123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428 |
- // SPDX-License-Identifier: 0BSD
- ///////////////////////////////////////////////////////////////////////////////
- //
- /// \file crc_x86_clmul.h
- /// \brief CRC32 and CRC64 implementations using CLMUL instructions.
- ///
- /// The CRC32 and CRC64 implementations use 32/64-bit x86 SSSE3, SSE4.1, and
- /// CLMUL instructions. This is compatible with Elbrus 2000 (E2K) too.
- ///
- /// They were derived from
- /// https://www.researchgate.net/publication/263424619_Fast_CRC_computation
- /// and the public domain code from https://github.com/rawrunprotected/crc
- /// (URLs were checked on 2023-10-14).
- ///
- /// While this file has both CRC32 and CRC64 implementations, only one
- /// should be built at a time to ensure that crc_simd_body() is inlined
- /// even with compilers with which lzma_always_inline expands to plain inline.
- /// The version to build is selected by defining BUILDING_CRC32_CLMUL or
- /// BUILDING_CRC64_CLMUL before including this file.
- ///
- /// FIXME: Builds for 32-bit x86 use the assembly .S files by default
- /// unless configured with --disable-assembler. Even then the lookup table
- /// isn't omitted in crc64_table.c since it doesn't know that assembly
- /// code has been disabled.
- //
- // Authors: Ilya Kurdyukov
- // Hans Jansen
- // Lasse Collin
- // Jia Tan
- //
- ///////////////////////////////////////////////////////////////////////////////
- // This file must not be included more than once.
- #ifdef LZMA_CRC_X86_CLMUL_H
- # error crc_x86_clmul.h was included twice.
- #endif
- #define LZMA_CRC_X86_CLMUL_H
- #include <immintrin.h>
- #if defined(_MSC_VER)
- # include <intrin.h>
- #elif defined(HAVE_CPUID_H)
- # include <cpuid.h>
- #endif
- // EDG-based compilers (Intel's classic compiler and compiler for E2K) can
- // define __GNUC__ but the attribute must not be used with them.
- // The new Clang-based ICX needs the attribute.
- //
- // NOTE: Build systems check for this too, keep them in sync with this.
- #if (defined(__GNUC__) || defined(__clang__)) && !defined(__EDG__)
- # define crc_attr_target \
- __attribute__((__target__("ssse3,sse4.1,pclmul")))
- #else
- # define crc_attr_target
- #endif
- #define MASK_L(in, mask, r) r = _mm_shuffle_epi8(in, mask)
- #define MASK_H(in, mask, r) \
- r = _mm_shuffle_epi8(in, _mm_xor_si128(mask, vsign))
- #define MASK_LH(in, mask, low, high) \
- MASK_L(in, mask, low); \
- MASK_H(in, mask, high)
- crc_attr_target
- crc_attr_no_sanitize_address
- static lzma_always_inline void
- crc_simd_body(const uint8_t *buf, const size_t size, __m128i *v0, __m128i *v1,
- const __m128i vfold16, const __m128i initial_crc)
- {
- // Create a vector with 8-bit values 0 to 15. This is used to
- // construct control masks for _mm_blendv_epi8 and _mm_shuffle_epi8.
- const __m128i vramp = _mm_setr_epi32(
- 0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0d0c);
- // This is used to inverse the control mask of _mm_shuffle_epi8
- // so that bytes that wouldn't be picked with the original mask
- // will be picked and vice versa.
- const __m128i vsign = _mm_set1_epi8(-0x80);
- // Memory addresses A to D and the distances between them:
- //
- // A B C D
- // [skip_start][size][skip_end]
- // [ size2 ]
- //
- // A and D are 16-byte aligned. B and C are 1-byte aligned.
- // skip_start and skip_end are 0-15 bytes. size is at least 1 byte.
- //
- // A = aligned_buf will initially point to this address.
- // B = The address pointed by the caller-supplied buf.
- // C = buf + size == aligned_buf + size2
- // D = buf + size + skip_end == aligned_buf + size2 + skip_end
- const size_t skip_start = (size_t)((uintptr_t)buf & 15);
- const size_t skip_end = (size_t)((0U - (uintptr_t)(buf + size)) & 15);
- const __m128i *aligned_buf = (const __m128i *)(
- (uintptr_t)buf & ~(uintptr_t)15);
- // If size2 <= 16 then the whole input fits into a single 16-byte
- // vector. If size2 > 16 then at least two 16-byte vectors must
- // be processed. If size2 > 16 && size <= 16 then there is only
- // one 16-byte vector's worth of input but it is unaligned in memory.
