123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572 |
- // Copyright 2021 The Abseil Authors
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // -----------------------------------------------------------------------------
- // File: cord_buffer.h
- // -----------------------------------------------------------------------------
- //
- // This file defines an `absl::CordBuffer` data structure to hold data for
- // eventual inclusion within an existing `Cord` data structure. Cord buffers are
- // useful for building large Cords that may require custom allocation of its
- // associated memory.
- //
- #ifndef ABSL_STRINGS_CORD_BUFFER_H_
- #define ABSL_STRINGS_CORD_BUFFER_H_
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <memory>
- #include <utility>
- #include "absl/base/config.h"
- #include "absl/base/macros.h"
- #include "absl/numeric/bits.h"
- #include "absl/strings/internal/cord_internal.h"
- #include "absl/strings/internal/cord_rep_flat.h"
- #include "absl/types/span.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- class Cord;
- class CordBufferTestPeer;
- // CordBuffer
- //
- // CordBuffer manages memory buffers for purposes such as zero-copy APIs as well
- // as applications building cords with large data requiring granular control
- // over the allocation and size of cord data. For example, a function creating
- // a cord of random data could use a CordBuffer as follows:
- //
- // absl::Cord CreateRandomCord(size_t length) {
- // absl::Cord cord;
- // while (length > 0) {
- // CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(length);
- // absl::Span<char> data = buffer.available_up_to(length);
- // FillRandomValues(data.data(), data.size());
- // buffer.IncreaseLengthBy(data.size());
- // cord.Append(std::move(buffer));
- // length -= data.size();
- // }
- // return cord;
- // }
- //
- // CordBuffer instances are by default limited to a capacity of `kDefaultLimit`
- // bytes. `kDefaultLimit` is currently just under 4KiB, but this default may
- // change in the future and/or for specific architectures. The default limit is
- // aimed to provide a good trade-off between performance and memory overhead.
- // Smaller buffers typically incur more compute cost while larger buffers are
- // more CPU efficient but create significant memory overhead because of such
- // allocations being less granular. Using larger buffers may also increase the
- // risk of memory fragmentation.
- //
- // Applications create a buffer using one of the `CreateWithDefaultLimit()` or
- // `CreateWithCustomLimit()` methods. The returned instance will have a non-zero
- // capacity and a zero length. Applications use the `data()` method to set the
- // contents of the managed memory, and once done filling the buffer, use the
- // `IncreaseLengthBy()` or 'SetLength()' method to specify the length of the
- // initialized data before adding the buffer to a Cord.
- //
- // The `CreateWithCustomLimit()` method is intended for applications needing
- // larger buffers than the default memory limit, allowing the allocation of up
- // to a capacity of `kCustomLimit` bytes minus some minimum internal overhead.
- // The usage of `CreateWithCustomLimit()` should be limited to only those use
- // cases where the distribution of the input is relatively well known, and/or
- // where the trade-off between the efficiency gains outweigh the risk of memory
- // fragmentation. See the documentation for `CreateWithCustomLimit()` for more
- // information on using larger custom limits.
- //
- // The capacity of a `CordBuffer` returned by one of the `Create` methods may
- // be larger than the requested capacity due to rounding, alignment and
- // granularity of the memory allocator. Applications should use the `capacity`
- // method to obtain the effective capacity of the returned instance as
- // demonstrated in the provided example above.
- //
- // CordBuffer is a move-only class. All references into the managed memory are
- // invalidated when an instance is moved into either another CordBuffer instance
- // or a Cord. Writing to a location obtained by a previous call to `data()`
- // after an instance was moved will lead to undefined behavior.
- //
- // A `moved from` CordBuffer instance will have a valid, but empty state.
- // CordBuffer is thread compatible.
- class CordBuffer {
- public:
- // kDefaultLimit
- //
- // Default capacity limits of allocated CordBuffers.
- // See the class comments for more information on allocation limits.
- static constexpr size_t kDefaultLimit = cord_internal::kMaxFlatLength;
- // kCustomLimit
- //
- // Maximum size for CreateWithCustomLimit() allocated buffers.
- // Note that the effective capacity may be slightly less
- // because of internal overhead of internal cord buffers.
- static constexpr size_t kCustomLimit = 64U << 10;
- // Constructors, Destructors and Assignment Operators
- // Creates an empty CordBuffer.
