1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897 |
- //===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file implements the loop fusion pass.
- /// The implementation is largely based on the following document:
- ///
- /// Code Transformations to Augment the Scope of Loop Fusion in a
- /// Production Compiler
- /// Christopher Mark Barton
- /// MSc Thesis
- /// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
- ///
- /// The general approach taken is to collect sets of control flow equivalent
- /// loops and test whether they can be fused. The necessary conditions for
- /// fusion are:
- /// 1. The loops must be adjacent (there cannot be any statements between
- /// the two loops).
- /// 2. The loops must be conforming (they must execute the same number of
- /// iterations).
- /// 3. The loops must be control flow equivalent (if one loop executes, the
- /// other is guaranteed to execute).
- /// 4. There cannot be any negative distance dependencies between the loops.
- /// If all of these conditions are satisfied, it is safe to fuse the loops.
- ///
- /// This implementation creates FusionCandidates that represent the loop and the
- /// necessary information needed by fusion. It then operates on the fusion
- /// candidates, first confirming that the candidate is eligible for fusion. The
- /// candidates are then collected into control flow equivalent sets, sorted in
- /// dominance order. Each set of control flow equivalent candidates is then
- /// traversed, attempting to fuse pairs of candidates in the set. If all
- /// requirements for fusion are met, the two candidates are fused, creating a
- /// new (fused) candidate which is then added back into the set to consider for
- /// additional fusion.
- ///
- /// This implementation currently does not make any modifications to remove
- /// conditions for fusion. Code transformations to make loops conform to each of
- /// the conditions for fusion are discussed in more detail in the document
- /// above. These can be added to the current implementation in the future.
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/LoopFuse.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/DependenceAnalysis.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/OptimizationRemarkEmitter.h"
- #include "llvm/Analysis/PostDominators.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/Verifier.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/CodeMoverUtils.h"
- #include "llvm/Transforms/Utils/LoopPeel.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-fusion"
- STATISTIC(FuseCounter, "Loops fused");
- STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
- STATISTIC(InvalidPreheader, "Loop has invalid preheader");
- STATISTIC(InvalidHeader, "Loop has invalid header");
- STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
- STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
- STATISTIC(InvalidLatch, "Loop has invalid latch");
- STATISTIC(InvalidLoop, "Loop is invalid");
- STATISTIC(AddressTakenBB, "Basic block has address taken");
- STATISTIC(MayThrowException, "Loop may throw an exception");
- STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
- STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
- STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
- STATISTIC(UnknownTripCount, "Loop has unknown trip count");
- STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
- STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
- STATISTIC(NonAdjacent, "Loops are not adjacent");
- STATISTIC(
- NonEmptyPreheader,
- "Loop has a non-empty preheader with instructions that cannot be moved");
- STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
- STATISTIC(NonIdenticalGuards, "Candidates have different guards");
- STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
- "instructions that cannot be moved");
- STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
- "instructions that cannot be moved");
- STATISTIC(NotRotated, "Candidate is not rotated");
- STATISTIC(OnlySecondCandidateIsGuarded,
- "The second candidate is guarded while the first one is not");
- enum FusionDependenceAnalysisChoice {
- FUSION_DEPENDENCE_ANALYSIS_SCEV,
- FUSION_DEPENDENCE_ANALYSIS_DA,
- FUSION_DEPENDENCE_ANALYSIS_ALL,
- };
- static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
- "loop-fusion-dependence-analysis",
- cl::desc("Which dependence analysis should loop fusion use?"),
- cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
- "Use the scalar evolution interface"),
- clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
- "Use the dependence analysis interface"),
- clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
- "Use all available analyses")),
- cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
- static cl::opt<unsigned> FusionPeelMaxCount(
- "loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
- cl::desc("Max number of iterations to be peeled from a loop, such that "
- "fusion can take place"));
- #ifndef NDEBUG
- static cl::opt<bool>
- VerboseFusionDebugging("loop-fusion-verbose-debug",
- cl::desc("Enable verbose debugging for Loop Fusion"),
- cl::Hidden, cl::init(false), cl::ZeroOrMore);
- #endif
- namespace {
- /// This class is used to represent a candidate for loop fusion. When it is
- /// constructed, it checks the conditions for loop fusion to ensure that it
- /// represents a valid candidate. It caches several parts of a loop that are
- /// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
- /// of continually querying the underlying Loop to retrieve these values. It is
- /// assumed these will not change throughout loop fusion.
- ///
- /// The invalidate method should be used to indicate that the FusionCandidate is
- /// no longer a valid candidate for fusion. Similarly, the isValid() method can
- /// be used to ensure that the FusionCandidate is still valid for fusion.
- struct FusionCandidate {
- /// Cache of parts of the loop used throughout loop fusion. These should not
- /// need to change throughout the analysis and transformation.
- /// These parts are cached to avoid repeatedly looking up in the Loop class.
- /// Preheader of the loop this candidate represents
- BasicBlock *Preheader;
- /// Header of the loop this candidate represents
- BasicBlock *Header;
- /// Blocks in the loop that exit the loop
- BasicBlock *ExitingBlock;
- /// The successor block of this loop (where the exiting blocks go to)
- BasicBlock *ExitBlock;
- /// Latch of the loop
- BasicBlock *Latch;
- /// The loop that this fusion candidate represents
- Loop *L;
- /// Vector of instructions in this loop that read from memory
- SmallVector<Instruction *, 16> MemReads;
- /// Vector of instructions in this loop that write to memory
- SmallVector<Instruction *, 16> MemWrites;
- /// Are all of the members of this fusion candidate still valid
- bool Valid;
- /// Guard branch of the loop, if it exists
- BranchInst *GuardBranch;
- /// Peeling Paramaters of the Loop.
- TTI::PeelingPreferences PP;
- /// Can you Peel this Loop?
- bool AbleToPeel;
- /// Has this loop been Peeled
- bool Peeled;
- /// Dominator and PostDominator trees are needed for the
- /// FusionCandidateCompare function, required by FusionCandidateSet to
- /// determine where the FusionCandidate should be inserted into the set. These
- /// are used to establish ordering of the FusionCandidates based on dominance.
- const DominatorTree *DT;
- const PostDominatorTree *PDT;
- OptimizationRemarkEmitter &ORE;
- FusionCandidate(Loop *L, const DominatorTree *DT,
- const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE,
- TTI::PeelingPreferences PP)
- : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
- ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
- Latch(L->getLoopLatch()), L(L), Valid(true),
- GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
- Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {
- assert(DT && "Expected non-null DT!");
- // Walk over all blocks in the loop and check for conditions that may
- // prevent fusion. For each block, walk over all instructions and collect
- // the memory reads and writes If any instructions that prevent fusion are
- // found, invalidate this object and return.
