123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569 |
- /*
- * Copyright 2011 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
- * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
- * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
- * OTHER DEALINGS IN THE SOFTWARE.
- */
- #ifndef DRM_FOURCC_H
- #define DRM_FOURCC_H
- #include "drm.h"
- #if defined(__cplusplus)
- extern "C" {
- #endif
- /**
- * DOC: overview
- *
- * In the DRM subsystem, framebuffer pixel formats are described using the
- * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
- * fourcc code, a Format Modifier may optionally be provided, in order to
- * further describe the buffer's format - for example tiling or compression.
- *
- * Format Modifiers
- * ----------------
- *
- * Format modifiers are used in conjunction with a fourcc code, forming a
- * unique fourcc:modifier pair. This format:modifier pair must fully define the
- * format and data layout of the buffer, and should be the only way to describe
- * that particular buffer.
- *
- * Having multiple fourcc:modifier pairs which describe the same layout should
- * be avoided, as such aliases run the risk of different drivers exposing
- * different names for the same data format, forcing userspace to understand
- * that they are aliases.
- *
- * Format modifiers may change any property of the buffer, including the number
- * of planes and/or the required allocation size. Format modifiers are
- * vendor-namespaced, and as such the relationship between a fourcc code and a
- * modifier is specific to the modifer being used. For example, some modifiers
- * may preserve meaning - such as number of planes - from the fourcc code,
- * whereas others may not.
- *
- * Modifiers must uniquely encode buffer layout. In other words, a buffer must
- * match only a single modifier. A modifier must not be a subset of layouts of
- * another modifier. For instance, it's incorrect to encode pitch alignment in
- * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
- * aligned modifier. That said, modifiers can have implicit minimal
- * requirements.
- *
- * For modifiers where the combination of fourcc code and modifier can alias,
- * a canonical pair needs to be defined and used by all drivers. Preferred
- * combinations are also encouraged where all combinations might lead to
- * confusion and unnecessarily reduced interoperability. An example for the
- * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
- *
- * There are two kinds of modifier users:
- *
- * - Kernel and user-space drivers: for drivers it's important that modifiers
- * don't alias, otherwise two drivers might support the same format but use
- * different aliases, preventing them from sharing buffers in an efficient
- * format.
- * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
- * see modifiers as opaque tokens they can check for equality and intersect.
- * These users musn't need to know to reason about the modifier value
- * (i.e. they are not expected to extract information out of the modifier).
- *
- * Vendors should document their modifier usage in as much detail as
- * possible, to ensure maximum compatibility across devices, drivers and
- * applications.
- *
- * The authoritative list of format modifier codes is found in
- * `include/uapi/drm/drm_fourcc.h`
- *
- * Open Source User Waiver
- * -----------------------
- *
- * Because this is the authoritative source for pixel formats and modifiers
- * referenced by GL, Vulkan extensions and other standards and hence used both
- * by open source and closed source driver stacks, the usual requirement for an
- * upstream in-kernel or open source userspace user does not apply.
- *
- * To ensure, as much as feasible, compatibility across stacks and avoid
- * confusion with incompatible enumerations stakeholders for all relevant driver
- * stacks should approve additions.
- */
- #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
- ((__u32)(c) << 16) | ((__u32)(d) << 24))
- #define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
- /* Reserve 0 for the invalid format specifier */
- #define DRM_FORMAT_INVALID 0
- /* color index */
- #define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
- #define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
- #define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
- #define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
- /* 1 bpp Darkness (inverse relationship between channel value and brightness) */
- #define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
- /* 2 bpp Darkness (inverse relationship between channel value and brightness) */
- #define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
- /* 4 bpp Darkness (inverse relationship between channel value and brightness) */
- #define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
- /* 8 bpp Darkness (inverse relationship between channel value and brightness) */
- #define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
- /* 1 bpp Red (direct relationship between channel value and brightness) */
- #define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
- /* 2 bpp Red (direct relationship between channel value and brightness) */
- #define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
- /* 4 bpp Red (direct relationship between channel value and brightness) */
- #define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
- /* 8 bpp Red (direct relationship between channel value and brightness) */
- #define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
- /* 10 bpp Red (direct relationship between channel value and brightness) */
- #define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
- /* 12 bpp Red (direct relationship between channel value and brightness) */
- #define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
- /* 16 bpp Red (direct relationship between channel value and brightness) */
- #define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
- /* 16 bpp RG */
- #define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
- #define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
- /* 32 bpp RG */
- #define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
- #define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
- /* 8 bpp RGB */
- #define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
- #define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
- /* 16 bpp RGB */
- #define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
- #define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
- #define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
- #define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
- #define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
- #define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
- #define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
- #define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
- #define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
- #define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
- #define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
- #define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
- #define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
- #define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
- #define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
- #define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
- #define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
- #define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
- /* 24 bpp RGB */
- #define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
- #define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
- /* 32 bpp RGB */
- #define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
- #define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
- #define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
- #define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
- #define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
- #define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
- #define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
- #define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
- #define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
- #define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
- #define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
- #define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
- #define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
- #define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
- #define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
- #define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
- /* 64 bpp RGB */
- #define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
- #define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
- #define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
- #define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
- /*
- * Floating point 64bpp RGB
- * IEEE 754-2008 binary16 half-precision float
- * [15:0] sign:exponent:mantissa 1:5:10
- */
- #define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
- #define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
- #define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
- #define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
- /*
- * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
- * of unused padding per component:
- */
- #define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
- /* packed YCbCr */
- #define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
- #define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
- #define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
- #define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
- #define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
- #define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
- #define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
- #define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
- #define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
- #define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
- /*
- * packed Y2xx indicate for each component, xx valid data occupy msb
- * 16-xx padding occupy lsb
- */
- #define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
- #define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
- #define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
- /*
- * packed Y4xx indicate for each component, xx valid data occupy msb
- * 16-xx padding occupy lsb except Y410
- */
- #define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
- #define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
- #define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
- #define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
- #define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
- #define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
- /*
- * packed YCbCr420 2x2 tiled formats
- * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
- */
- /* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
- #define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
- /* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
- #define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
- /* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
- #define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
- /* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
- #define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
- /*
- * 1-plane YUV 4:2:0
- * In these formats, the component ordering is specified (Y, followed by U
- * then V), but the exact Linear layout is undefined.
