123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547 |
- //===- InterleavedAccessPass.cpp ------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the Interleaved Access pass, which identifies
- // interleaved memory accesses and transforms them into target specific
- // intrinsics.
- //
- // An interleaved load reads data from memory into several vectors, with
- // DE-interleaving the data on a factor. An interleaved store writes several
- // vectors to memory with RE-interleaving the data on a factor.
- //
- // As interleaved accesses are difficult to identified in CodeGen (mainly
- // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
- // IR), we identify and transform them to intrinsics in this pass so the
- // intrinsics can be easily matched into target specific instructions later in
- // CodeGen.
- //
- // E.g. An interleaved load (Factor = 2):
- // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
- // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
- // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
- //
- // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
- // intrinsic in ARM backend.
- //
- // In X86, this can be further optimized into a set of target
- // specific loads followed by an optimized sequence of shuffles.
- //
- // E.g. An interleaved store (Factor = 3):
- // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
- // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
- // store <12 x i32> %i.vec, <12 x i32>* %ptr
- //
- // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
- // intrinsic in ARM backend.
- //
- // Similarly, a set of interleaved stores can be transformed into an optimized
- // sequence of shuffles followed by a set of target specific stores for X86.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetPassConfig.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Type.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <cassert>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "interleaved-access"
- static cl::opt<bool> LowerInterleavedAccesses(
- "lower-interleaved-accesses",
- cl::desc("Enable lowering interleaved accesses to intrinsics"),
- cl::init(true), cl::Hidden);
- namespace {
- class InterleavedAccess : public FunctionPass {
- public:
- static char ID;
- InterleavedAccess() : FunctionPass(ID) {
- initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
- }
- StringRef getPassName() const override { return "Interleaved Access Pass"; }
- bool runOnFunction(Function &F) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.setPreservesCFG();
- }
- private:
- DominatorTree *DT = nullptr;
- const TargetLowering *TLI = nullptr;
- /// The maximum supported interleave factor.
- unsigned MaxFactor;
- /// Transform an interleaved load into target specific intrinsics.
- bool lowerInterleavedLoad(LoadInst *LI,
- SmallVector<Instruction *, 32> &DeadInsts);
- /// Transform an interleaved store into target specific intrinsics.
- bool lowerInterleavedStore(StoreInst *SI,
- SmallVector<Instruction *, 32> &DeadInsts);
- /// Returns true if the uses of an interleaved load by the
- /// extractelement instructions in \p Extracts can be replaced by uses of the
- /// shufflevector instructions in \p Shuffles instead. If so, the necessary
- /// replacements are also performed.
- bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
- ArrayRef<ShuffleVectorInst *> Shuffles);
- /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
- /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
- /// interleaving load. Any newly created shuffles that operate on \p LI will
- /// be added to \p Shuffles. Returns true, if any changes to the IR have been
- /// made.
- bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
- SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
- LoadInst *LI);
- };
- } // end anonymous namespace.
- char InterleavedAccess::ID = 0;
- INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
- "Lower interleaved memory accesses to target specific intrinsics", false,
- false)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
- "Lower interleaved memory accesses to target specific intrinsics", false,
- false)
- FunctionPass *llvm::createInterleavedAccessPass() {
- return new InterleavedAccess();
- }
- /// Check if the mask is a DE-interleave mask of the given factor
- /// \p Factor like:
- /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
- static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
- unsigned &Index) {
- // Check all potential start indices from 0 to (Factor - 1).
- for (Index = 0; Index < Factor; Index++) {
- unsigned i = 0;
- // Check that elements are in ascending order by Factor. Ignore undef
- // elements.
- for (; i < Mask.size(); i++)
- if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
- break;
- if (i == Mask.size())
- return true;
- }
- return false;
- }
- /// Check if the mask is a DE-interleave mask for an interleaved load.
- ///
- /// E.g. DE-interleave masks (Factor = 2) could be:
- /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
- /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
- static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
- unsigned &Index, unsigned MaxFactor,
- unsigned NumLoadElements) {
- if (Mask.size() < 2)
- return false;
- // Check potential Factors.
- for (Factor = 2; Factor <= MaxFactor; Factor++) {
- // Make sure we don't produce a load wider than the input load.
- if (Mask.size() * Factor > NumLoadElements)
- return false;
- if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
- return true;
- }
- return false;
- }
- /// Check if the mask can be used in an interleaved store.
- //
- /// It checks for a more general pattern than the RE-interleave mask.
- /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
- /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
- /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
- /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
- ///
- /// The particular case of an RE-interleave mask is:
- /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
- /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
- static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
- unsigned MaxFactor, unsigned OpNumElts) {
- unsigned NumElts = Mask.size();
- if (NumElts < 4)
- return false;
- // Check potential Factors.
- for (Factor = 2; Factor <= MaxFactor; Factor++) {
- if (NumElts % Factor)
- continue;
- unsigned LaneLen = NumElts / Factor;
- if (!isPowerOf2_32(LaneLen))
- continue;
- // Check whether each element matches the general interleaved rule.