- for (BasicBlock *BB : L->blocks()) {
- if (BB->hasAddressTaken()) {
- invalidate();
- reportInvalidCandidate(AddressTakenBB);
- return;
- }
- for (Instruction &I : *BB) {
- if (I.mayThrow()) {
- invalidate();
- reportInvalidCandidate(MayThrowException);
- return;
- }
- if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
- if (SI->isVolatile()) {
- invalidate();
- reportInvalidCandidate(ContainsVolatileAccess);
- return;
- }
- }
- if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- if (LI->isVolatile()) {
- invalidate();
- reportInvalidCandidate(ContainsVolatileAccess);
- return;
- }
- }
- if (I.mayWriteToMemory())
- MemWrites.push_back(&I);
- if (I.mayReadFromMemory())
- MemReads.push_back(&I);
- }
- }
- }
- /// Check if all members of the class are valid.
- bool isValid() const {
- return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
- !L->isInvalid() && Valid;
- }
- /// Verify that all members are in sync with the Loop object.
- void verify() const {
- assert(isValid() && "Candidate is not valid!!");
- assert(!L->isInvalid() && "Loop is invalid!");
- assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
- assert(Header == L->getHeader() && "Header is out of sync");
- assert(ExitingBlock == L->getExitingBlock() &&
- "Exiting Blocks is out of sync");
- assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
- assert(Latch == L->getLoopLatch() && "Latch is out of sync");
- }
- /// Get the entry block for this fusion candidate.
- ///
- /// If this fusion candidate represents a guarded loop, the entry block is the
- /// loop guard block. If it represents an unguarded loop, the entry block is
- /// the preheader of the loop.
- BasicBlock *getEntryBlock() const {
- if (GuardBranch)
- return GuardBranch->getParent();
- else
- return Preheader;
- }
- /// After Peeling the loop is modified quite a bit, hence all of the Blocks
- /// need to be updated accordingly.
- void updateAfterPeeling() {
- Preheader = L->getLoopPreheader();
- Header = L->getHeader();
- ExitingBlock = L->getExitingBlock();
- ExitBlock = L->getExitBlock();
- Latch = L->getLoopLatch();
- verify();
- }
- /// Given a guarded loop, get the successor of the guard that is not in the
- /// loop.
- ///
- /// This method returns the successor of the loop guard that is not located
- /// within the loop (i.e., the successor of the guard that is not the
- /// preheader).
- /// This method is only valid for guarded loops.
- BasicBlock *getNonLoopBlock() const {
- assert(GuardBranch && "Only valid on guarded loops.");
- assert(GuardBranch->isConditional() &&
- "Expecting guard to be a conditional branch.");
- if (Peeled)
- return GuardBranch->getSuccessor(1);
- return (GuardBranch->getSuccessor(0) == Preheader)
- ? GuardBranch->getSuccessor(1)
- : GuardBranch->getSuccessor(0);
- }
- #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- LLVM_DUMP_METHOD void dump() const {
- dbgs() << "\tGuardBranch: ";
- if (GuardBranch)
- dbgs() << *GuardBranch;
- else
- dbgs() << "nullptr";
- dbgs() << "\n"
- << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
- << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
- << "\n"
- << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
- << "\tExitingBB: "
- << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
- << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
- << "\n"
- << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
- << "\tEntryBlock: "
- << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
- << "\n";
- }
- #endif
- /// Determine if a fusion candidate (representing a loop) is eligible for
- /// fusion. Note that this only checks whether a single loop can be fused - it
- /// does not check whether it is *legal* to fuse two loops together.
- bool isEligibleForFusion(ScalarEvolution &SE) const {
- if (!isValid()) {
- LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
- if (!Preheader)
- ++InvalidPreheader;
- if (!Header)
- ++InvalidHeader;
- if (!ExitingBlock)
- ++InvalidExitingBlock;
- if (!ExitBlock)
- ++InvalidExitBlock;
- if (!Latch)
- ++InvalidLatch;
- if (L->isInvalid())
- ++InvalidLoop;
- return false;
- }
- // Require ScalarEvolution to be able to determine a trip count.
- if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
- LLVM_DEBUG(dbgs() << "Loop " << L->getName()
- << " trip count not computable!\n");
- return reportInvalidCandidate(UnknownTripCount);
- }
- if (!L->isLoopSimplifyForm()) {
- LLVM_DEBUG(dbgs() << "Loop " << L->getName()
- << " is not in simplified form!\n");
- return reportInvalidCandidate(NotSimplifiedForm);
- }
- if (!L->isRotatedForm()) {
- LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
- return reportInvalidCandidate(NotRotated);
- }
- return true;
- }
- private:
- // This is only used internally for now, to clear the MemWrites and MemReads
- // list and setting Valid to false. I can't envision other uses of this right
- // now, since once FusionCandidates are put into the FusionCandidateSet they
- // are immutable. Thus, any time we need to change/update a FusionCandidate,
- // we must create a new one and insert it into the FusionCandidateSet to
- // ensure the FusionCandidateSet remains ordered correctly.
- void invalidate() {
- MemWrites.clear();
- MemReads.clear();
- Valid = false;
- }
- bool reportInvalidCandidate(llvm::Statistic &Stat) const {
- using namespace ore;
- assert(L && Preheader && "Fusion candidate not initialized properly!");
- #if LLVM_ENABLE_STATS
- ++Stat;
- ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
- L->getStartLoc(), Preheader)
- << "[" << Preheader->getParent()->getName() << "]: "
- << "Loop is not a candidate for fusion: " << Stat.getDesc());
- #endif
- return false;
- }
- };
- struct FusionCandidateCompare {
- /// Comparison functor to sort two Control Flow Equivalent fusion candidates
- /// into dominance order.
- /// If LHS dominates RHS and RHS post-dominates LHS, return true;
- /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
- bool operator()(const FusionCandidate &LHS,
- const FusionCandidate &RHS) const {
- const DominatorTree *DT = LHS.DT;
- BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
- BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
- // Do not save PDT to local variable as it is only used in asserts and thus
- // will trigger an unused variable warning if building without asserts.
- assert(DT && LHS.PDT && "Expecting valid dominator tree");
- // Do this compare first so if LHS == RHS, function returns false.
- if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
- // RHS dominates LHS
- // Verify LHS post-dominates RHS
- assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
- return false;
- }
- if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
- // Verify RHS Postdominates LHS
- assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
- return true;
- }
- // If LHS does not dominate RHS and RHS does not dominate LHS then there is
- // no dominance relationship between the two FusionCandidates. Thus, they
- // should not be in the same set together.
- llvm_unreachable(
- "No dominance relationship between these fusion candidates!");
- }
- };
- using LoopVector = SmallVector<Loop *, 4>;
- // Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
- // order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
- // dominates FC1 and FC1 post-dominates FC0.
- // std::set was chosen because we want a sorted data structure with stable
- // iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
- // loops by moving intervening code around. When this intervening code contains
- // loops, those loops will be moved also. The corresponding FusionCandidates
- // will also need to be moved accordingly. As this is done, having stable
- // iterators will simplify the logic. Similarly, having an efficient insert that
- // keeps the FusionCandidateSet sorted will also simplify the implementation.