- * These formats can only be used with a non-Linear modifier.
- */
- #define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
- #define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
- /*
- * 2 plane RGB + A
- * index 0 = RGB plane, same format as the corresponding non _A8 format has
- * index 1 = A plane, [7:0] A
- */
- #define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
- #define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
- #define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
- #define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
- #define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
- #define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
- #define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
- #define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
- /*
- * 2 plane YCbCr
- * index 0 = Y plane, [7:0] Y
- * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
- * or
- * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
- */
- #define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
- #define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
- #define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
- #define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
- #define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
- #define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
- /*
- * 2 plane YCbCr
- * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
- * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
- */
- #define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
- /*
- * 2 plane YCbCr MSB aligned
- * index 0 = Y plane, [15:0] Y:x [10:6] little endian
- * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
- */
- #define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
- /*
- * 2 plane YCbCr MSB aligned
- * index 0 = Y plane, [15:0] Y:x [10:6] little endian
- * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
- */
- #define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
- /*
- * 2 plane YCbCr MSB aligned
- * index 0 = Y plane, [15:0] Y:x [12:4] little endian
- * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
- */
- #define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
- /*
- * 2 plane YCbCr MSB aligned
- * index 0 = Y plane, [15:0] Y little endian
- * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
- */
- #define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
- /* 2 plane YCbCr420.
- * 3 10 bit components and 2 padding bits packed into 4 bytes.
- * index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
- * index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
- */
- #define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
- /* 3 plane non-subsampled (444) YCbCr
- * 16 bits per component, but only 10 bits are used and 6 bits are padded
- * index 0: Y plane, [15:0] Y:x [10:6] little endian
- * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
- * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
- */
- #define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
- /* 3 plane non-subsampled (444) YCrCb
- * 16 bits per component, but only 10 bits are used and 6 bits are padded
- * index 0: Y plane, [15:0] Y:x [10:6] little endian
- * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
- * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
- */
- #define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
- /*
- * 3 plane YCbCr
- * index 0: Y plane, [7:0] Y
- * index 1: Cb plane, [7:0] Cb
- * index 2: Cr plane, [7:0] Cr
- * or
- * index 1: Cr plane, [7:0] Cr
- * index 2: Cb plane, [7:0] Cb
- */
- #define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
- #define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
- #define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
- #define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
- #define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
- #define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
- #define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
- #define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
- #define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
- #define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
- /*
- * Format Modifiers:
- *
- * Format modifiers describe, typically, a re-ordering or modification
- * of the data in a plane of an FB. This can be used to express tiled/
- * swizzled formats, or compression, or a combination of the two.
- *
- * The upper 8 bits of the format modifier are a vendor-id as assigned
- * below. The lower 56 bits are assigned as vendor sees fit.
- */
- /* Vendor Ids: */
- #define DRM_FORMAT_MOD_VENDOR_NONE 0
- #define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
- #define DRM_FORMAT_MOD_VENDOR_AMD 0x02
- #define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
- #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
- #define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
- #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
- #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
- #define DRM_FORMAT_MOD_VENDOR_ARM 0x08
- #define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
- #define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
- /* add more to the end as needed */
- #define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
- #define fourcc_mod_get_vendor(modifier) \
- (((modifier) >> 56) & 0xff)
- #define fourcc_mod_is_vendor(modifier, vendor) \
- (fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
- #define fourcc_mod_code(vendor, val) \
- ((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
- /*
- * Format Modifier tokens:
- *
- * When adding a new token please document the layout with a code comment,
- * similar to the fourcc codes above. drm_fourcc.h is considered the
- * authoritative source for all of these.
- *
- * Generic modifier names:
- *
- * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
- * for layouts which are common across multiple vendors. To preserve
- * compatibility, in cases where a vendor-specific definition already exists and
- * a generic name for it is desired, the common name is a purely symbolic alias
- * and must use the same numerical value as the original definition.
- *
- * Note that generic names should only be used for modifiers which describe
- * generic layouts (such as pixel re-ordering), which may have
- * independently-developed support across multiple vendors.
- *
- * In future cases where a generic layout is identified before merging with a
- * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
- * 'NONE' could be considered. This should only be for obvious, exceptional
- * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
- * apply to a single vendor.
- *
- * Generic names should not be used for cases where multiple hardware vendors
- * have implementations of the same standardised compression scheme (such as
- * AFBC). In those cases, all implementations should use the same format
- * modifier(s), reflecting the vendor of the standard.
- */
- #define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
- /*
- * Invalid Modifier
- *
- * This modifier can be used as a sentinel to terminate the format modifiers
- * list, or to initialize a variable with an invalid modifier. It might also be
- * used to report an error back to userspace for certain APIs.
