METADATA 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. Metadata-Version: 2.1
  2. Name: pandas
  3. Version: 2.0.3
  4. Summary: Powerful data structures for data analysis, time series, and statistics
  5. Author-email: The Pandas Development Team <pandas-dev@python.org>
  6. License: BSD 3-Clause License
  7. Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
  8. All rights reserved.
  9. Copyright (c) 2011-2023, Open source contributors.
  10. Redistribution and use in source and binary forms, with or without
  11. modification, are permitted provided that the following conditions are met:
  12. * Redistributions of source code must retain the above copyright notice, this
  13. list of conditions and the following disclaimer.
  14. * Redistributions in binary form must reproduce the above copyright notice,
  15. this list of conditions and the following disclaimer in the documentation
  16. and/or other materials provided with the distribution.
  17. * Neither the name of the copyright holder nor the names of its
  18. contributors may be used to endorse or promote products derived from
  19. this software without specific prior written permission.
  20. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  21. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  22. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  23. DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  24. FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  25. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  26. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  27. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  28. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. Project-URL: homepage, https://pandas.pydata.org
  31. Project-URL: documentation, https://pandas.pydata.org/docs/
  32. Project-URL: repository, https://github.com/pandas-dev/pandas
  33. Classifier: Development Status :: 5 - Production/Stable
  34. Classifier: Environment :: Console
  35. Classifier: Intended Audience :: Science/Research
  36. Classifier: License :: OSI Approved :: BSD License
  37. Classifier: Operating System :: OS Independent
  38. Classifier: Programming Language :: Cython
  39. Classifier: Programming Language :: Python
  40. Classifier: Programming Language :: Python :: 3
  41. Classifier: Programming Language :: Python :: 3 :: Only
  42. Classifier: Programming Language :: Python :: 3.8
  43. Classifier: Programming Language :: Python :: 3.9
  44. Classifier: Programming Language :: Python :: 3.10
  45. Classifier: Programming Language :: Python :: 3.11
  46. Classifier: Topic :: Scientific/Engineering
  47. Requires-Python: >=3.8
  48. Description-Content-Type: text/markdown
  49. License-File: LICENSE
  50. License-File: AUTHORS.md
  51. Requires-Dist: python-dateutil (>=2.8.2)
  52. Requires-Dist: pytz (>=2020.1)
  53. Requires-Dist: tzdata (>=2022.1)
  54. Requires-Dist: numpy (>=1.20.3) ; python_version < "3.10"
  55. Requires-Dist: numpy (>=1.21.0) ; python_version >= "3.10"
  56. Requires-Dist: numpy (>=1.23.2) ; python_version >= "3.11"
  57. Provides-Extra: all
  58. Requires-Dist: beautifulsoup4 (>=4.9.3) ; extra == 'all'
  59. Requires-Dist: bottleneck (>=1.3.2) ; extra == 'all'
  60. Requires-Dist: brotlipy (>=0.7.0) ; extra == 'all'
  61. Requires-Dist: fastparquet (>=0.6.3) ; extra == 'all'
  62. Requires-Dist: fsspec (>=2021.07.0) ; extra == 'all'
  63. Requires-Dist: gcsfs (>=2021.07.0) ; extra == 'all'
  64. Requires-Dist: html5lib (>=1.1) ; extra == 'all'
  65. Requires-Dist: hypothesis (>=6.34.2) ; extra == 'all'
  66. Requires-Dist: jinja2 (>=3.0.0) ; extra == 'all'
  67. Requires-Dist: lxml (>=4.6.3) ; extra == 'all'
  68. Requires-Dist: matplotlib (>=3.6.1) ; extra == 'all'
  69. Requires-Dist: numba (>=0.53.1) ; extra == 'all'
  70. Requires-Dist: numexpr (>=2.7.3) ; extra == 'all'
  71. Requires-Dist: odfpy (>=1.4.1) ; extra == 'all'
  72. Requires-Dist: openpyxl (>=3.0.7) ; extra == 'all'
  73. Requires-Dist: pandas-gbq (>=0.15.0) ; extra == 'all'
  74. Requires-Dist: psycopg2 (>=2.8.6) ; extra == 'all'
  75. Requires-Dist: pyarrow (>=7.0.0) ; extra == 'all'
  76. Requires-Dist: pymysql (>=1.0.2) ; extra == 'all'
  77. Requires-Dist: PyQt5 (>=5.15.1) ; extra == 'all'
  78. Requires-Dist: pyreadstat (>=1.1.2) ; extra == 'all'
  79. Requires-Dist: pytest (>=7.3.2) ; extra == 'all'
  80. Requires-Dist: pytest-xdist (>=2.2.0) ; extra == 'all'
  81. Requires-Dist: pytest-asyncio (>=0.17.0) ; extra == 'all'
  82. Requires-Dist: python-snappy (>=0.6.0) ; extra == 'all'