- using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
- using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
- #if !defined(NDEBUG)
- static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
- const FusionCandidate &FC) {
- if (FC.isValid())
- OS << FC.Preheader->getName();
- else
- OS << "<Invalid>";
- return OS;
- }
- static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
- const FusionCandidateSet &CandSet) {
- for (const FusionCandidate &FC : CandSet)
- OS << FC << '\n';
- return OS;
- }
- static void
- printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
- dbgs() << "Fusion Candidates: \n";
- for (const auto &CandidateSet : FusionCandidates) {
- dbgs() << "*** Fusion Candidate Set ***\n";
- dbgs() << CandidateSet;
- dbgs() << "****************************\n";
- }
- }
- #endif
- /// Collect all loops in function at the same nest level, starting at the
- /// outermost level.
- ///
- /// This data structure collects all loops at the same nest level for a
- /// given function (specified by the LoopInfo object). It starts at the
- /// outermost level.
- struct LoopDepthTree {
- using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
- using iterator = LoopsOnLevelTy::iterator;
- using const_iterator = LoopsOnLevelTy::const_iterator;
- LoopDepthTree(LoopInfo &LI) : Depth(1) {
- if (!LI.empty())
- LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
- }
- /// Test whether a given loop has been removed from the function, and thus is
- /// no longer valid.
- bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
- /// Record that a given loop has been removed from the function and is no
- /// longer valid.
- void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
- /// Descend the tree to the next (inner) nesting level
- void descend() {
- LoopsOnLevelTy LoopsOnNextLevel;
- for (const LoopVector &LV : *this)
- for (Loop *L : LV)
- if (!isRemovedLoop(L) && L->begin() != L->end())
- LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
- LoopsOnLevel = LoopsOnNextLevel;
- RemovedLoops.clear();
- Depth++;
- }
- bool empty() const { return size() == 0; }
- size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
- unsigned getDepth() const { return Depth; }
- iterator begin() { return LoopsOnLevel.begin(); }
- iterator end() { return LoopsOnLevel.end(); }
- const_iterator begin() const { return LoopsOnLevel.begin(); }
- const_iterator end() const { return LoopsOnLevel.end(); }
- private:
- /// Set of loops that have been removed from the function and are no longer
- /// valid.
- SmallPtrSet<const Loop *, 8> RemovedLoops;
- /// Depth of the current level, starting at 1 (outermost loops).
- unsigned Depth;
- /// Vector of loops at the current depth level that have the same parent loop
- LoopsOnLevelTy LoopsOnLevel;
- };
- #ifndef NDEBUG
- static void printLoopVector(const LoopVector &LV) {
- dbgs() << "****************************\n";
- for (auto L : LV)
- printLoop(*L, dbgs());
- dbgs() << "****************************\n";
- }
- #endif
- struct LoopFuser {
- private:
- // Sets of control flow equivalent fusion candidates for a given nest level.
- FusionCandidateCollection FusionCandidates;
- LoopDepthTree LDT;
- DomTreeUpdater DTU;
- LoopInfo &LI;
- DominatorTree &DT;
- DependenceInfo &DI;
- ScalarEvolution &SE;
- PostDominatorTree &PDT;
- OptimizationRemarkEmitter &ORE;
- AssumptionCache &AC;
- const TargetTransformInfo &TTI;
- public:
- LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
- ScalarEvolution &SE, PostDominatorTree &PDT,
- OptimizationRemarkEmitter &ORE, const DataLayout &DL,
- AssumptionCache &AC, const TargetTransformInfo &TTI)
- : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
- DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
- /// This is the main entry point for loop fusion. It will traverse the
- /// specified function and collect candidate loops to fuse, starting at the
- /// outermost nesting level and working inwards.
- bool fuseLoops(Function &F) {
- #ifndef NDEBUG
- if (VerboseFusionDebugging) {
- LI.print(dbgs());
- }
- #endif
- LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
- << "\n");
- bool Changed = false;
- while (!LDT.empty()) {
- LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
- << LDT.getDepth() << "\n";);
- for (const LoopVector &LV : LDT) {
- assert(LV.size() > 0 && "Empty loop set was build!");
- // Skip singleton loop sets as they do not offer fusion opportunities on
- // this level.
- if (LV.size() == 1)
- continue;
- #ifndef NDEBUG
- if (VerboseFusionDebugging) {
- LLVM_DEBUG({
- dbgs() << " Visit loop set (#" << LV.size() << "):\n";
- printLoopVector(LV);
- });
- }
- #endif
- collectFusionCandidates(LV);
- Changed |= fuseCandidates();
- }
- // Finished analyzing candidates at this level.
- // Descend to the next level and clear all of the candidates currently
- // collected. Note that it will not be possible to fuse any of the
- // existing candidates with new candidates because the new candidates will
- // be at a different nest level and thus not be control flow equivalent
- // with all of the candidates collected so far.
- LLVM_DEBUG(dbgs() << "Descend one level!\n");
- LDT.descend();
- FusionCandidates.clear();
- }
- if (Changed)
- LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
- #ifndef NDEBUG
- assert(DT.verify());
- assert(PDT.verify());
- LI.verify(DT);
- SE.verify();
- #endif
- LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
- return Changed;
- }
- private:
- /// Determine if two fusion candidates are control flow equivalent.
- ///
- /// Two fusion candidates are control flow equivalent if when one executes,
- /// the other is guaranteed to execute. This is determined using dominators
- /// and post-dominators: if A dominates B and B post-dominates A then A and B
- /// are control-flow equivalent.
- bool isControlFlowEquivalent(const FusionCandidate &FC0,
- const FusionCandidate &FC1) const {
- assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
- return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
- DT, PDT);
- }
- /// Iterate over all loops in the given loop set and identify the loops that
- /// are eligible for fusion. Place all eligible fusion candidates into Control
- /// Flow Equivalent sets, sorted by dominance.
- void collectFusionCandidates(const LoopVector &LV) {
- for (Loop *L : LV) {
- TTI::PeelingPreferences PP =
- gatherPeelingPreferences(L, SE, TTI, None, None);
- FusionCandidate CurrCand(L, &DT, &PDT, ORE, PP);
- if (!CurrCand.isEligibleForFusion(SE))
- continue;
- // Go through each list in FusionCandidates and determine if L is control
- // flow equivalent with the first loop in that list. If it is, append LV.
- // If not, go to the next list.
- // If no suitable list is found, start another list and add it to
- // FusionCandidates.
- bool FoundSet = false;
- for (auto &CurrCandSet : FusionCandidates) {
- if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
- CurrCandSet.insert(CurrCand);
- FoundSet = true;
- #ifndef NDEBUG
- if (VerboseFusionDebugging)
- LLVM_DEBUG(dbgs() << "Adding " << CurrCand
- << " to existing candidate set\n");
- #endif
- break;
- }
- }
- if (!FoundSet) {
- // No set was found. Create a new set and add to FusionCandidates
- #ifndef NDEBUG
- if (VerboseFusionDebugging)
- LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
- #endif
- FusionCandidateSet NewCandSet;
- NewCandSet.insert(CurrCand);
- FusionCandidates.push_back(NewCandSet);
- }
- NumFusionCandidates++;
- }
- }
- /// Determine if it is beneficial to fuse two loops.