- */
- #define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
- /*
- * Linear Layout
- *
- * Just plain linear layout. Note that this is different from no specifying any
- * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
- * which tells the driver to also take driver-internal information into account
- * and so might actually result in a tiled framebuffer.
- */
- #define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
- /*
- * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
- *
- * The "none" format modifier doesn't actually mean that the modifier is
- * implicit, instead it means that the layout is linear. Whether modifiers are
- * used is out-of-band information carried in an API-specific way (e.g. in a
- * flag for drm_mode_fb_cmd2).
- */
- #define DRM_FORMAT_MOD_NONE 0
- /* Intel framebuffer modifiers */
- /*
- * Intel X-tiling layout
- *
- * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
- * in row-major layout. Within the tile bytes are laid out row-major, with
- * a platform-dependent stride. On top of that the memory can apply
- * platform-depending swizzling of some higher address bits into bit6.
- *
- * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
- * On earlier platforms the is highly platforms specific and not useful for
- * cross-driver sharing. It exists since on a given platform it does uniquely
- * identify the layout in a simple way for i915-specific userspace, which
- * facilitated conversion of userspace to modifiers. Additionally the exact
- * format on some really old platforms is not known.
- */
- #define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
- /*
- * Intel Y-tiling layout
- *
- * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
- * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
- * chunks column-major, with a platform-dependent height. On top of that the
- * memory can apply platform-depending swizzling of some higher address bits
- * into bit6.
- *
- * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
- * On earlier platforms the is highly platforms specific and not useful for
- * cross-driver sharing. It exists since on a given platform it does uniquely
- * identify the layout in a simple way for i915-specific userspace, which
- * facilitated conversion of userspace to modifiers. Additionally the exact
- * format on some really old platforms is not known.
- */
- #define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
- /*
- * Intel Yf-tiling layout
- *
- * This is a tiled layout using 4Kb tiles in row-major layout.
- * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
- * are arranged in four groups (two wide, two high) with column-major layout.
- * Each group therefore consits out of four 256 byte units, which are also laid
- * out as 2x2 column-major.
- * 256 byte units are made out of four 64 byte blocks of pixels, producing
- * either a square block or a 2:1 unit.
- * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
- * in pixel depends on the pixel depth.
- */
- #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
- /*
- * Intel color control surface (CCS) for render compression
- *
- * The framebuffer format must be one of the 8:8:8:8 RGB formats.
- * The main surface will be plane index 0 and must be Y/Yf-tiled,
- * the CCS will be plane index 1.
- *
- * Each CCS tile matches a 1024x512 pixel area of the main surface.
- * To match certain aspects of the 3D hardware the CCS is
- * considered to be made up of normal 128Bx32 Y tiles, Thus
- * the CCS pitch must be specified in multiples of 128 bytes.
- *
- * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
- * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
- * But that fact is not relevant unless the memory is accessed
- * directly.
- */
- #define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
- #define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
- /*
- * Intel color control surfaces (CCS) for Gen-12 render compression.
- *
- * The main surface is Y-tiled and at plane index 0, the CCS is linear and
- * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
- * main surface. In other words, 4 bits in CCS map to a main surface cache
- * line pair. The main surface pitch is required to be a multiple of four
- * Y-tile widths.
- */
- #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
- /*
- * Intel color control surfaces (CCS) for Gen-12 media compression
- *
- * The main surface is Y-tiled and at plane index 0, the CCS is linear and
- * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
- * main surface. In other words, 4 bits in CCS map to a main surface cache
- * line pair. The main surface pitch is required to be a multiple of four
- * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
- * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
- * planes 2 and 3 for the respective CCS.
- */
- #define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
- /*
- * Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
- * compression.
- *
- * The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
- * and at index 1. The clear color is stored at index 2, and the pitch should
- * be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
- * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
- * by 32 bits. The raw clear color is consumed by the 3d engine and generates
- * the converted clear color of size 64 bits. The first 32 bits store the Lower
- * Converted Clear Color value and the next 32 bits store the Higher Converted
- * Clear Color value when applicable. The Converted Clear Color values are
- * consumed by the DE. The last 64 bits are used to store Color Discard Enable
- * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
- * corresponds to an area of 4x1 tiles in the main surface. The main surface
- * pitch is required to be a multiple of 4 tile widths.
- */
- #define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
- /*
- * Intel Tile 4 layout
- *
- * This is a tiled layout using 4KB tiles in a row-major layout. It has the same
- * shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
- * only differs from Tile Y at the 256B granularity in between. At this
- * granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
- * of 64B x 8 rows.
- */
- #define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9)
- /*
- * Intel color control surfaces (CCS) for DG2 render compression.
- *
- * The main surface is Tile 4 and at plane index 0. The CCS data is stored
- * outside of the GEM object in a reserved memory area dedicated for the
- * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
- * main surface pitch is required to be a multiple of four Tile 4 widths.
- */
- #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
- /*
- * Intel color control surfaces (CCS) for DG2 media compression.
- *
- * The main surface is Tile 4 and at plane index 0. For semi-planar formats
- * like NV12, the Y and UV planes are Tile 4 and are located at plane indices
- * 0 and 1, respectively. The CCS for all planes are stored outside of the
- * GEM object in a reserved memory area dedicated for the storage of the
- * CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
- * pitch is required to be a multiple of four Tile 4 widths.