- // Ignore undef elements, as long as the defined elements match the rule.
- // Outer loop processes all factors (x, y, z in the above example)
- unsigned I = 0, J;
- for (; I < Factor; I++) {
- unsigned SavedLaneValue;
- unsigned SavedNoUndefs = 0;
- // Inner loop processes consecutive accesses (x, x+1... in the example)
- for (J = 0; J < LaneLen - 1; J++) {
- // Lane computes x's position in the Mask
- unsigned Lane = J * Factor + I;
- unsigned NextLane = Lane + Factor;
- int LaneValue = Mask[Lane];
- int NextLaneValue = Mask[NextLane];
- // If both are defined, values must be sequential
- if (LaneValue >= 0 && NextLaneValue >= 0 &&
- LaneValue + 1 != NextLaneValue)
- break;
- // If the next value is undef, save the current one as reference
- if (LaneValue >= 0 && NextLaneValue < 0) {
- SavedLaneValue = LaneValue;
- SavedNoUndefs = 1;
- }
- // Undefs are allowed, but defined elements must still be consecutive:
- // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
- // Verify this by storing the last non-undef followed by an undef
- // Check that following non-undef masks are incremented with the
- // corresponding distance.
- if (SavedNoUndefs > 0 && LaneValue < 0) {
- SavedNoUndefs++;
- if (NextLaneValue >= 0 &&
- SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
- break;
- }
- }
- if (J < LaneLen - 1)
- break;
- int StartMask = 0;
- if (Mask[I] >= 0) {
- // Check that the start of the I range (J=0) is greater than 0
- StartMask = Mask[I];
- } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
- // StartMask defined by the last value in lane
- StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
- } else if (SavedNoUndefs > 0) {
- // StartMask defined by some non-zero value in the j loop
- StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
- }
- // else StartMask remains set to 0, i.e. all elements are undefs
- if (StartMask < 0)
- break;
- // We must stay within the vectors; This case can happen with undefs.
- if (StartMask + LaneLen > OpNumElts*2)
- break;
- }
- // Found an interleaved mask of current factor.
- if (I == Factor)
- return true;
- }
- return false;
- }
- bool InterleavedAccess::lowerInterleavedLoad(
- LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
- if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
- return false;
- // Check if all users of this load are shufflevectors. If we encounter any
- // users that are extractelement instructions or binary operators, we save
- // them to later check if they can be modified to extract from one of the
- // shufflevectors instead of the load.
- SmallVector<ShuffleVectorInst *, 4> Shuffles;
- SmallVector<ExtractElementInst *, 4> Extracts;
- // BinOpShuffles need to be handled a single time in case both operands of the
- // binop are the same load.
- SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
- for (auto *User : LI->users()) {
- auto *Extract = dyn_cast<ExtractElementInst>(User);
- if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
- Extracts.push_back(Extract);
- continue;
- }
- auto *BI = dyn_cast<BinaryOperator>(User);
- if (BI && BI->hasOneUse()) {
- if (auto *SVI = dyn_cast<ShuffleVectorInst>(*BI->user_begin())) {
- BinOpShuffles.insert(SVI);
- continue;
- }
- }
- auto *SVI = dyn_cast<ShuffleVectorInst>(User);
- if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
- return false;
- Shuffles.push_back(SVI);
- }
- if (Shuffles.empty() && BinOpShuffles.empty())
- return false;
- unsigned Factor, Index;
- unsigned NumLoadElements =
- cast<FixedVectorType>(LI->getType())->getNumElements();
- auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
- // Check if the first shufflevector is DE-interleave shuffle.
- if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
- NumLoadElements))
- return false;
- // Holds the corresponding index for each DE-interleave shuffle.
- SmallVector<unsigned, 4> Indices;
- Type *VecTy = FirstSVI->getType();
- // Check if other shufflevectors are also DE-interleaved of the same type
- // and factor as the first shufflevector.
- for (auto *Shuffle : Shuffles) {
- if (Shuffle->getType() != VecTy)
- return false;
- if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
- Index))
- return false;
- assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
- Indices.push_back(Index);
- }
- for (auto *Shuffle : BinOpShuffles) {
- if (Shuffle->getType() != VecTy)
- return false;
- if (!isDeInterleaveMaskOfFactor(Shuffle->getShuffleMask(), Factor,
- Index))
- return false;
- assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
- if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
- Indices.push_back(Index);
- if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
- Indices.push_back(Index);
- }
- // Try and modify users of the load that are extractelement instructions to
- // use the shufflevector instructions instead of the load.
- if (!tryReplaceExtracts(Extracts, Shuffles))
- return false;
- bool BinOpShuffleChanged =
- replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
- LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
- // Try to create target specific intrinsics to replace the load and shuffles.
- if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
- // If Extracts is not empty, tryReplaceExtracts made changes earlier.