- ///
- /// For now, this method simply returns true because we want to fuse as much
- /// as possible (primarily to test the pass). This method will evolve, over
- /// time, to add heuristics for profitability of fusion.
- bool isBeneficialFusion(const FusionCandidate &FC0,
- const FusionCandidate &FC1) {
- return true;
- }
- /// Determine if two fusion candidates have the same trip count (i.e., they
- /// execute the same number of iterations).
- ///
- /// This function will return a pair of values. The first is a boolean,
- /// stating whether or not the two candidates are known at compile time to
- /// have the same TripCount. The second is the difference in the two
- /// TripCounts. This information can be used later to determine whether or not
- /// peeling can be performed on either one of the candiates.
- std::pair<bool, Optional<unsigned>>
- haveIdenticalTripCounts(const FusionCandidate &FC0,
- const FusionCandidate &FC1) const {
- const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
- if (isa<SCEVCouldNotCompute>(TripCount0)) {
- UncomputableTripCount++;
- LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
- return {false, None};
- }
- const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
- if (isa<SCEVCouldNotCompute>(TripCount1)) {
- UncomputableTripCount++;
- LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
- return {false, None};
- }
- LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
- << *TripCount1 << " are "
- << (TripCount0 == TripCount1 ? "identical" : "different")
- << "\n");
- if (TripCount0 == TripCount1)
- return {true, 0};
- LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
- "determining the difference between trip counts\n");
- // Currently only considering loops with a single exit point
- // and a non-constant trip count.
- const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
- const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
- // If any of the tripcounts are zero that means that loop(s) do not have
- // a single exit or a constant tripcount.
- if (TC0 == 0 || TC1 == 0) {
- LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
- "have a constant number of iterations. Peeling "
- "is not benefical\n");
- return {false, None};
- }
- Optional<unsigned> Difference = None;
- int Diff = TC0 - TC1;
- if (Diff > 0)
- Difference = Diff;
- else {
- LLVM_DEBUG(
- dbgs() << "Difference is less than 0. FC1 (second loop) has more "
- "iterations than the first one. Currently not supported\n");
- }
- LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
- << "\n");
- return {false, Difference};
- }
- void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
- unsigned PeelCount) {
- assert(FC0.AbleToPeel && "Should be able to peel loop");
- LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
- << " iterations of the first loop. \n");
- FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, DT, &AC, true);
- if (FC0.Peeled) {
- LLVM_DEBUG(dbgs() << "Done Peeling\n");
- #ifndef NDEBUG
- auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
- assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
- "Loops should have identical trip counts after peeling");
- #endif
- FC0.PP.PeelCount += PeelCount;
- // Peeling does not update the PDT
- PDT.recalculate(*FC0.Preheader->getParent());
- FC0.updateAfterPeeling();
- // In this case the iterations of the loop are constant, so the first
- // loop will execute completely (will not jump from one of
- // the peeled blocks to the second loop). Here we are updating the
- // branch conditions of each of the peeled blocks, such that it will
- // branch to its successor which is not the preheader of the second loop
- // in the case of unguarded loops, or the succesors of the exit block of
- // the first loop otherwise. Doing this update will ensure that the entry
- // block of the first loop dominates the entry block of the second loop.
- BasicBlock *BB =
- FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
- if (BB) {
- SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
- SmallVector<Instruction *, 8> WorkList;
- for (BasicBlock *Pred : predecessors(BB)) {
- if (Pred != FC0.ExitBlock) {
- WorkList.emplace_back(Pred->getTerminator());
- TreeUpdates.emplace_back(
- DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
- }
- }
- // Cannot modify the predecessors inside the above loop as it will cause
- // the iterators to be nullptrs, causing memory errors.
- for (Instruction *CurrentBranch: WorkList) {
- BasicBlock *Succ = CurrentBranch->getSuccessor(0);
- if (Succ == BB)
- Succ = CurrentBranch->getSuccessor(1);
- ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ));
- }
- DTU.applyUpdates(TreeUpdates);
- DTU.flush();
- }
- LLVM_DEBUG(
- dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
- << " iterations from the first loop.\n"
- "Both Loops have the same number of iterations now.\n");
- }
- }
- /// Walk each set of control flow equivalent fusion candidates and attempt to
- /// fuse them. This does a single linear traversal of all candidates in the
- /// set. The conditions for legal fusion are checked at this point. If a pair
- /// of fusion candidates passes all legality checks, they are fused together
- /// and a new fusion candidate is created and added to the FusionCandidateSet.
- /// The original fusion candidates are then removed, as they are no longer
- /// valid.
- bool fuseCandidates() {
- bool Fused = false;
- LLVM_DEBUG(printFusionCandidates(FusionCandidates));
- for (auto &CandidateSet : FusionCandidates) {
- if (CandidateSet.size() < 2)
- continue;
- LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
- << CandidateSet << "\n");
- for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
- assert(!LDT.isRemovedLoop(FC0->L) &&
- "Should not have removed loops in CandidateSet!");
- auto FC1 = FC0;
- for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
- assert(!LDT.isRemovedLoop(FC1->L) &&
- "Should not have removed loops in CandidateSet!");
- LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
- dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
- FC0->verify();
- FC1->verify();
- // Check if the candidates have identical tripcounts (first value of
- // pair), and if not check the difference in the tripcounts between
- // the loops (second value of pair). The difference is not equal to
- // None iff the loops iterate a constant number of times, and have a
- // single exit.
- std::pair<bool, Optional<unsigned>> IdenticalTripCountRes =
- haveIdenticalTripCounts(*FC0, *FC1);
- bool SameTripCount = IdenticalTripCountRes.first;
- Optional<unsigned> TCDifference = IdenticalTripCountRes.second;
- // Here we are checking that FC0 (the first loop) can be peeled, and
- // both loops have different tripcounts.
- if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
- if (*TCDifference > FusionPeelMaxCount) {
- LLVM_DEBUG(dbgs()
- << "Difference in loop trip counts: " << *TCDifference
- << " is greater than maximum peel count specificed: "
- << FusionPeelMaxCount << "\n");
- } else {
- // Dependent on peeling being performed on the first loop, and
- // assuming all other conditions for fusion return true.
- SameTripCount = true;
- }
- }
- if (!SameTripCount) {
- LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
- "counts. Not fusing.\n");
- reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
- NonEqualTripCount);
- continue;
- }
- if (!isAdjacent(*FC0, *FC1)) {
- LLVM_DEBUG(dbgs()
- << "Fusion candidates are not adjacent. Not fusing.\n");
- reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
- continue;
- }
- if (!FC0->GuardBranch && FC1->GuardBranch) {
- LLVM_DEBUG(dbgs() << "The second candidate is guarded while the "
- "first one is not. Not fusing.\n");
- reportLoopFusion<OptimizationRemarkMissed>(
- *FC0, *FC1, OnlySecondCandidateIsGuarded);
- continue;
- }
- // Ensure that FC0 and FC1 have identical guards.