- */
- #define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
- /*
- * Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
- *
- * The main surface is Tile 4 and at plane index 0. The CCS data is stored
- * outside of the GEM object in a reserved memory area dedicated for the
- * storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
- * main surface pitch is required to be a multiple of four Tile 4 widths. The
- * clear color is stored at plane index 1 and the pitch should be 64 bytes
- * aligned. The format of the 256 bits of clear color data matches the one used
- * for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
- * for details.
- */
- #define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
- /*
- * Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
- *
- * The main surface is tile4 and at plane index 0, the CCS is linear and
- * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
- * main surface. In other words, 4 bits in CCS map to a main surface cache
- * line pair. The main surface pitch is required to be a multiple of four
- * tile4 widths.
- */
- #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
- /*
- * Intel Color Control Surfaces (CCS) for display ver. 14 media compression
- *
- * The main surface is tile4 and at plane index 0, the CCS is linear and
- * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
- * main surface. In other words, 4 bits in CCS map to a main surface cache
- * line pair. The main surface pitch is required to be a multiple of four
- * tile4 widths. For semi-planar formats like NV12, CCS planes follow the
- * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
- * planes 2 and 3 for the respective CCS.
- */
- #define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
- /*
- * Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
- * compression.
- *
- * The main surface is tile4 and is at plane index 0 whereas CCS is linear
- * and at index 1. The clear color is stored at index 2, and the pitch should
- * be ignored. The clear color structure is 256 bits. The first 128 bits
- * represents Raw Clear Color Red, Green, Blue and Alpha color each represented
- * by 32 bits. The raw clear color is consumed by the 3d engine and generates
- * the converted clear color of size 64 bits. The first 32 bits store the Lower
- * Converted Clear Color value and the next 32 bits store the Higher Converted
- * Clear Color value when applicable. The Converted Clear Color values are
- * consumed by the DE. The last 64 bits are used to store Color Discard Enable
- * and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
- * corresponds to an area of 4x1 tiles in the main surface. The main surface
- * pitch is required to be a multiple of 4 tile widths.
- */
- #define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
- /*
- * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
- *
- * Macroblocks are laid in a Z-shape, and each pixel data is following the
- * standard NV12 style.
- * As for NV12, an image is the result of two frame buffers: one for Y,
- * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
- * Alignment requirements are (for each buffer):
- * - multiple of 128 pixels for the width
- * - multiple of 32 pixels for the height
- *
- * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
- */
- #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
- /*
- * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
- *
- * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
- * layout. For YCbCr formats Cb/Cr components are taken in such a way that
- * they correspond to their 16x16 luma block.
- */
- #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
- /*
- * Qualcomm Compressed Format
- *
- * Refers to a compressed variant of the base format that is compressed.
- * Implementation may be platform and base-format specific.
- *
- * Each macrotile consists of m x n (mostly 4 x 4) tiles.
- * Pixel data pitch/stride is aligned with macrotile width.
- * Pixel data height is aligned with macrotile height.
- * Entire pixel data buffer is aligned with 4k(bytes).
- */
- #define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
- /*
- * Qualcomm Tiled Format
- *
- * Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
- * Implementation may be platform and base-format specific.
- *
- * Each macrotile consists of m x n (mostly 4 x 4) tiles.
- * Pixel data pitch/stride is aligned with macrotile width.
- * Pixel data height is aligned with macrotile height.
- * Entire pixel data buffer is aligned with 4k(bytes).
- */
- #define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3)
- /*
- * Qualcomm Alternate Tiled Format
- *
- * Alternate tiled format typically only used within GMEM.
- * Implementation may be platform and base-format specific.
- */
- #define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2)
- /* Vivante framebuffer modifiers */
- /*
- * Vivante 4x4 tiling layout
- *
- * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
- * layout.
- */
- #define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
- /*
- * Vivante 64x64 super-tiling layout
- *
- * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
- * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
- * major layout.
- *
- * For more information: see
- * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
- */
- #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
- /*
- * Vivante 4x4 tiling layout for dual-pipe
- *
- * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
- * different base address. Offsets from the base addresses are therefore halved
- * compared to the non-split tiled layout.
- */
- #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
- /*
- * Vivante 64x64 super-tiling layout for dual-pipe
- *
- * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
- * starts at a different base address. Offsets from the base addresses are
- * therefore halved compared to the non-split super-tiled layout.
- */
- #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
- /*
- * Vivante TS (tile-status) buffer modifiers. They can be combined with all of
- * the color buffer tiling modifiers defined above. When TS is present it's a
- * separate buffer containing the clear/compression status of each tile. The
- * modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
- * tile size in bytes covered by one entry in the status buffer and s is the
- * number of status bits per entry.
- * We reserve the top 8 bits of the Vivante modifier space for tile status
- * clear/compression modifiers, as future cores might add some more TS layout
- * variations.
- */
- #define VIVANTE_MOD_TS_64_4 (1ULL << 48)
- #define VIVANTE_MOD_TS_64_2 (2ULL << 48)
- #define VIVANTE_MOD_TS_128_4 (3ULL << 48)
- #define VIVANTE_MOD_TS_256_4 (4ULL << 48)
- #define VIVANTE_MOD_TS_MASK (0xfULL << 48)
- /*
- * Vivante compression modifiers. Those depend on a TS modifier being present
- * as the TS bits get reinterpreted as compression tags instead of simple
- * clear markers when compression is enabled.
- */
- #define VIVANTE_MOD_COMP_DEC400 (1ULL << 52)
- #define VIVANTE_MOD_COMP_MASK (0xfULL << 52)
- /* Masking out the extension bits will yield the base modifier. */
- #define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \
- VIVANTE_MOD_COMP_MASK)
- /* NVIDIA frame buffer modifiers */
- /*
- * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
- *
- * Pixels are arranged in simple tiles of 16 x 16 bytes.