  83. Requires-Dist: pyxlsb (>=1.0.8) ; extra == 'all'
  84. Requires-Dist: qtpy (>=2.2.0) ; extra == 'all'
  85. Requires-Dist: scipy (>=1.7.1) ; extra == 'all'
  86. Requires-Dist: s3fs (>=2021.08.0) ; extra == 'all'
  87. Requires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'all'
  88. Requires-Dist: tables (>=3.6.1) ; extra == 'all'
  89. Requires-Dist: tabulate (>=0.8.9) ; extra == 'all'
  90. Requires-Dist: xarray (>=0.21.0) ; extra == 'all'
  91. Requires-Dist: xlrd (>=2.0.1) ; extra == 'all'
  92. Requires-Dist: xlsxwriter (>=1.4.3) ; extra == 'all'
  93. Requires-Dist: zstandard (>=0.15.2) ; extra == 'all'
  94. Provides-Extra: aws
  95. Requires-Dist: s3fs (>=2021.08.0) ; extra == 'aws'
  96. Provides-Extra: clipboard
  97. Requires-Dist: PyQt5 (>=5.15.1) ; extra == 'clipboard'
  98. Requires-Dist: qtpy (>=2.2.0) ; extra == 'clipboard'
  99. Provides-Extra: compression
  100. Requires-Dist: brotlipy (>=0.7.0) ; extra == 'compression'
  101. Requires-Dist: python-snappy (>=0.6.0) ; extra == 'compression'
  102. Requires-Dist: zstandard (>=0.15.2) ; extra == 'compression'
  103. Provides-Extra: computation
  104. Requires-Dist: scipy (>=1.7.1) ; extra == 'computation'
  105. Requires-Dist: xarray (>=0.21.0) ; extra == 'computation'
  106. Provides-Extra: excel
  107. Requires-Dist: odfpy (>=1.4.1) ; extra == 'excel'
  108. Requires-Dist: openpyxl (>=3.0.7) ; extra == 'excel'
  109. Requires-Dist: pyxlsb (>=1.0.8) ; extra == 'excel'
  110. Requires-Dist: xlrd (>=2.0.1) ; extra == 'excel'
  111. Requires-Dist: xlsxwriter (>=1.4.3) ; extra == 'excel'
  112. Provides-Extra: feather
  113. Requires-Dist: pyarrow (>=7.0.0) ; extra == 'feather'
  114. Provides-Extra: fss
  115. Requires-Dist: fsspec (>=2021.07.0) ; extra == 'fss'
  116. Provides-Extra: gcp
  117. Requires-Dist: gcsfs (>=2021.07.0) ; extra == 'gcp'
  118. Requires-Dist: pandas-gbq (>=0.15.0) ; extra == 'gcp'
  119. Provides-Extra: hdf5
  120. Requires-Dist: tables (>=3.6.1) ; extra == 'hdf5'
  121. Provides-Extra: html
  122. Requires-Dist: beautifulsoup4 (>=4.9.3) ; extra == 'html'
  123. Requires-Dist: html5lib (>=1.1) ; extra == 'html'
  124. Requires-Dist: lxml (>=4.6.3) ; extra == 'html'
  125. Provides-Extra: mysql
  126. Requires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'mysql'
  127. Requires-Dist: pymysql (>=1.0.2) ; extra == 'mysql'
  128. Provides-Extra: output_formatting
  129. Requires-Dist: jinja2 (>=3.0.0) ; extra == 'output_formatting'
  130. Requires-Dist: tabulate (>=0.8.9) ; extra == 'output_formatting'
  131. Provides-Extra: parquet
  132. Requires-Dist: pyarrow (>=7.0.0) ; extra == 'parquet'
  133. Provides-Extra: performance
  134. Requires-Dist: bottleneck (>=1.3.2) ; extra == 'performance'
  135. Requires-Dist: numba (>=0.53.1) ; extra == 'performance'
  136. Requires-Dist: numexpr (>=2.7.1) ; extra == 'performance'
  137. Provides-Extra: plot
  138. Requires-Dist: matplotlib (>=3.6.1) ; extra == 'plot'
  139. Provides-Extra: postgresql
  140. Requires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'postgresql'
  141. Requires-Dist: psycopg2 (>=2.8.6) ; extra == 'postgresql'
  142. Provides-Extra: spss
  143. Requires-Dist: pyreadstat (>=1.1.2) ; extra == 'spss'
  144. Provides-Extra: sql-other
  145. Requires-Dist: SQLAlchemy (>=1.4.16) ; extra == 'sql-other'
  146. Provides-Extra: test
  147. Requires-Dist: hypothesis (>=6.34.2) ; extra == 'test'
  148. Requires-Dist: pytest (>=7.3.2) ; extra == 'test'
  149. Requires-Dist: pytest-xdist (>=2.2.0) ; extra == 'test'
  150. Requires-Dist: pytest-asyncio (>=0.17.0) ; extra == 'test'
  151. Provides-Extra: xml
  152. Requires-Dist: lxml (>=4.6.3) ; extra == 'xml'
  153. <div align="center">
  154. <img src="https://pandas.pydata.org/static/img/pandas.svg"><br>
  155. </div>
  156. -----------------
  157. # pandas: powerful Python data analysis toolkit
  158. [![PyPI Latest Release](https://img.shields.io/pypi/v/pandas.svg)](https://pypi.org/project/pandas/)
  159. [![Conda Latest Release](https://anaconda.org/conda-forge/pandas/badges/version.svg)](https://anaconda.org/anaconda/pandas/)
  160. [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3509134.svg)](https://doi.org/10.5281/zenodo.3509134)
  161. [![Package Status](https://img.shields.io/pypi/status/pandas.svg)](https://pypi.org/project/pandas/)
  162. [![License](https://img.shields.io/pypi/l/pandas.svg)](https://github.com/pandas-dev/pandas/blob/main/LICENSE)
  163. [![Coverage](https://codecov.io/github/pandas-dev/pandas/coverage.svg?branch=main)](https://codecov.io/gh/pandas-dev/pandas)