- // If one (or both) are not guarded, this check is not necessary.
- if (FC0->GuardBranch && FC1->GuardBranch &&
- !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
- LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
- "guards. Not Fusing.\n");
- reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
- NonIdenticalGuards);
- continue;
- }
- if (!isSafeToMoveBefore(*FC1->Preheader,
- *FC0->Preheader->getTerminator(), DT, &PDT,
- &DI)) {
- LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
- "instructions in preheader. Not fusing.\n");
- reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
- NonEmptyPreheader);
- continue;
- }
- if (FC0->GuardBranch) {
- assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
- if (!isSafeToMoveBefore(*FC0->ExitBlock,
- *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
- &PDT, &DI)) {
- LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
- "instructions in exit block. Not fusing.\n");
- reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
- NonEmptyExitBlock);
- continue;
- }
- if (!isSafeToMoveBefore(
- *FC1->GuardBranch->getParent(),
- *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
- &DI)) {
- LLVM_DEBUG(dbgs()
- << "Fusion candidate contains unsafe "
- "instructions in guard block. Not fusing.\n");
- reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
- NonEmptyGuardBlock);
- continue;
- }
- }
- // Check the dependencies across the loops and do not fuse if it would
- // violate them.
- if (!dependencesAllowFusion(*FC0, *FC1)) {
- LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
- reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
- InvalidDependencies);
- continue;
- }
- bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
- LLVM_DEBUG(dbgs()
- << "\tFusion appears to be "
- << (BeneficialToFuse ? "" : "un") << "profitable!\n");
- if (!BeneficialToFuse) {
- reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
- FusionNotBeneficial);
- continue;
- }
- // All analysis has completed and has determined that fusion is legal
- // and profitable. At this point, start transforming the code and
- // perform fusion.
- LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
- << *FC1 << "\n");
- FusionCandidate FC0Copy = *FC0;
- // Peel the loop after determining that fusion is legal. The Loops
- // will still be safe to fuse after the peeling is performed.
- bool Peel = TCDifference && *TCDifference > 0;
- if (Peel)
- peelFusionCandidate(FC0Copy, *FC1, *TCDifference);
- // Report fusion to the Optimization Remarks.
- // Note this needs to be done *before* performFusion because
- // performFusion will change the original loops, making it not
- // possible to identify them after fusion is complete.
- reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
- FuseCounter);
- FusionCandidate FusedCand(
- performFusion((Peel ? FC0Copy : *FC0), *FC1), &DT, &PDT, ORE,
- FC0Copy.PP);
- FusedCand.verify();
- assert(FusedCand.isEligibleForFusion(SE) &&
- "Fused candidate should be eligible for fusion!");
- // Notify the loop-depth-tree that these loops are not valid objects
- LDT.removeLoop(FC1->L);
- CandidateSet.erase(FC0);
- CandidateSet.erase(FC1);
- auto InsertPos = CandidateSet.insert(FusedCand);
- assert(InsertPos.second &&
- "Unable to insert TargetCandidate in CandidateSet!");
- // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
- // of the FC1 loop will attempt to fuse the new (fused) loop with the
- // remaining candidates in the current candidate set.
- FC0 = FC1 = InsertPos.first;
- LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
- << "\n");
- Fused = true;
- }
- }
- }
- return Fused;
- }
- /// Rewrite all additive recurrences in a SCEV to use a new loop.
- class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
- public:
- AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
- bool UseMax = true)
- : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
- NewL(NewL) {}
- const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
- const Loop *ExprL = Expr->getLoop();
- SmallVector<const SCEV *, 2> Operands;
- if (ExprL == &OldL) {
- Operands.append(Expr->op_begin(), Expr->op_end());
- return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
- }
- if (OldL.contains(ExprL)) {
- bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
- if (!UseMax || !Pos || !Expr->isAffine()) {
- Valid = false;
- return Expr;
- }
- return visit(Expr->getStart());
- }
- for (const SCEV *Op : Expr->operands())
- Operands.push_back(visit(Op));
- return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
- }
- bool wasValidSCEV() const { return Valid; }
- private:
- bool Valid, UseMax;
- const Loop &OldL, &NewL;
- };
- /// Return false if the access functions of \p I0 and \p I1 could cause
- /// a negative dependence.
- bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
- Instruction &I1, bool EqualIsInvalid) {
- Value *Ptr0 = getLoadStorePointerOperand(&I0);
- Value *Ptr1 = getLoadStorePointerOperand(&I1);
- if (!Ptr0 || !Ptr1)
- return false;
- const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
- const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
- #ifndef NDEBUG
- if (VerboseFusionDebugging)
- LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
- << *SCEVPtr1 << "\n");
- #endif
- AddRecLoopReplacer Rewriter(SE, L0, L1);
- SCEVPtr0 = Rewriter.visit(SCEVPtr0);
- #ifndef NDEBUG
- if (VerboseFusionDebugging)
- LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
- << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
- #endif
- if (!Rewriter.wasValidSCEV())
- return false;
- // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
- // L0) and the other is not. We could check if it is monotone and test
- // the beginning and end value instead.
- BasicBlock *L0Header = L0.getHeader();
- auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
- const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
- if (!AddRec)
- return false;
- return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
- !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
- };
- if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
- return false;
- ICmpInst::Predicate Pred =
- EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
- bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
- #ifndef NDEBUG
- if (VerboseFusionDebugging)
- LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
- << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
- << "\n");
- #endif
- return IsAlwaysGE;
- }
- /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
- /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
- /// specified by @p DepChoice are used to determine this.
- bool dependencesAllowFusion(const FusionCandidate &FC0,
- const FusionCandidate &FC1, Instruction &I0,
- Instruction &I1, bool AnyDep,
- FusionDependenceAnalysisChoice DepChoice) {
- #ifndef NDEBUG
- if (VerboseFusionDebugging) {
- LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
- << DepChoice << "\n");
- }
- #endif
- switch (DepChoice) {
- case FUSION_DEPENDENCE_ANALYSIS_SCEV:
- return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
- case FUSION_DEPENDENCE_ANALYSIS_DA: {
- auto DepResult = DI.depends(&I0, &I1, true);
- if (!DepResult)
- return true;
- #ifndef NDEBUG
- if (VerboseFusionDebugging) {
- LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
- dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
- << (DepResult->isOrdered() ? "true" : "false")
- << "]\n");
- LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
- << "\n");
- }
- #endif
- if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
- LLVM_DEBUG(
- dbgs() << "TODO: Implement pred/succ dependence handling!\n");
- // TODO: Can we actually use the dependence info analysis here?