- */
- #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
- /*
- * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
- * and Tegra GPUs starting with Tegra K1.
- *
- * Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
- * based on the architecture generation. GOBs themselves are then arranged in
- * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
- * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
- * a block depth or height of "4").
- *
- * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
- * in full detail.
- *
- * Macro
- * Bits Param Description
- * ---- ----- -----------------------------------------------------------------
- *
- * 3:0 h log2(height) of each block, in GOBs. Placed here for
- * compatibility with the existing
- * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
- *
- * 4:4 - Must be 1, to indicate block-linear layout. Necessary for
- * compatibility with the existing
- * DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
- *
- * 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
- * size). Must be zero.
- *
- * Note there is no log2(width) parameter. Some portions of the
- * hardware support a block width of two gobs, but it is impractical
- * to use due to lack of support elsewhere, and has no known
- * benefits.
- *
- * 11:9 - Reserved (To support 2D-array textures with variable array stride
- * in blocks, specified via log2(tile width in blocks)). Must be
- * zero.
- *
- * 19:12 k Page Kind. This value directly maps to a field in the page
- * tables of all GPUs >= NV50. It affects the exact layout of bits
- * in memory and can be derived from the tuple
- *
- * (format, GPU model, compression type, samples per pixel)
- *
- * Where compression type is defined below. If GPU model were
- * implied by the format modifier, format, or memory buffer, page
- * kind would not need to be included in the modifier itself, but
- * since the modifier should define the layout of the associated
- * memory buffer independent from any device or other context, it
- * must be included here.
- *
- * 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
- * starting with Fermi GPUs. Additionally, the mapping between page
- * kind and bit layout has changed at various points.
- *
- * 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
- * 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
- * 2 = Gob Height 8, Turing+ Page Kind mapping
- * 3 = Reserved for future use.
- *
- * 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
- * bit remapping step that occurs at an even lower level than the
- * page kind and block linear swizzles. This causes the layout of
- * surfaces mapped in those SOC's GPUs to be incompatible with the
- * equivalent mapping on other GPUs in the same system.
- *
- * 0 = Tegra K1 - Tegra Parker/TX2 Layout.
- * 1 = Desktop GPU and Tegra Xavier+ Layout
- *
- * 25:23 c Lossless Framebuffer Compression type.
- *
- * 0 = none
- * 1 = ROP/3D, layout 1, exact compression format implied by Page
- * Kind field
- * 2 = ROP/3D, layout 2, exact compression format implied by Page
- * Kind field
- * 3 = CDE horizontal
- * 4 = CDE vertical
- * 5 = Reserved for future use
- * 6 = Reserved for future use
- * 7 = Reserved for future use
- *
- * 55:25 - Reserved for future use. Must be zero.
- */
- #define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
- fourcc_mod_code(NVIDIA, (0x10 | \
- ((h) & 0xf) | \
- (((k) & 0xff) << 12) | \
- (((g) & 0x3) << 20) | \
- (((s) & 0x1) << 22) | \
- (((c) & 0x7) << 23)))
- /* To grandfather in prior block linear format modifiers to the above layout,
- * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
- * with block-linear layouts, is remapped within drivers to the value 0xfe,
- * which corresponds to the "generic" kind used for simple single-sample
- * uncompressed color formats on Fermi - Volta GPUs.
- */
- static __inline__ __u64
- drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
- {
- if (!(modifier & 0x10) || (modifier & (0xff << 12)))
- return modifier;
- else
- return modifier | (0xfe << 12);
- }
- /*
- * 16Bx2 Block Linear layout, used by Tegra K1 and later
- *
- * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
- * vertically by a power of 2 (1 to 32 GOBs) to form a block.
- *
- * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
- *
- * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
- * Valid values are:
- *
- * 0 == ONE_GOB
- * 1 == TWO_GOBS
- * 2 == FOUR_GOBS
- * 3 == EIGHT_GOBS
- * 4 == SIXTEEN_GOBS
- * 5 == THIRTYTWO_GOBS
- *
- * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
- * in full detail.
- */
- #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
- DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
- #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
- DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
- #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
- DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
- #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
- DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
- #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
- DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
- #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
- DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
- #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
- DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
- /*
- * Some Broadcom modifiers take parameters, for example the number of
- * vertical lines in the image. Reserve the lower 32 bits for modifier
- * type, and the next 24 bits for parameters. Top 8 bits are the
- * vendor code.
- */
- #define __fourcc_mod_broadcom_param_shift 8
- #define __fourcc_mod_broadcom_param_bits 48
- #define fourcc_mod_broadcom_code(val, params) \
- fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
- #define fourcc_mod_broadcom_param(m) \
- ((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
- ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
- #define fourcc_mod_broadcom_mod(m) \
- ((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
- __fourcc_mod_broadcom_param_shift))
- /*
- * Broadcom VC4 "T" format
- *
- * This is the primary layout that the V3D GPU can texture from (it
- * can't do linear). The T format has:
- *
- * - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
- * pixels at 32 bit depth.
- *
- * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
- * 16x16 pixels).
- *
- * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
- * even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
- * they're (TR, BR, BL, TL), where bottom left is start of memory.
- *
- * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
- * tiles) or right-to-left (odd rows of 4k tiles).
