a
- // deciding factor.
- return RHSNum < LHSNum;
- }
- /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
- /// of SU, return it, otherwise return null.
- SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
- SUnit *OnlyAvailablePred = nullptr;
- for (const SDep &P : SU->Preds) {
- SUnit &Pred = *P.getSUnit();
- if (!Pred.isScheduled) {
- // We found an available, but not scheduled, predecessor. If it's the
- // only one we have found, keep track of it... otherwise give up.
- if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
- return nullptr;
- OnlyAvailablePred = &Pred;
- }
- }
- return OnlyAvailablePred;
- }
- void LatencyPriorityQueue::push(SUnit *SU) {
- // Look at all of the successors of this node. Count the number of nodes that
- // this node is the sole unscheduled node for.
- unsigned NumNodesBlocking = 0;
- for (const SDep &Succ : SU->Succs)
- if (getSingleUnscheduledPred(Succ.getSUnit()) == SU)
- ++NumNodesBlocking;
- NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
- Queue.push_back(SU);
- }
- // scheduledNode - As nodes are scheduled, we look to see if there are any
- // successor nodes that have a single unscheduled predecessor. If so, that
- // single predecessor has a higher priority, since scheduling it will make
- // the node available.
- void LatencyPriorityQueue::scheduledNode(SUnit *SU) {
- for (const SDep &Succ : SU->Succs)
- AdjustPriorityOfUnscheduledPreds(Succ.getSUnit());
- }
- /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
- /// scheduled. If SU is not itself available, then there is at least one
- /// predecessor node that has not been scheduled yet. If SU has exactly ONE
- /// unscheduled predecessor, we want to increase its priority: it getting
- /// scheduled will make this node available, so it is better than some other
- /// node of the same priority that will not make a node available.
- void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
- if (SU->isAvailable) return; // All preds scheduled.
- SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
- if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return;
- // Okay, we found a single predecessor that is available, but not scheduled.
- // Since it is available, it must be in the priority queue. First remove it.
- remove(OnlyAvailablePred);
- // Reinsert the node into the priority queue, which recomputes its
- // NumNodesSolelyBlocking value.
- push(OnlyAvailablePred);
- }
- SUnit *LatencyPriorityQueue::pop() {
- if (empty()) return nullptr;
- std::vector<SUnit *>::iterator Best = Queue.begin();
- for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
- E = Queue.end(); I != E; ++I)
- if (Picker(*Best, *I))
- Best = I;
- SUnit *V = *Best;
- if (Best != std::prev(Queue.end()))
- std::swap(*Best, Queue.back());
- Queue.pop_back();
- return V;
- }
- void LatencyPriorityQueue::remove(SUnit *SU) {
- assert(!Queue.empty() && "Queue is empty!");
- std::vector<SUnit *>::iterator I = find(Queue, SU);
- assert(I != Queue.end() && "Queue doesn't contain the SU being removed!");
- if (I != std::prev(Queue.end()))
- std::swap(*I, Queue.back());
- Queue.pop_back();
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {
- dbgs() << "Latency Priority Queue\n";
- dbgs() << " Number of Queue Entries: " << Queue.size() << "\n";
- for (const SUnit *SU : Queue) {
- dbgs() << " ";
- DAG->dumpNode(*SU);
- }
- }
- #endif
|