- CordBuffer() = default;
- // Destroys this CordBuffer instance and, if not empty, releases any memory
- // managed by this instance, invalidating previously returned references.
- ~CordBuffer();
- // CordBuffer is move-only
- CordBuffer(CordBuffer&& rhs) noexcept;
- CordBuffer& operator=(CordBuffer&&) noexcept;
- CordBuffer(const CordBuffer&) = delete;
- CordBuffer& operator=(const CordBuffer&) = delete;
- // CordBuffer::MaximumPayload()
- //
- // Returns the guaranteed maximum payload for a CordBuffer returned by the
- // `CreateWithDefaultLimit()` method. While small, each internal buffer inside
- // a Cord incurs an overhead to manage the length, type and reference count
- // for the buffer managed inside the cord tree. Applications can use this
- // method to get approximate number of buffers required for a given byte
- // size, etc.
- //
- // For example:
- // const size_t payload = absl::CordBuffer::MaximumPayload();
- // const size_t buffer_count = (total_size + payload - 1) / payload;
- // buffers.reserve(buffer_count);
- static constexpr size_t MaximumPayload();
- // Overload to the above `MaximumPayload()` except that it returns the
- // maximum payload for a CordBuffer returned by the `CreateWithCustomLimit()`
- // method given the provided `block_size`.
- static constexpr size_t MaximumPayload(size_t block_size);
- // CordBuffer::CreateWithDefaultLimit()
- //
- // Creates a CordBuffer instance of the desired `capacity`, capped at the
- // default limit `kDefaultLimit`. The returned buffer has a guaranteed
- // capacity of at least `min(kDefaultLimit, capacity)`. See the class comments
- // for more information on buffer capacities and intended usage.
- static CordBuffer CreateWithDefaultLimit(size_t capacity);
- // CordBuffer::CreateWithCustomLimit()
- //
- // Creates a CordBuffer instance of the desired `capacity` rounded to an
- // appropriate power of 2 size less than, or equal to `block_size`.
- // Requires `block_size` to be a power of 2.
- //
- // If `capacity` is less than or equal to `kDefaultLimit`, then this method
- // behaves identical to `CreateWithDefaultLimit`, which means that the caller
- // is guaranteed to get a buffer of at least the requested capacity.
- //
- // If `capacity` is greater than or equal to `block_size`, then this method
- // returns a buffer with an `allocated size` of `block_size` bytes. Otherwise,
- // this methods returns a buffer with a suitable smaller power of 2 block size
- // to satisfy the request. The actual size depends on a number of factors, and
- // is typically (but not necessarily) the highest or second highest power of 2
- // value less than or equal to `capacity`.
- //
- // The 'allocated size' includes a small amount of overhead required for
- // internal state, which is currently 13 bytes on 64-bit platforms. For
- // example: a buffer created with `block_size` and `capacity' set to 8KiB
- // will have an allocated size of 8KiB, and an effective internal `capacity`
- // of 8KiB - 13 = 8179 bytes.
- //
- // To demonstrate this in practice, let's assume we want to read data from
- // somewhat larger files using approximately 64KiB buffers:
- //
- // absl::Cord ReadFromFile(int fd, size_t n) {
- // absl::Cord cord;
- // while (n > 0) {
- // CordBuffer buffer = CordBuffer::CreateWithCustomLimit(64 << 10, n);
- // absl::Span<char> data = buffer.available_up_to(n);
- // ReadFileDataOrDie(fd, data.data(), data.size());
- // buffer.IncreaseLengthBy(data.size());
- // cord.Append(std::move(buffer));
- // n -= data.size();
- // }
- // return cord;
- // }
- //
- // If we'd use this function to read a file of 659KiB, we may get the
- // following pattern of allocated cord buffer sizes:
- //
- // CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523)
- // CreateWithCustomLimit(64KiB, 674816) --> ~64KiB (65523)
- // ...
- // CreateWithCustomLimit(64KiB, 19586) --> ~16KiB (16371)
- // CreateWithCustomLimit(64KiB, 3215) --> 3215 (at least 3215)
- //
- // The reason the method returns a 16K buffer instead of a roughly 19K buffer
- // is to reduce memory overhead and fragmentation risks. Using carefully
- // chosen power of 2 values reduces the entropy of allocated memory sizes.