- */
- #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
- /*
- * Broadcom SAND format
- *
- * This is the native format that the H.264 codec block uses. For VC4
- * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
- *
- * The image can be considered to be split into columns, and the
- * columns are placed consecutively into memory. The width of those
- * columns can be either 32, 64, 128, or 256 pixels, but in practice
- * only 128 pixel columns are used.
- *
- * The pitch between the start of each column is set to optimally
- * switch between SDRAM banks. This is passed as the number of lines
- * of column width in the modifier (we can't use the stride value due
- * to various core checks that look at it , so you should set the
- * stride to width*cpp).
- *
- * Note that the column height for this format modifier is the same
- * for all of the planes, assuming that each column contains both Y
- * and UV. Some SAND-using hardware stores UV in a separate tiled
- * image from Y to reduce the column height, which is not supported
- * with these modifiers.
- *
- * The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
- * supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
- * wide, but as this is a 10 bpp format that translates to 96 pixels.
- */
- #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
- fourcc_mod_broadcom_code(2, v)
- #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
- fourcc_mod_broadcom_code(3, v)
- #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
- fourcc_mod_broadcom_code(4, v)
- #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
- fourcc_mod_broadcom_code(5, v)
- #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
- DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
- #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
- DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
- #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
- DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
- #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
- DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
- /* Broadcom UIF format
- *
- * This is the common format for the current Broadcom multimedia
- * blocks, including V3D 3.x and newer, newer video codecs, and
- * displays.
- *
- * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
- * and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
- * stored in columns, with padding between the columns to ensure that
- * moving from one column to the next doesn't hit the same SDRAM page
- * bank.
- *
- * To calculate the padding, it is assumed that each hardware block
- * and the software driving it knows the platform's SDRAM page size,
- * number of banks, and XOR address, and that it's identical between
- * all blocks using the format. This tiling modifier will use XOR as
- * necessary to reduce the padding. If a hardware block can't do XOR,
- * the assumption is that a no-XOR tiling modifier will be created.
- */
- #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
- /*
- * Arm Framebuffer Compression (AFBC) modifiers
- *
- * AFBC is a proprietary lossless image compression protocol and format.
- * It provides fine-grained random access and minimizes the amount of data
- * transferred between IP blocks.
- *
- * AFBC has several features which may be supported and/or used, which are
- * represented using bits in the modifier. Not all combinations are valid,
- * and different devices or use-cases may support different combinations.
- *
- * Further information on the use of AFBC modifiers can be found in
- * Documentation/gpu/afbc.rst
- */
- /*
- * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
- * modifiers) denote the category for modifiers. Currently we have three
- * categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
- * sixteen different categories.
- */
- #define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
- fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
- #define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
- #define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
- #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
- DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
- /*
- * AFBC superblock size
- *
- * Indicates the superblock size(s) used for the AFBC buffer. The buffer
- * size (in pixels) must be aligned to a multiple of the superblock size.
- * Four lowest significant bits(LSBs) are reserved for block size.
- *
- * Where one superblock size is specified, it applies to all planes of the
- * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
- * the first applies to the Luma plane and the second applies to the Chroma
- * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
- * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
- */
- #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
- #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
- #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
- #define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
- #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
- /*
- * AFBC lossless colorspace transform
- *
- * Indicates that the buffer makes use of the AFBC lossless colorspace
- * transform.
- */
- #define AFBC_FORMAT_MOD_YTR (1ULL << 4)
- /*
- * AFBC block-split
- *
- * Indicates that the payload of each superblock is split. The second
- * half of the payload is positioned at a predefined offset from the start
- * of the superblock payload.
- */
- #define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
- /*
- * AFBC sparse layout
- *
- * This flag indicates that the payload of each superblock must be stored at a
- * predefined position relative to the other superblocks in the same AFBC
- * buffer. This order is the same order used by the header buffer. In this mode
- * each superblock is given the same amount of space as an uncompressed
- * superblock of the particular format would require, rounding up to the next
- * multiple of 128 bytes in size.
- */
- #define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
- /*
- * AFBC copy-block restrict
- *
- * Buffers with this flag must obey the copy-block restriction. The restriction
- * is such that there are no copy-blocks referring across the border of 8x8
- * blocks. For the subsampled data the 8x8 limitation is also subsampled.
- */
- #define AFBC_FORMAT_MOD_CBR (1ULL << 7)
- /*
- * AFBC tiled layout
- *
- * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
- * superblocks inside a tile are stored together in memory. 8x8 tiles are used
- * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
- * larger bpp formats. The order between the tiles is scan line.
- * When the tiled layout is used, the buffer size (in pixels) must be aligned
- * to the tile size.
- */
- #define AFBC_FORMAT_MOD_TILED (1ULL << 8)
- /*
- * AFBC solid color blocks
- *
- * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
- * can be reduced if a whole superblock is a single color.
- */
- #define AFBC_FORMAT_MOD_SC (1ULL << 9)
- /*
- * AFBC double-buffer
- *
- * Indicates that the buffer is allocated in a layout safe for front-buffer
- * rendering.
- */
- #define AFBC_FORMAT_MOD_DB (1ULL << 10)
- /*
- * AFBC buffer content hints
- *
- * Indicates that the buffer includes per-superblock content hints.
- */
- #define AFBC_FORMAT_MOD_BCH (1ULL << 11)
- /* AFBC uncompressed storage mode
- *
- * Indicates that the buffer is using AFBC uncompressed storage mode.
- * In this mode all superblock payloads in the buffer use the uncompressed
- * storage mode, which is usually only used for data which cannot be compressed.