- return false;
- }
- case FUSION_DEPENDENCE_ANALYSIS_ALL:
- return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
- FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
- dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
- FUSION_DEPENDENCE_ANALYSIS_DA);
- }
- llvm_unreachable("Unknown fusion dependence analysis choice!");
- }
- /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
- bool dependencesAllowFusion(const FusionCandidate &FC0,
- const FusionCandidate &FC1) {
- LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
- << "\n");
- assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
- assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
- for (Instruction *WriteL0 : FC0.MemWrites) {
- for (Instruction *WriteL1 : FC1.MemWrites)
- if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
- /* AnyDep */ false,
- FusionDependenceAnalysis)) {
- InvalidDependencies++;
- return false;
- }
- for (Instruction *ReadL1 : FC1.MemReads)
- if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
- /* AnyDep */ false,
- FusionDependenceAnalysis)) {
- InvalidDependencies++;
- return false;
- }
- }
- for (Instruction *WriteL1 : FC1.MemWrites) {
- for (Instruction *WriteL0 : FC0.MemWrites)
- if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
- /* AnyDep */ false,
- FusionDependenceAnalysis)) {
- InvalidDependencies++;
- return false;
- }
- for (Instruction *ReadL0 : FC0.MemReads)
- if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
- /* AnyDep */ false,
- FusionDependenceAnalysis)) {
- InvalidDependencies++;
- return false;
- }
- }
- // Walk through all uses in FC1. For each use, find the reaching def. If the
- // def is located in FC0 then it is is not safe to fuse.
- for (BasicBlock *BB : FC1.L->blocks())
- for (Instruction &I : *BB)
- for (auto &Op : I.operands())
- if (Instruction *Def = dyn_cast<Instruction>(Op))
- if (FC0.L->contains(Def->getParent())) {
- InvalidDependencies++;
- return false;
- }
- return true;
- }
- /// Determine if two fusion candidates are adjacent in the CFG.
- ///
- /// This method will determine if there are additional basic blocks in the CFG
- /// between the exit of \p FC0 and the entry of \p FC1.
- /// If the two candidates are guarded loops, then it checks whether the
- /// non-loop successor of the \p FC0 guard branch is the entry block of \p
- /// FC1. If not, then the loops are not adjacent. If the two candidates are
- /// not guarded loops, then it checks whether the exit block of \p FC0 is the
- /// preheader of \p FC1.
- bool isAdjacent(const FusionCandidate &FC0,
- const FusionCandidate &FC1) const {
- // If the successor of the guard branch is FC1, then the loops are adjacent
- if (FC0.GuardBranch)
- return FC0.getNonLoopBlock() == FC1.getEntryBlock();
- else
- return FC0.ExitBlock == FC1.getEntryBlock();
- }
- /// Determine if two fusion candidates have identical guards
- ///
- /// This method will determine if two fusion candidates have the same guards.
- /// The guards are considered the same if:
- /// 1. The instructions to compute the condition used in the compare are
- /// identical.
- /// 2. The successors of the guard have the same flow into/around the loop.
- /// If the compare instructions are identical, then the first successor of the
- /// guard must go to the same place (either the preheader of the loop or the
- /// NonLoopBlock). In other words, the the first successor of both loops must
- /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
- /// the NonLoopBlock). The same must be true for the second successor.
- bool haveIdenticalGuards(const FusionCandidate &FC0,
- const FusionCandidate &FC1) const {
- assert(FC0.GuardBranch && FC1.GuardBranch &&
- "Expecting FC0 and FC1 to be guarded loops.");
- if (auto FC0CmpInst =
- dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
- if (auto FC1CmpInst =
- dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
- if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
- return false;
- // The compare instructions are identical.
- // Now make sure the successor of the guards have the same flow into/around
- // the loop
- if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
- return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
- else
- return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
- }
- /// Modify the latch branch of FC to be unconditional since successors of the
- /// branch are the same.
- void simplifyLatchBranch(const FusionCandidate &FC) const {
- BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
- if (FCLatchBranch) {
- assert(FCLatchBranch->isConditional() &&
- FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
- "Expecting the two successors of FCLatchBranch to be the same");
- BranchInst *NewBranch =
- BranchInst::Create(FCLatchBranch->getSuccessor(0));
- ReplaceInstWithInst(FCLatchBranch, NewBranch);
- }
- }
- /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
- /// successor, then merge FC0.Latch with its unique successor.
- void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
- moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
- if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
- MergeBlockIntoPredecessor(Succ, &DTU, &LI);
- DTU.flush();
- }
- }
- /// Fuse two fusion candidates, creating a new fused loop.
- ///
- /// This method contains the mechanics of fusing two loops, represented by \p
- /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
- /// postdominates \p FC0 (making them control flow equivalent). It also
- /// assumes that the other conditions for fusion have been met: adjacent,
- /// identical trip counts, and no negative distance dependencies exist that
- /// would prevent fusion. Thus, there is no checking for these conditions in
- /// this method.
- ///
- /// Fusion is performed by rewiring the CFG to update successor blocks of the
- /// components of tho loop. Specifically, the following changes are done:
- ///
- /// 1. The preheader of \p FC1 is removed as it is no longer necessary
- /// (because it is currently only a single statement block).
- /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
- /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
- /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
- ///
- /// All of these modifications are done with dominator tree updates, thus
- /// keeping the dominator (and post dominator) information up-to-date.
- ///
- /// This can be improved in the future by actually merging blocks during
- /// fusion. For example, the preheader of \p FC1 can be merged with the
- /// preheader of \p FC0. This would allow loops with more than a single
- /// statement in the preheader to be fused. Similarly, the latch blocks of the
- /// two loops could also be fused into a single block. This will require
- /// analysis to prove it is safe to move the contents of the block past
- /// existing code, which currently has not been implemented.
- Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
- assert(FC0.isValid() && FC1.isValid() &&
- "Expecting valid fusion candidates");
- LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
- dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
- // Move instructions from the preheader of FC1 to the end of the preheader
- // of FC0.
- moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
- // Fusing guarded loops is handled slightly differently than non-guarded
- // loops and has been broken out into a separate method instead of trying to
- // intersperse the logic within a single method.
- if (FC0.GuardBranch)
- return fuseGuardedLoops(FC0, FC1);
- assert(FC1.Preheader ==
- (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
- assert(FC1.Preheader->size() == 1 &&
- FC1.Preheader->getSingleSuccessor() == FC1.Header);
- // Remember the phi nodes originally in the header of FC0 in order to rewire
- // them later. However, this is only necessary if the new loop carried
- // values might not dominate the exiting branch. While we do not generally
- // test if this is the case but simply insert intermediate phi nodes, we
- // need to make sure these intermediate phi nodes have different
- // predecessors. To this end, we filter the special case where the exiting
- // block is the latch block of the first loop. Nothing needs to be done
- // anyway as all loop carried values dominate the latch and thereby also the
- // exiting branch.
- SmallVector<PHINode *, 8> OriginalFC0PHIs;
- if (FC0.ExitingBlock != FC0.Latch)
- for (PHINode &PHI : FC0.Header->phis())
- OriginalFC0PHIs.push_back(&PHI);
- // Replace incoming blocks for header PHIs first.
- FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
- FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
- // Then modify the control flow and update DT and PDT.
- SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
- // The old exiting block of the first loop (FC0) has to jump to the header
- // of the second as we need to execute the code in the second header block
- // regardless of the trip count. That is, if the trip count is 0, so the
- // back edge is never taken, we still have to execute both loop headers,
- // especially (but not only!) if the second is a do-while style loop.
- // However, doing so might invalidate the phi nodes of the first loop as
- // the new values do only need to dominate their latch and not the exiting
- // predicate. To remedy this potential problem we always introduce phi
- // nodes in the header of the second loop later that select the loop carried
- // value, if the second header was reached through an old latch of the
- // first, or undef otherwise. This is sound as exiting the first implies the
- // second will exit too, __without__ taking the back-edge. [Their
- // trip-counts are equal after all.
- // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
- // to FC1.Header? I think this is basically what the three sequences are
- // trying to accomplish; however, doing this directly in the CFG may mean
- // the DT/PDT becomes invalid
- if (!FC0.Peeled) {
- FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
- FC1.Header);
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
- } else {
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
- // Remove the ExitBlock of the first Loop (also not needed)
- FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
- FC1.Header);
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
- FC0.ExitBlock->getTerminator()->eraseFromParent();
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
- new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
- }
- // The pre-header of L1 is not necessary anymore.
- assert(pred_empty(FC1.Preheader));
- FC1.Preheader->getTerminator()->eraseFromParent();
- new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC1.Preheader, FC1.Header));
- // Moves the phi nodes from the second to the first loops header block.
- while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
- if (SE.isSCEVable(PHI->getType()))
- SE.forgetValue(PHI);
- if (PHI->hasNUsesOrMore(1))
- PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
- else
- PHI->eraseFromParent();
- }
- // Introduce new phi nodes in the second loop header to ensure
- // exiting the first and jumping to the header of the second does not break
- // the SSA property of the phis originally in the first loop. See also the
- // comment above.
- Instruction *L1HeaderIP = &FC1.Header->front();
- for (PHINode *LCPHI : OriginalFC0PHIs) {
- int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
- assert(L1LatchBBIdx >= 0 &&
- "Expected loop carried value to be rewired at this point!");
- Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
- PHINode *L1HeaderPHI = PHINode::Create(
- LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
- L1HeaderPHI->addIncoming(LCV, FC0.Latch);
- L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
- FC0.ExitingBlock);
- LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
- }
- // Replace latch terminator destinations.
- FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
- FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
- // Modify the latch branch of FC0 to be unconditional as both successors of
- // the branch are the same.
- simplifyLatchBranch(FC0);
- // If FC0.Latch and FC0.ExitingBlock are the same then we have already
- // performed the updates above.
- if (FC0.Latch != FC0.ExitingBlock)
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Insert, FC0.Latch, FC1.Header));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
- FC0.Latch, FC0.Header));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
- FC1.Latch, FC0.Header));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
- FC1.Latch, FC1.Header));
- // Update DT/PDT
- DTU.applyUpdates(TreeUpdates);
- LI.removeBlock(FC1.Preheader);
- DTU.deleteBB(FC1.Preheader);
- if (FC0.Peeled) {
- LI.removeBlock(FC0.ExitBlock);
- DTU.deleteBB(FC0.ExitBlock);
- }
- DTU.flush();
- // Is there a way to keep SE up-to-date so we don't need to forget the loops
- // and rebuild the information in subsequent passes of fusion?
- // Note: Need to forget the loops before merging the loop latches, as
- // mergeLatch may remove the only block in FC1.
- SE.forgetLoop(FC1.L);
- SE.forgetLoop(FC0.L);
- // Move instructions from FC0.Latch to FC1.Latch.
- // Note: mergeLatch requires an updated DT.
- mergeLatch(FC0, FC1);
- // Merge the loops.
- SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
- for (BasicBlock *BB : Blocks) {
- FC0.L->addBlockEntry(BB);
- FC1.L->removeBlockFromLoop(BB);
- if (LI.getLoopFor(BB) != FC1.L)
- continue;
- LI.changeLoopFor(BB, FC0.L);
- }
- while (!FC1.L->isInnermost()) {
- const auto &ChildLoopIt = FC1.L->begin();
- Loop *ChildLoop = *ChildLoopIt;
- FC1.L->removeChildLoop(ChildLoopIt);
- FC0.L->addChildLoop(ChildLoop);
- }
- // Delete the now empty loop L1.
- LI.erase(FC1.L);
- #ifndef NDEBUG
- assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
- assert(DT.verify(DominatorTree::VerificationLevel::Fast));
- assert(PDT.verify());
- LI.verify(DT);
- SE.verify();
- #endif
- LLVM_DEBUG(dbgs() << "Fusion done:\n");
- return FC0.L;
- }
- /// Report details on loop fusion opportunities.
- ///
- /// This template function can be used to report both successful and missed
- /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
- /// be one of:
- /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
- /// given two valid fusion candidates.
- /// - OptimizationRemark to report successful fusion of two fusion
- /// candidates.
- /// The remarks will be printed using the form:
- /// <path/filename>:<line number>:<column number>: [<function name>]:
- /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
- template <typename RemarkKind>
- void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
- llvm::Statistic &Stat) {
- assert(FC0.Preheader && FC1.Preheader &&
- "Expecting valid fusion candidates");
- using namespace ore;
- #if LLVM_ENABLE_STATS
- ++Stat;
- ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
- FC0.Preheader)
- << "[" << FC0.Preheader->getParent()->getName()
- << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
- << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
- << ": " << Stat.getDesc());
- #endif
- }
- /// Fuse two guarded fusion candidates, creating a new fused loop.
- ///
- /// Fusing guarded loops is handled much the same way as fusing non-guarded
- /// loops. The rewiring of the CFG is slightly different though, because of
- /// the presence of the guards around the loops and the exit blocks after the
- /// loop body. As such, the new loop is rewired as follows:
- /// 1. Keep the guard branch from FC0 and use the non-loop block target
- /// from the FC1 guard branch.
- /// 2. Remove the exit block from FC0 (this exit block should be empty
- /// right now).
- /// 3. Remove the guard branch for FC1
- /// 4. Remove the preheader for FC1.
- /// The exit block successor for the latch of FC0 is updated to be the header
- /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
- /// be the header of FC0, thus creating the fused loop.
- Loop *fuseGuardedLoops(const FusionCandidate &FC0,
- const FusionCandidate &FC1) {
- assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
- BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
- BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
- BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
- BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
- BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();
- // Move instructions from the exit block of FC0 to the beginning of the exit
- // block of FC1, in the case that the FC0 loop has not been peeled. In the
- // case that FC0 loop is peeled, then move the instructions of the successor
- // of the FC0 Exit block to the beginning of the exit block of FC1.