- //
- // NOTE: There is no integer overflow here if the arguments
- // are valid. If this overflowed, buf + size would too.
- const size_t size2 = skip_start + size;
- // Masks to be used with _mm_blendv_epi8 and _mm_shuffle_epi8:
- // The first skip_start or skip_end bytes in the vectors will have
- // the high bit (0x80) set. _mm_blendv_epi8 and _mm_shuffle_epi8
- // will produce zeros for these positions. (Bitwise-xor of these
- // masks with vsign will produce the opposite behavior.)
- const __m128i mask_start
- = _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_start));
- const __m128i mask_end
- = _mm_sub_epi8(vramp, _mm_set1_epi8((char)skip_end));
- // Get the first 1-16 bytes into data0. If loading less than 16
- // bytes, the bytes are loaded to the high bits of the vector and
- // the least significant positions are filled with zeros.
- const __m128i data0 = _mm_blendv_epi8(_mm_load_si128(aligned_buf),
- _mm_setzero_si128(), mask_start);
- aligned_buf++;
- __m128i v2, v3;
- #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
- if (size <= 16) {
- // Right-shift initial_crc by 1-16 bytes based on "size"
- // and store the result in v1 (high bytes) and v0 (low bytes).
- //
- // NOTE: The highest 8 bytes of initial_crc are zeros so
- // v1 will be filled with zeros if size >= 8. The highest
- // 8 bytes of v1 will always become zeros.
- //
- // [ v1 ][ v0 ]
- // [ initial_crc ] size == 1
- // [ initial_crc ] size == 2
- // [ initial_crc ] size == 15
- // [ initial_crc ] size == 16 (all in v0)
- const __m128i mask_low = _mm_add_epi8(
- vramp, _mm_set1_epi8((char)(size - 16)));
- MASK_LH(initial_crc, mask_low, *v0, *v1);
- if (size2 <= 16) {
- // There are 1-16 bytes of input and it is all
- // in data0. Copy the input bytes to v3. If there
- // are fewer than 16 bytes, the low bytes in v3
- // will be filled with zeros. That is, the input
- // bytes are stored to the same position as
- // (part of) initial_crc is in v0.
- MASK_L(data0, mask_end, v3);
- } else {
- // There are 2-16 bytes of input but not all bytes
- // are in data0.
- const __m128i data1 = _mm_load_si128(aligned_buf);
- // Collect the 2-16 input bytes from data0 and data1
- // to v2 and v3, and bitwise-xor them with the
- // low bits of initial_crc in v0. Note that the
- // the second xor is below this else-block as it
- // is shared with the other branch.
- MASK_H(data0, mask_end, v2);
- MASK_L(data1, mask_end, v3);
- *v0 = _mm_xor_si128(*v0, v2);
- }
- *v0 = _mm_xor_si128(*v0, v3);
- *v1 = _mm_alignr_epi8(*v1, *v0, 8);
- } else
- #endif
- {
- // There is more than 16 bytes of input.
- const __m128i data1 = _mm_load_si128(aligned_buf);
- const __m128i *end = (const __m128i*)(
- (const char *)aligned_buf - 16 + size2);
- aligned_buf++;
- MASK_LH(initial_crc, mask_start, *v0, *v1);
- *v0 = _mm_xor_si128(*v0, data0);
- *v1 = _mm_xor_si128(*v1, data1);
- while (aligned_buf < end) {
- *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
- *v0, vfold16, 0x00));
- *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
- *v0, vfold16, 0x11));
- *v1 = _mm_load_si128(aligned_buf++);
- }
- if (aligned_buf != end) {
- MASK_H(*v0, mask_end, v2);
- MASK_L(*v0, mask_end, *v0);
- MASK_L(*v1, mask_end, v3);
- *v1 = _mm_or_si128(v2, v3);
- }
- *v1 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
- *v0, vfold16, 0x00));
- *v0 = _mm_xor_si128(*v1, _mm_clmulepi64_si128(
- *v0, vfold16, 0x11));
- *v1 = _mm_srli_si128(*v0, 8);
- }
- }
- /////////////////////
- // x86 CLMUL CRC32 //
- /////////////////////
- /*
- // These functions were used to generate the constants
- // at the top of crc32_arch_optimized().