- * The buffer layout is the same as for AFBC buffers without USM set, this only
- * affects the storage mode of the individual superblocks. Note that even a
- * buffer without USM set may use uncompressed storage mode for some or all
- * superblocks, USM just guarantees it for all.
- */
- #define AFBC_FORMAT_MOD_USM (1ULL << 12)
- /*
- * Arm Fixed-Rate Compression (AFRC) modifiers
- *
- * AFRC is a proprietary fixed rate image compression protocol and format,
- * designed to provide guaranteed bandwidth and memory footprint
- * reductions in graphics and media use-cases.
- *
- * AFRC buffers consist of one or more planes, with the same components
- * and meaning as an uncompressed buffer using the same pixel format.
- *
- * Within each plane, the pixel/luma/chroma values are grouped into
- * "coding unit" blocks which are individually compressed to a
- * fixed size (in bytes). All coding units within a given plane of a buffer
- * store the same number of values, and have the same compressed size.
- *
- * The coding unit size is configurable, allowing different rates of compression.
- *
- * The start of each AFRC buffer plane must be aligned to an alignment granule which
- * depends on the coding unit size.
- *
- * Coding Unit Size Plane Alignment
- * ---------------- ---------------
- * 16 bytes 1024 bytes
- * 24 bytes 512 bytes
- * 32 bytes 2048 bytes
- *
- * Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
- * to a multiple of the paging tile dimensions.
- * The dimensions of each paging tile depend on whether the buffer is optimised for
- * scanline (SCAN layout) or rotated (ROT layout) access.
- *
- * Layout Paging Tile Width Paging Tile Height
- * ------ ----------------- ------------------
- * SCAN 16 coding units 4 coding units
- * ROT 8 coding units 8 coding units
- *
- * The dimensions of each coding unit depend on the number of components
- * in the compressed plane and whether the buffer is optimised for
- * scanline (SCAN layout) or rotated (ROT layout) access.
- *
- * Number of Components in Plane Layout Coding Unit Width Coding Unit Height
- * ----------------------------- --------- ----------------- ------------------
- * 1 SCAN 16 samples 4 samples
- * Example: 16x4 luma samples in a 'Y' plane
- * 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
- * ----------------------------- --------- ----------------- ------------------
- * 1 ROT 8 samples 8 samples
- * Example: 8x8 luma samples in a 'Y' plane
- * 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
- * ----------------------------- --------- ----------------- ------------------
- * 2 DONT CARE 8 samples 4 samples
- * Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
- * ----------------------------- --------- ----------------- ------------------
- * 3 DONT CARE 4 samples 4 samples
- * Example: 4x4 pixels in an RGB buffer without alpha
- * ----------------------------- --------- ----------------- ------------------
- * 4 DONT CARE 4 samples 4 samples
- * Example: 4x4 pixels in an RGB buffer with alpha
- */
- #define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
- #define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
- DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
- /*
- * AFRC coding unit size modifier.
- *
- * Indicates the number of bytes used to store each compressed coding unit for
- * one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
- * is the same for both Cb and Cr, which may be stored in separate planes.
- *
- * AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
- * each compressed coding unit in the first plane of the buffer. For RGBA buffers
- * this is the only plane, while for semi-planar and fully-planar YUV buffers,
- * this corresponds to the luma plane.
- *
- * AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
- * each compressed coding unit in the second and third planes in the buffer.
- * For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
- *
- * For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
- * and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
- * For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
- * AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
- */
- #define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
- #define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
- #define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
- #define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
- #define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
- #define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
- /*
- * AFRC scanline memory layout.
- *
- * Indicates if the buffer uses the scanline-optimised layout
- * for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
- * The memory layout is the same for all planes.
- */
- #define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
- /*
- * Arm 16x16 Block U-Interleaved modifier
- *
- * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
- * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
- * in the block are reordered.
- */
- #define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
- DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
- /*
- * Allwinner tiled modifier
- *
- * This tiling mode is implemented by the VPU found on all Allwinner platforms,
- * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
- * planes.
- *
- * With this tiling, the luminance samples are disposed in tiles representing
- * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
- * The pixel order in each tile is linear and the tiles are disposed linearly,
- * both in row-major order.
- */
- #define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
- /*
- * Amlogic Video Framebuffer Compression modifiers
- *
- * Amlogic uses a proprietary lossless image compression protocol and format
- * for their hardware video codec accelerators, either video decoders or
- * video input encoders.
- *
- * It considerably reduces memory bandwidth while writing and reading
- * frames in memory.
- *
- * The underlying storage is considered to be 3 components, 8bit or 10-bit
- * per component YCbCr 420, single plane :
- * - DRM_FORMAT_YUV420_8BIT
- * - DRM_FORMAT_YUV420_10BIT
- *
- * The first 8 bits of the mode defines the layout, then the following 8 bits
- * defines the options changing the layout.
- *
- * Not all combinations are valid, and different SoCs may support different
- * combinations of layout and options.
- */
- #define __fourcc_mod_amlogic_layout_mask 0xff
- #define __fourcc_mod_amlogic_options_shift 8
- #define __fourcc_mod_amlogic_options_mask 0xff
- #define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
- fourcc_mod_code(AMLOGIC, \
- ((__layout) & __fourcc_mod_amlogic_layout_mask) | \
- (((__options) & __fourcc_mod_amlogic_options_mask) \
- << __fourcc_mod_amlogic_options_shift))
- /* Amlogic FBC Layouts */
- /*
- * Amlogic FBC Basic Layout
- *
- * The basic layout is composed of:
- * - a body content organized in 64x32 superblocks with 4096 bytes per
- * superblock in default mode.