- return !Extracts.empty() || BinOpShuffleChanged;
- }
- append_range(DeadInsts, Shuffles);
- DeadInsts.push_back(LI);
- return true;
- }
- bool InterleavedAccess::replaceBinOpShuffles(
- ArrayRef<ShuffleVectorInst *> BinOpShuffles,
- SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
- for (auto *SVI : BinOpShuffles) {
- BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
- Type *BIOp0Ty = BI->getOperand(0)->getType();
- ArrayRef<int> Mask = SVI->getShuffleMask();
- assert(all_of(Mask, [&](int Idx) {
- return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
- }));
- auto *NewSVI1 =
- new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
- Mask, SVI->getName(), SVI);
- auto *NewSVI2 = new ShuffleVectorInst(
- BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
- SVI->getName(), SVI);
- BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags(
- BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), SVI);
- SVI->replaceAllUsesWith(NewBI);
- LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI
- << "\n With : " << *NewSVI1 << "\n And : "
- << *NewSVI2 << "\n And : " << *NewBI << "\n");
- RecursivelyDeleteTriviallyDeadInstructions(SVI);
- if (NewSVI1->getOperand(0) == LI)
- Shuffles.push_back(NewSVI1);
- if (NewSVI2->getOperand(0) == LI)
- Shuffles.push_back(NewSVI2);
- }
- return !BinOpShuffles.empty();
- }
- bool InterleavedAccess::tryReplaceExtracts(
- ArrayRef<ExtractElementInst *> Extracts,
- ArrayRef<ShuffleVectorInst *> Shuffles) {
- // If there aren't any extractelement instructions to modify, there's nothing
- // to do.
- if (Extracts.empty())
- return true;
- // Maps extractelement instructions to vector-index pairs. The extractlement
- // instructions will be modified to use the new vector and index operands.
- DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
- for (auto *Extract : Extracts) {
- // The vector index that is extracted.
- auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
- auto Index = IndexOperand->getSExtValue();
- // Look for a suitable shufflevector instruction. The goal is to modify the
- // extractelement instruction (which uses an interleaved load) to use one
- // of the shufflevector instructions instead of the load.
- for (auto *Shuffle : Shuffles) {
- // If the shufflevector instruction doesn't dominate the extract, we
- // can't create a use of it.
- if (!DT->dominates(Shuffle, Extract))
- continue;
- // Inspect the indices of the shufflevector instruction. If the shuffle
- // selects the same index that is extracted, we can modify the
- // extractelement instruction.
- SmallVector<int, 4> Indices;
- Shuffle->getShuffleMask(Indices);
- for (unsigned I = 0; I < Indices.size(); ++I)
- if (Indices[I] == Index) {
- assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
- "Vector operations do not match");
- ReplacementMap[Extract] = std::make_pair(Shuffle, I);
- break;
- }
- // If we found a suitable shufflevector instruction, stop looking.
- if (ReplacementMap.count(Extract))
- break;
- }
- // If we did not find a suitable shufflevector instruction, the
- // extractelement instruction cannot be modified, so we must give up.
- if (!ReplacementMap.count(Extract))
- return false;
- }
- // Finally, perform the replacements.
- IRBuilder<> Builder(Extracts[0]->getContext());
- for (auto &Replacement : ReplacementMap) {
- auto *Extract = Replacement.first;
- auto *Vector = Replacement.second.first;
- auto Index = Replacement.second.second;
- Builder.SetInsertPoint(Extract);
- Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
- Extract->eraseFromParent();
- }
- return true;
- }
- bool InterleavedAccess::lowerInterleavedStore(
- StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
- if (!SI->isSimple())
- return false;
- auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
- if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
- return false;
- // Check if the shufflevector is RE-interleave shuffle.
- unsigned Factor;
- unsigned OpNumElts =
- cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
- if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
- return false;
- LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
- // Try to create target specific intrinsics to replace the store and shuffle.
- if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
- return false;
- // Already have a new target specific interleaved store. Erase the old store.
- DeadInsts.push_back(SI);
- DeadInsts.push_back(SVI);
- return true;
- }
- bool InterleavedAccess::runOnFunction(Function &F) {
- auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
- if (!TPC || !LowerInterleavedAccesses)
- return false;
- LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &TM = TPC->getTM<TargetMachine>();
- TLI = TM.getSubtargetImpl(F)->getTargetLowering();
- MaxFactor = TLI->getMaxSupportedInterleaveFactor();
- // Holds dead instructions that will be erased later.
- SmallVector<Instruction *, 32> DeadInsts;
- bool Changed = false;
- for (auto &I : instructions(F)) {
- if (auto *LI = dyn_cast<LoadInst>(&I))
- Changed |= lowerInterleavedLoad(LI, DeadInsts);
- if (auto *SI = dyn_cast<StoreInst>(&I))
- Changed |= lowerInterleavedStore(SI, DeadInsts);
- }
- for (auto I : DeadInsts)
- I->eraseFromParent();
- return Changed;
- }
|