- static uint64_t
- calc_lo(uint64_t p, uint64_t a, int n)
- {
- uint64_t b = 0; int i;
- for (i = 0; i < n; i++) {
- b = b >> 1 | (a & 1) << (n - 1);
- a = (a >> 1) ^ ((0 - (a & 1)) & p);
- }
- return b;
- }
- // same as ~crc(&a, sizeof(a), ~0)
- static uint64_t
- calc_hi(uint64_t p, uint64_t a, int n)
- {
- int i;
- for (i = 0; i < n; i++)
- a = (a >> 1) ^ ((0 - (a & 1)) & p);
- return a;
- }
- */
- #ifdef BUILDING_CRC32_CLMUL
- crc_attr_target
- crc_attr_no_sanitize_address
- static uint32_t
- crc32_arch_optimized(const uint8_t *buf, size_t size, uint32_t crc)
- {
- #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
- // The code assumes that there is at least one byte of input.
- if (size == 0)
- return crc;
- #endif
- // uint32_t poly = 0xedb88320;
- const int64_t p = 0x1db710640; // p << 1
- const int64_t mu = 0x1f7011641; // calc_lo(p, p, 32) << 1 | 1
- const int64_t k5 = 0x163cd6124; // calc_hi(p, p, 32) << 1
- const int64_t k4 = 0x0ccaa009e; // calc_hi(p, p, 64) << 1
- const int64_t k3 = 0x1751997d0; // calc_hi(p, p, 128) << 1
- const __m128i vfold4 = _mm_set_epi64x(mu, p);
- const __m128i vfold8 = _mm_set_epi64x(0, k5);
- const __m128i vfold16 = _mm_set_epi64x(k4, k3);
- __m128i v0, v1, v2;
- crc_simd_body(buf, size, &v0, &v1, vfold16,
- _mm_cvtsi32_si128((int32_t)~crc));
- v1 = _mm_xor_si128(
- _mm_clmulepi64_si128(v0, vfold16, 0x10), v1); // xxx0
- v2 = _mm_shuffle_epi32(v1, 0xe7); // 0xx0
- v0 = _mm_slli_epi64(v1, 32); // [0]
- v0 = _mm_clmulepi64_si128(v0, vfold8, 0x00);
- v0 = _mm_xor_si128(v0, v2); // [1] [2]
- v2 = _mm_clmulepi64_si128(v0, vfold4, 0x10);
- v2 = _mm_clmulepi64_si128(v2, vfold4, 0x00);
- v0 = _mm_xor_si128(v0, v2); // [2]
- return ~(uint32_t)_mm_extract_epi32(v0, 2);
- }
- #endif // BUILDING_CRC32_CLMUL
- /////////////////////
- // x86 CLMUL CRC64 //
- /////////////////////
- /*
- // These functions were used to generate the constants
- // at the top of crc64_arch_optimized().
- static uint64_t
- calc_lo(uint64_t poly)
- {
- uint64_t a = poly;
- uint64_t b = 0;
- for (unsigned i = 0; i < 64; ++i) {
- b = (b >> 1) | (a << 63);
- a = (a >> 1) ^ (a & 1 ? poly : 0);
- }
- return b;
- }
- static uint64_t
- calc_hi(uint64_t poly, uint64_t a)
- {
- for (unsigned i = 0; i < 64; ++i)
- a = (a >> 1) ^ (a & 1 ? poly : 0);
- return a;
- }
- */
- #ifdef BUILDING_CRC64_CLMUL
- // MSVC (VS2015 - VS2022) produces bad 32-bit x86 code from the CLMUL CRC
- // code when optimizations are enabled (release build). According to the bug
- // report, the ebx register is corrupted and the calculated result is wrong.
- // Trying to workaround the problem with "__asm mov ebx, ebx" didn't help.
- // The following pragma works and performance is still good. x86-64 builds
- // and CRC32 CLMUL aren't affected by this problem. The problem does not
- // happen in crc_simd_body() either (which is shared with CRC32 CLMUL anyway).
- //
- // NOTE: Another pragma after crc64_arch_optimized() restores
- // the optimizations. If the #if condition here is updated,
- // the other one must be updated too.