- * - a 32 bytes per 128x64 header block
- *
- * This layout is transferrable between Amlogic SoCs supporting this modifier.
- */
- #define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
- /*
- * Amlogic FBC Scatter Memory layout
- *
- * Indicates the header contains IOMMU references to the compressed
- * frames content to optimize memory access and layout.
- *
- * In this mode, only the header memory address is needed, thus the
- * content memory organization is tied to the current producer
- * execution and cannot be saved/dumped neither transferrable between
- * Amlogic SoCs supporting this modifier.
- *
- * Due to the nature of the layout, these buffers are not expected to
- * be accessible by the user-space clients, but only accessible by the
- * hardware producers and consumers.
- *
- * The user-space clients should expect a failure while trying to mmap
- * the DMA-BUF handle returned by the producer.
- */
- #define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
- /* Amlogic FBC Layout Options Bit Mask */
- /*
- * Amlogic FBC Memory Saving mode
- *
- * Indicates the storage is packed when pixel size is multiple of word
- * boudaries, i.e. 8bit should be stored in this mode to save allocation
- * memory.
- *
- * This mode reduces body layout to 3072 bytes per 64x32 superblock with
- * the basic layout and 3200 bytes per 64x32 superblock combined with
- * the scatter layout.
- */
- #define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
- /*
- * AMD modifiers
- *
- * Memory layout:
- *
- * without DCC:
- * - main surface
- *
- * with DCC & without DCC_RETILE:
- * - main surface in plane 0
- * - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
- *
- * with DCC & DCC_RETILE:
- * - main surface in plane 0
- * - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
- * - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
- *
- * For multi-plane formats the above surfaces get merged into one plane for
- * each format plane, based on the required alignment only.
- *
- * Bits Parameter Notes
- * ----- ------------------------ ---------------------------------------------
- *
- * 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*
- * 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*
- * 13 DCC
- * 14 DCC_RETILE
- * 15 DCC_PIPE_ALIGN
- * 16 DCC_INDEPENDENT_64B
- * 17 DCC_INDEPENDENT_128B
- * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
- * 20 DCC_CONSTANT_ENCODE
- * 23:21 PIPE_XOR_BITS Only for some chips
- * 26:24 BANK_XOR_BITS Only for some chips
- * 29:27 PACKERS Only for some chips
- * 32:30 RB Only for some chips
- * 35:33 PIPE Only for some chips
- * 55:36 - Reserved for future use, must be zero
- */
- #define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
- #define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
- /* Reserve 0 for GFX8 and older */
- #define AMD_FMT_MOD_TILE_VER_GFX9 1
- #define AMD_FMT_MOD_TILE_VER_GFX10 2
- #define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
- #define AMD_FMT_MOD_TILE_VER_GFX11 4
- /*
- * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
- * version.
- */
- #define AMD_FMT_MOD_TILE_GFX9_64K_S 9
- /*
- * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
- * GFX9 as canonical version.
- */
- #define AMD_FMT_MOD_TILE_GFX9_64K_D 10
- #define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
- #define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
- #define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
- #define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
- #define AMD_FMT_MOD_DCC_BLOCK_64B 0
- #define AMD_FMT_MOD_DCC_BLOCK_128B 1
- #define AMD_FMT_MOD_DCC_BLOCK_256B 2
- #define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
- #define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
- #define AMD_FMT_MOD_TILE_SHIFT 8
- #define AMD_FMT_MOD_TILE_MASK 0x1F
- /* Whether DCC compression is enabled. */
- #define AMD_FMT_MOD_DCC_SHIFT 13
- #define AMD_FMT_MOD_DCC_MASK 0x1
- /*
- * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
- * one which is not-aligned.
- */
- #define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
- #define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
- /* Only set if DCC_RETILE = false */
- #define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
- #define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
- #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
- #define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
- #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
- #define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
- #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
- #define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
- /*
- * DCC supports embedding some clear colors directly in the DCC surface.
- * However, on older GPUs the rendering HW ignores the embedded clear color
- * and prefers the driver provided color. This necessitates doing a fastclear
- * eliminate operation before a process transfers control.
- *
- * If this bit is set that means the fastclear eliminate is not needed for these
- * embeddable colors.
- */
- #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
- #define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
- /*
- * The below fields are for accounting for per GPU differences. These are only
- * relevant for GFX9 and later and if the tile field is *_X/_T.
- *
- * PIPE_XOR_BITS = always needed
- * BANK_XOR_BITS = only for TILE_VER_GFX9
- * PACKERS = only for TILE_VER_GFX10_RBPLUS
- * RB = only for TILE_VER_GFX9 & DCC
- * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
- */
- #define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
- #define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
- #define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
- #define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
- #define AMD_FMT_MOD_PACKERS_SHIFT 27
- #define AMD_FMT_MOD_PACKERS_MASK 0x7
- #define AMD_FMT_MOD_RB_SHIFT 30
- #define AMD_FMT_MOD_RB_MASK 0x7
- #define AMD_FMT_MOD_PIPE_SHIFT 33
- #define AMD_FMT_MOD_PIPE_MASK 0x7
- #define AMD_FMT_MOD_SET(field, value) \
- ((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
- #define AMD_FMT_MOD_GET(field, value) \
- (((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
- #define AMD_FMT_MOD_CLEAR(field) \
- (~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
- #if defined(__cplusplus)
- }
- #endif
- #endif /* DRM_FOURCC_H */
|