- //
- // Additionally, let's assume we'd use the above function on files that are
- // generally smaller than 64K. If we'd use 'precise' sized buffers for such
- // files, than we'd get a very wide distribution of allocated memory sizes
- // rounded to 4K page sizes, and we'd end up with a lot of unused capacity.
- //
- // In general, application should only use custom sizes if the data they are
- // consuming or storing is expected to be many times the chosen block size,
- // and be based on objective data and performance metrics. For example, a
- // compress function may work faster and consume less CPU when using larger
- // buffers. Such an application should pick a size offering a reasonable
- // trade-off between expected data size, compute savings with larger buffers,
- // and the cost or fragmentation effect of larger buffers.
- // Applications must pick a reasonable spot on that curve, and make sure their
- // data meets their expectations in size distributions such as "mostly large".
- static CordBuffer CreateWithCustomLimit(size_t block_size, size_t capacity);
- // CordBuffer::available()
- //
- // Returns the span delineating the available capacity in this buffer
- // which is defined as `{ data() + length(), capacity() - length() }`.
- absl::Span<char> available();
- // CordBuffer::available_up_to()
- //
- // Returns the span delineating the available capacity in this buffer limited
- // to `size` bytes. This is equivalent to `available().subspan(0, size)`.
- absl::Span<char> available_up_to(size_t size);
- // CordBuffer::data()
- //
- // Returns a non-null reference to the data managed by this instance.
- // Applications are allowed to write up to `capacity` bytes of instance data.
- // CordBuffer data is uninitialized by default. Reading data from an instance
- // that has not yet been initialized will lead to undefined behavior.
- char* data();
- const char* data() const;
- // CordBuffer::length()
- //
- // Returns the length of this instance. The default length of a CordBuffer is
- // 0, indicating an 'empty' CordBuffer. Applications must specify the length
- // of the data in a CordBuffer before adding it to a Cord.
- size_t length() const;
- // CordBuffer::capacity()
- //
- // Returns the capacity of this instance. All instances have a non-zero
- // capacity: default and `moved from` instances have a small internal buffer.
- size_t capacity() const;
- // CordBuffer::IncreaseLengthBy()
- //
- // Increases the length of this buffer by the specified 'n' bytes.
- // Applications must make sure all data in this buffer up to the new length
- // has been initialized before adding a CordBuffer to a Cord: failure to do so
- // will lead to undefined behavior. Requires `length() + n <= capacity()`.
- // Typically, applications will use 'available_up_to()` to get a span of the
- // desired capacity, and use `span.size()` to increase the length as in:
- // absl::Span<char> span = buffer.available_up_to(desired);
- // buffer.IncreaseLengthBy(span.size());
- // memcpy(span.data(), src, span.size());
- // etc...
- void IncreaseLengthBy(size_t n);
- // CordBuffer::SetLength()
- //
- // Sets the data length of this instance. Applications must make sure all data
- // of the specified length has been initialized before adding a CordBuffer to
- // a Cord: failure to do so will lead to undefined behavior.
- // Setting the length to a small value or zero does not release any memory
- // held by this CordBuffer instance. Requires `length <= capacity()`.
- // Applications should preferably use the `IncreaseLengthBy()` method above
- // in combination with the 'available()` or `available_up_to()` methods.
- void SetLength(size_t length);
- private:
- // Make sure we don't accidentally over promise.
- static_assert(kCustomLimit <= cord_internal::kMaxLargeFlatSize, "");
- // Assume the cost of an 'uprounded' allocation to CeilPow2(size) versus
- // the cost of allocating at least 1 extra flat <= 4KB:
- // - Flat overhead = 13 bytes
- // - Btree amortized cost / node =~ 13 bytes
- // - 64 byte granularity of tcmalloc at 4K =~ 32 byte average
- // CPU cost and efficiency requires we should at least 'save' something by
- // splitting, as a poor man's measure, we say the slop needs to be
- // at least double the cost offset to make it worth splitting: ~128 bytes.
- static constexpr size_t kMaxPageSlop = 128;
- // Overhead for allocation a flat.
- static constexpr size_t kOverhead = cord_internal::kFlatOverhead;
- using CordRepFlat = cord_internal::CordRepFlat;
- // `Rep` is the internal data representation of a CordBuffer. The internal
- // representation has an internal small size optimization similar to
- // std::string (SSO).