  164. [![Downloads](https://static.pepy.tech/personalized-badge/pandas?period=month&units=international_system&left_color=black&right_color=orange&left_text=PyPI%20downloads%20per%20month)](https://pepy.tech/project/pandas)
  165. [![Slack](https://img.shields.io/badge/join_Slack-information-brightgreen.svg?logo=slack)](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack)
  166. [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)
  167. [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
  168. [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)
  169. ## What is it?
  170. **pandas** is a Python package that provides fast, flexible, and expressive data
  171. structures designed to make working with "relational" or "labeled" data both
  172. easy and intuitive. It aims to be the fundamental high-level building block for
  173. doing practical, **real world** data analysis in Python. Additionally, it has
  174. the broader goal of becoming **the most powerful and flexible open source data
  175. analysis / manipulation tool available in any language**. It is already well on
  176. its way towards this goal.
  177. ## Main Features
  178. Here are just a few of the things that pandas does well:
  179. - Easy handling of [**missing data**][missing-data] (represented as
  180. `NaN`, `NA`, or `NaT`) in floating point as well as non-floating point data
  181. - Size mutability: columns can be [**inserted and
  182. deleted**][insertion-deletion] from DataFrame and higher dimensional
  183. objects
  184. - Automatic and explicit [**data alignment**][alignment]: objects can
  185. be explicitly aligned to a set of labels, or the user can simply
  186. ignore the labels and let `Series`, `DataFrame`, etc. automatically
  187. align the data for you in computations
  188. - Powerful, flexible [**group by**][groupby] functionality to perform
  189. split-apply-combine operations on data sets, for both aggregating
  190. and transforming data
  191. - Make it [**easy to convert**][conversion] ragged,
  192. differently-indexed data in other Python and NumPy data structures
  193. into DataFrame objects
  194. - Intelligent label-based [**slicing**][slicing], [**fancy
  195. indexing**][fancy-indexing], and [**subsetting**][subsetting] of
  196. large data sets
  197. - Intuitive [**merging**][merging] and [**joining**][joining] data
  198. sets
  199. - Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of
  200. data sets
  201. - [**Hierarchical**][mi] labeling of axes (possible to have multiple
  202. labels per tick)
  203. - Robust IO tools for loading data from [**flat files**][flat-files]
  204. (CSV and delimited), [**Excel files**][excel], [**databases**][db],
  205. and saving/loading data from the ultrafast [**HDF5 format**][hdfstore]
  206. - [**Time series**][timeseries]-specific functionality: date range
  207. generation and frequency conversion, moving window statistics,
  208. date shifting and lagging
  209. [missing-data]: https://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
  210. [insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#column-selection-addition-deletion
  211. [alignment]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html?highlight=alignment#intro-to-data-structures
  212. [groupby]: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#group-by-split-apply-combine
  213. [conversion]: https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe
  214. [slicing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#slicing-ranges
  215. [fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#advanced
  216. [subsetting]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-indexing
  217. [merging]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#database-style-dataframe-or-named-series-joining-merging
  218. [joining]: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html#joining-on-index
  219. [reshape]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
  220. [pivot-table]: https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
  221. [mi]: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#hierarchical-indexing-multiindex
  222. [flat-files]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#csv-text-files
  223. [excel]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#excel-files
  224. [db]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries
  225. [hdfstore]: https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#hdf5-pytables
  226. [timeseries]: https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-series-date-functionality