- #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
- && defined(_M_IX86)
- # pragma optimize("g", off)
- #endif
- crc_attr_target
- crc_attr_no_sanitize_address
- static uint64_t
- crc64_arch_optimized(const uint8_t *buf, size_t size, uint64_t crc)
- {
- #ifndef CRC_USE_GENERIC_FOR_SMALL_INPUTS
- // The code assumes that there is at least one byte of input.
- if (size == 0)
- return crc;
- #endif
- // const uint64_t poly = 0xc96c5795d7870f42; // CRC polynomial
- const uint64_t p = 0x92d8af2baf0e1e85; // (poly << 1) | 1
- const uint64_t mu = 0x9c3e466c172963d5; // (calc_lo(poly) << 1) | 1
- const uint64_t k2 = 0xdabe95afc7875f40; // calc_hi(poly, 1)
- const uint64_t k1 = 0xe05dd497ca393ae4; // calc_hi(poly, k2)
- const __m128i vfold8 = _mm_set_epi64x((int64_t)p, (int64_t)mu);
- const __m128i vfold16 = _mm_set_epi64x((int64_t)k2, (int64_t)k1);
- __m128i v0, v1, v2;
- #if defined(__i386__) || defined(_M_IX86)
- crc_simd_body(buf, size, &v0, &v1, vfold16,
- _mm_set_epi64x(0, (int64_t)~crc));
- #else
- // GCC and Clang would produce good code with _mm_set_epi64x
- // but MSVC needs _mm_cvtsi64_si128 on x86-64.
- crc_simd_body(buf, size, &v0, &v1, vfold16,
- _mm_cvtsi64_si128((int64_t)~crc));
- #endif
- v1 = _mm_xor_si128(_mm_clmulepi64_si128(v0, vfold16, 0x10), v1);
- v0 = _mm_clmulepi64_si128(v1, vfold8, 0x00);
- v2 = _mm_clmulepi64_si128(v0, vfold8, 0x10);
- v0 = _mm_xor_si128(_mm_xor_si128(v1, _mm_slli_si128(v0, 8)), v2);
- #if defined(__i386__) || defined(_M_IX86)
- return ~(((uint64_t)(uint32_t)_mm_extract_epi32(v0, 3) << 32) |
- (uint64_t)(uint32_t)_mm_extract_epi32(v0, 2));
- #else
- return ~(uint64_t)_mm_extract_epi64(v0, 1);
- #endif
- }
- #if defined(_MSC_VER) && !defined(__INTEL_COMPILER) && !defined(__clang__) \
- && defined(_M_IX86)
- # pragma optimize("", on)
- #endif
- #endif // BUILDING_CRC64_CLMUL
- // Inlining this function duplicates the function body in crc32_resolve() and
- // crc64_resolve(), but this is acceptable because this is a tiny function.
- static inline bool
- is_arch_extension_supported(void)
- {
- int success = 1;
- uint32_t r[4]; // eax, ebx, ecx, edx
- #if defined(_MSC_VER)
- // This needs <intrin.h> with MSVC. ICC has it as a built-in
- // on all platforms.
- __cpuid(r, 1);
- #elif defined(HAVE_CPUID_H)
- // Compared to just using __asm__ to run CPUID, this also checks
- // that CPUID is supported and saves and restores ebx as that is
- // needed with GCC < 5 with position-independent code (PIC).
- success = __get_cpuid(1, &r[0], &r[1], &r[2], &r[3]);
- #else
- // Just a fallback that shouldn't be needed.
- __asm__("cpuid\n\t"
- : "=a"(r[0]), "=b"(r[1]), "=c"(r[2]), "=d"(r[3])
- : "a"(1), "c"(0));
- #endif
- // Returns true if these are supported:
- // CLMUL (bit 1 in ecx)
- // SSSE3 (bit 9 in ecx)
- // SSE4.1 (bit 19 in ecx)
- const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19);
- return success && (r[2] & ecx_mask) == ecx_mask;
- // Alternative methods that weren't used:
- // - ICC's _may_i_use_cpu_feature: the other methods should work too.
- // - GCC >= 6 / Clang / ICX __builtin_cpu_supports("pclmul")
- //
- // CPUID decding is needed with MSVC anyway and older GCC. This keeps
- // the feature checks in the build system simpler too. The nice thing
- // about __builtin_cpu_supports would be that it generates very short
- // code as is it only reads a variable set at startup but a few bytes
- // doesn't matter here.
- }
|