- struct Rep {
- // Inline SSO size of a CordBuffer
- static constexpr size_t kInlineCapacity = sizeof(intptr_t) * 2 - 1;
- // Creates a default instance with kInlineCapacity.
- Rep() : short_rep{} {}
- // Creates an instance managing an allocated non zero CordRep.
- explicit Rep(cord_internal::CordRepFlat* rep) : long_rep{rep} {
- assert(rep != nullptr);
- }
- // Returns true if this instance manages the SSO internal buffer.
- bool is_short() const {
- constexpr size_t offset = offsetof(Short, raw_size);
- return (reinterpret_cast<const char*>(this)[offset] & 1) != 0;
- }
- // Returns the available area of the internal SSO data
- absl::Span<char> short_available() {
- const size_t length = short_length();
- return absl::Span<char>(short_rep.data + length,
- kInlineCapacity - length);
- }
- // Returns the available area of the internal SSO data
- absl::Span<char> long_available() const {
- assert(!is_short());
- const size_t length = long_rep.rep->length;
- return absl::Span<char>(long_rep.rep->Data() + length,
- long_rep.rep->Capacity() - length);
- }
- // Returns the length of the internal SSO data.
- size_t short_length() const {
- assert(is_short());
- return static_cast<size_t>(short_rep.raw_size >> 1);
- }
- // Sets the length of the internal SSO data.
- // Disregards any previously set CordRep instance.
- void set_short_length(size_t length) {
- short_rep.raw_size = static_cast<char>((length << 1) + 1);
- }
- // Adds `n` to the current short length.
- void add_short_length(size_t n) {
- assert(is_short());
- short_rep.raw_size += static_cast<char>(n << 1);
- }
- // Returns reference to the internal SSO data buffer.
- char* data() {
- assert(is_short());
- return short_rep.data;
- }
- const char* data() const {
- assert(is_short());
- return short_rep.data;
- }
- // Returns a pointer the external CordRep managed by this instance.
- cord_internal::CordRepFlat* rep() const {
- assert(!is_short());
- return long_rep.rep;
- }
- // The internal representation takes advantage of the fact that allocated
- // memory is always on an even address, and uses the least significant bit
- // of the first or last byte (depending on endianness) as the inline size
- // indicator overlapping with the least significant byte of the CordRep*.
- #if defined(ABSL_IS_BIG_ENDIAN)
- struct Long {
- explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
- void* padding;
- cord_internal::CordRepFlat* rep;
- };
- struct Short {
- char data[sizeof(Long) - 1];
- char raw_size = 1;
- };
- #else
- struct Long {
- explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {}
- cord_internal::CordRepFlat* rep;
- void* padding;
- };
- struct Short {
- char raw_size = 1;
- char data[sizeof(Long) - 1];
- };
- #endif
- union {
- Long long_rep;
- Short short_rep;
- };
- };
- // Power2 functions
- static bool IsPow2(size_t size) { return absl::has_single_bit(size); }
- static size_t Log2Floor(size_t size) {
- return static_cast<size_t>(absl::bit_width(size) - 1);
- }
- static size_t Log2Ceil(size_t size) {
- return static_cast<size_t>(absl::bit_width(size - 1));
- }
- // Implementation of `CreateWithCustomLimit()`.
- // This implementation allows for future memory allocation hints to
- // be passed down into the CordRepFlat allocation function.
- template <typename... AllocationHints>
- static CordBuffer CreateWithCustomLimitImpl(size_t block_size,
- size_t capacity,
- AllocationHints... hints);
- // Consumes the value contained in this instance and resets the instance.
- // This method returns a non-null Cordrep* if the current instances manages a
- // CordRep*, and resets the instance to an empty SSO instance. If the current
- // instance is an SSO instance, then this method returns nullptr and sets
- // `short_value` to the inlined data value. In either case, the current
- // instance length is reset to zero.
- // This method is intended to be used by Cord internal functions only.
- cord_internal::CordRep* ConsumeValue(absl::string_view& short_value) {
- cord_internal::CordRep* rep = nullptr;
- if (rep_.is_short()) {
- short_value = absl::string_view(rep_.data(), rep_.short_length());
- } else {
- rep = rep_.rep();
- }
- rep_.set_short_length(0);
- return rep;
- }
- // Internal constructor.