  227. ## Where to get it
  228. The source code is currently hosted on GitHub at:
  229. https://github.com/pandas-dev/pandas
  230. Binary installers for the latest released version are available at the [Python
  231. Package Index (PyPI)](https://pypi.org/project/pandas) and on [Conda](https://docs.conda.io/en/latest/).
  232. ```sh
  233. # conda
  234. conda install pandas
  235. ```
  236. ```sh
  237. # or PyPI
  238. pip install pandas
  239. ```
  240. ## Dependencies
  241. - [NumPy - Adds support for large, multi-dimensional arrays, matrices and high-level mathematical functions to operate on these arrays](https://www.numpy.org)
  242. - [python-dateutil - Provides powerful extensions to the standard datetime module](https://dateutil.readthedocs.io/en/stable/index.html)
  243. - [pytz - Brings the Olson tz database into Python which allows accurate and cross platform timezone calculations](https://github.com/stub42/pytz)
  244. See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies) for minimum supported versions of required, recommended and optional dependencies.
  245. ## Installation from sources
  246. To install pandas from source you need [Cython](https://cython.org/) in addition to the normal
  247. dependencies above. Cython can be installed from PyPI:
  248. ```sh
  249. pip install cython
  250. ```
  251. In the `pandas` directory (same one where you found this file after
  252. cloning the git repo), execute:
  253. ```sh
  254. python setup.py install
  255. ```
  256. or for installing in [development mode](https://pip.pypa.io/en/latest/cli/pip_install/#install-editable):
  257. ```sh
  258. python -m pip install -e . --no-build-isolation --no-use-pep517
  259. ```
  260. or alternatively
  261. ```sh
  262. python setup.py develop
  263. ```
  264. See the full instructions for [installing from source](https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html#installing-from-source).
  265. ## License
  266. [BSD 3](LICENSE)
  267. ## Documentation
  268. The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable
  269. ## Background
  270. Work on ``pandas`` started at [AQR](https://www.aqr.com/) (a quantitative hedge fund) in 2008 and
  271. has been under active development since then.
  272. ## Getting Help
  273. For usage questions, the best place to go to is [StackOverflow](https://stackoverflow.com/questions/tagged/pandas).
  274. Further, general questions and discussions can also take place on the [pydata mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata).
  275. ## Discussion and Development
  276. Most development discussions take place on GitHub in this repo. Further, the [pandas-dev mailing list](https://mail.python.org/mailman/listinfo/pandas-dev) can also be used for specialized discussions or design issues, and a [Slack channel](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack) is available for quick development related questions.
  277. ## Contributing to pandas [![Open Source Helpers](https://www.codetriage.com/pandas-dev/pandas/badges/users.svg)](https://www.codetriage.com/pandas-dev/pandas)
  278. All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.
  279. A detailed overview on how to contribute can be found in the **[contributing guide](https://pandas.pydata.org/docs/dev/development/contributing.html)**.
  280. If you are simply looking to start working with the pandas codebase, navigate to the [GitHub "issues" tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open) and [good first issue](https://github.com/pandas-dev/pandas/issues?labels=good+first+issue&sort=updated&state=open) where you could start out.
  281. You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to [subscribe to pandas on CodeTriage](https://www.codetriage.com/pandas-dev/pandas).
  282. Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!
  283. Feel free to ask questions on the [mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata) or on [Slack](https://pandas.pydata.org/docs/dev/development/community.html?highlight=slack#community-slack).
  284. As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: [Contributor Code of Conduct](https://github.com/pandas-dev/.github/blob/master/CODE_OF_CONDUCT.md)