- explicit CordBuffer(cord_internal::CordRepFlat* rep) : rep_(rep) {
- assert(rep != nullptr);
- }
- Rep rep_;
- friend class Cord;
- friend class CordBufferTestPeer;
- };
- inline constexpr size_t CordBuffer::MaximumPayload() {
- return cord_internal::kMaxFlatLength;
- }
- inline constexpr size_t CordBuffer::MaximumPayload(size_t block_size) {
- return (std::min)(kCustomLimit, block_size) - cord_internal::kFlatOverhead;
- }
- inline CordBuffer CordBuffer::CreateWithDefaultLimit(size_t capacity) {
- if (capacity > Rep::kInlineCapacity) {
- auto* rep = cord_internal::CordRepFlat::New(capacity);
- rep->length = 0;
- return CordBuffer(rep);
- }
- return CordBuffer();
- }
- template <typename... AllocationHints>
- inline CordBuffer CordBuffer::CreateWithCustomLimitImpl(
- size_t block_size, size_t capacity, AllocationHints... hints) {
- assert(IsPow2(block_size));
- capacity = (std::min)(capacity, kCustomLimit);
- block_size = (std::min)(block_size, kCustomLimit);
- if (capacity + kOverhead >= block_size) {
- capacity = block_size;
- } else if (capacity <= kDefaultLimit) {
- capacity = capacity + kOverhead;
- } else if (!IsPow2(capacity)) {
- // Check if rounded up to next power 2 is a good enough fit
- // with limited waste making it an acceptable direct fit.
- const size_t rounded_up = size_t{1} << Log2Ceil(capacity);
- const size_t slop = rounded_up - capacity;
- if (slop >= kOverhead && slop <= kMaxPageSlop + kOverhead) {
- capacity = rounded_up;
- } else {
- // Round down to highest power of 2 <= capacity.
- // Consider a more aggressive step down if that may reduce the
- // risk of fragmentation where 'people are holding it wrong'.
- const size_t rounded_down = size_t{1} << Log2Floor(capacity);
- capacity = rounded_down;
- }
- }
- const size_t length = capacity - kOverhead;
- auto* rep = CordRepFlat::New(CordRepFlat::Large(), length, hints...);
- rep->length = 0;
- return CordBuffer(rep);
- }
- inline CordBuffer CordBuffer::CreateWithCustomLimit(size_t block_size,
- size_t capacity) {
- return CreateWithCustomLimitImpl(block_size, capacity);
- }
- inline CordBuffer::~CordBuffer() {
- if (!rep_.is_short()) {
- cord_internal::CordRepFlat::Delete(rep_.rep());
- }
- }
- inline CordBuffer::CordBuffer(CordBuffer&& rhs) noexcept : rep_(rhs.rep_) {
- rhs.rep_.set_short_length(0);
- }
- inline CordBuffer& CordBuffer::operator=(CordBuffer&& rhs) noexcept {
- if (!rep_.is_short()) cord_internal::CordRepFlat::Delete(rep_.rep());
- rep_ = rhs.rep_;
- rhs.rep_.set_short_length(0);
- return *this;
- }
- inline absl::Span<char> CordBuffer::available() {
- return rep_.is_short() ? rep_.short_available() : rep_.long_available();
- }
- inline absl::Span<char> CordBuffer::available_up_to(size_t size) {
- return available().subspan(0, size);
- }
- inline char* CordBuffer::data() {
- return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
- }
- inline const char* CordBuffer::data() const {
- return rep_.is_short() ? rep_.data() : rep_.rep()->Data();
- }
- inline size_t CordBuffer::capacity() const {
- return rep_.is_short() ? Rep::kInlineCapacity : rep_.rep()->Capacity();
- }
- inline size_t CordBuffer::length() const {
- return rep_.is_short() ? rep_.short_length() : rep_.rep()->length;
- }
- inline void CordBuffer::SetLength(size_t length) {
- ABSL_HARDENING_ASSERT(length <= capacity());
- if (rep_.is_short()) {
- rep_.set_short_length(length);
- } else {
- rep_.rep()->length = length;
- }
- }
- inline void CordBuffer::IncreaseLengthBy(size_t n) {
- ABSL_HARDENING_ASSERT(n <= capacity() && length() + n <= capacity());
- if (rep_.is_short()) {
- rep_.add_short_length(n);
- } else {
- rep_.rep()->length += n;
- }
- }
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_STRINGS_CORD_BUFFER_H_
|