- moveInstructionsToTheBeginning(
- (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
- DT, PDT, DI);
- // Move instructions from the guard block of FC1 to the end of the guard
- // block of FC0.
- moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
- assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
- SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
- ////////////////////////////////////////////////////////////////////////////
- // Update the Loop Guard
- ////////////////////////////////////////////////////////////////////////////
- // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
- // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
- // Thus, one path from the guard goes to the preheader for FC0 (and thus
- // executes the new fused loop) and the other path goes to the NonLoopBlock
- // for FC1 (where FC1 guard would have gone if FC1 was not executed).
- FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
- FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
- BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
- BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);
- // The guard of FC1 is not necessary anymore.
- FC1.GuardBranch->eraseFromParent();
- new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
- if (FC0.Peeled) {
- // Remove the Block after the ExitBlock of FC0
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
- FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
- new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
- FC0ExitBlockSuccessor);
- }
- assert(pred_empty(FC1GuardBlock) &&
- "Expecting guard block to have no predecessors");
- assert(succ_empty(FC1GuardBlock) &&
- "Expecting guard block to have no successors");
- // Remember the phi nodes originally in the header of FC0 in order to rewire
- // them later. However, this is only necessary if the new loop carried
- // values might not dominate the exiting branch. While we do not generally
- // test if this is the case but simply insert intermediate phi nodes, we
- // need to make sure these intermediate phi nodes have different
- // predecessors. To this end, we filter the special case where the exiting
- // block is the latch block of the first loop. Nothing needs to be done
- // anyway as all loop carried values dominate the latch and thereby also the
- // exiting branch.
- // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
- // (because the loops are rotated. Thus, nothing will ever be added to
- // OriginalFC0PHIs.
- SmallVector<PHINode *, 8> OriginalFC0PHIs;
- if (FC0.ExitingBlock != FC0.Latch)
- for (PHINode &PHI : FC0.Header->phis())
- OriginalFC0PHIs.push_back(&PHI);
- assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
- // Replace incoming blocks for header PHIs first.
- FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
- FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
- // The old exiting block of the first loop (FC0) has to jump to the header
- // of the second as we need to execute the code in the second header block
- // regardless of the trip count. That is, if the trip count is 0, so the
- // back edge is never taken, we still have to execute both loop headers,
- // especially (but not only!) if the second is a do-while style loop.
- // However, doing so might invalidate the phi nodes of the first loop as
- // the new values do only need to dominate their latch and not the exiting
- // predicate. To remedy this potential problem we always introduce phi
- // nodes in the header of the second loop later that select the loop carried
- // value, if the second header was reached through an old latch of the
- // first, or undef otherwise. This is sound as exiting the first implies the
- // second will exit too, __without__ taking the back-edge (their
- // trip-counts are equal after all).
- FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
- FC1.Header);
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
- // Remove FC0 Exit Block
- // The exit block for FC0 is no longer needed since control will flow
- // directly to the header of FC1. Since it is an empty block, it can be
- // removed at this point.
- // TODO: In the future, we can handle non-empty exit blocks my merging any
- // instructions from FC0 exit block into FC1 exit block prior to removing
- // the block.
- assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty");
- FC0.ExitBlock->getTerminator()->eraseFromParent();
- new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
- // Remove FC1 Preheader
- // The pre-header of L1 is not necessary anymore.
- assert(pred_empty(FC1.Preheader));
- FC1.Preheader->getTerminator()->eraseFromParent();
- new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Delete, FC1.Preheader, FC1.Header));
- // Moves the phi nodes from the second to the first loops header block.
- while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
- if (SE.isSCEVable(PHI->getType()))
- SE.forgetValue(PHI);
- if (PHI->hasNUsesOrMore(1))
- PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
- else
- PHI->eraseFromParent();
- }
- // Introduce new phi nodes in the second loop header to ensure
- // exiting the first and jumping to the header of the second does not break
- // the SSA property of the phis originally in the first loop. See also the
- // comment above.
- Instruction *L1HeaderIP = &FC1.Header->front();
- for (PHINode *LCPHI : OriginalFC0PHIs) {
- int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
- assert(L1LatchBBIdx >= 0 &&
- "Expected loop carried value to be rewired at this point!");
- Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
- PHINode *L1HeaderPHI = PHINode::Create(
- LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
- L1HeaderPHI->addIncoming(LCV, FC0.Latch);
- L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
- FC0.ExitingBlock);
- LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
- }
- // Update the latches
- // Replace latch terminator destinations.
- FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
- FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
- // Modify the latch branch of FC0 to be unconditional as both successors of
- // the branch are the same.
- simplifyLatchBranch(FC0);
- // If FC0.Latch and FC0.ExitingBlock are the same then we have already
- // performed the updates above.
- if (FC0.Latch != FC0.ExitingBlock)
- TreeUpdates.emplace_back(DominatorTree::UpdateType(
- DominatorTree::Insert, FC0.Latch, FC1.Header));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
- FC0.Latch, FC0.Header));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
- FC1.Latch, FC0.Header));
- TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
- FC1.Latch, FC1.Header));
- // All done
- // Apply the updates to the Dominator Tree and cleanup.
- assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!");
- assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!");
- // Update DT/PDT
- DTU.applyUpdates(TreeUpdates);
- LI.removeBlock(FC1GuardBlock);
- LI.removeBlock(FC1.Preheader);
- LI.removeBlock(FC0.ExitBlock);
- if (FC0.Peeled) {
- LI.removeBlock(FC0ExitBlockSuccessor);
- DTU.deleteBB(FC0ExitBlockSuccessor);
- }
- DTU.deleteBB(FC1GuardBlock);
- DTU.deleteBB(FC1.Preheader);
- DTU.deleteBB(FC0.ExitBlock);
- DTU.flush();
- // Is there a way to keep SE up-to-date so we don't need to forget the loops
- // and rebuild the information in subsequent passes of fusion?
- // Note: Need to forget the loops before merging the loop latches, as
- // mergeLatch may remove the only block in FC1.
- SE.forgetLoop(FC1.L);
- SE.forgetLoop(FC0.L);
- // Move instructions from FC0.Latch to FC1.Latch.
- // Note: mergeLatch requires an updated DT.
- mergeLatch(FC0, FC1);
- // Merge the loops.
- SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
- for (BasicBlock *BB : Blocks) {
- FC0.L->addBlockEntry(BB);
- FC1.L->removeBlockFromLoop(BB);
- if (LI.getLoopFor(BB) != FC1.L)
- continue;
- LI.changeLoopFor(BB, FC0.L);
- }
- while (!FC1.L->isInnermost()) {
- const auto &ChildLoopIt = FC1.L->begin();
- Loop *ChildLoop = *ChildLoopIt;
- FC1.L->removeChildLoop(ChildLoopIt);
- FC0.L->addChildLoop(ChildLoop);
- }
- // Delete the now empty loop L1.
- LI.erase(FC1.L);
- #ifndef NDEBUG
- assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
- assert(DT.verify(DominatorTree::VerificationLevel::Fast));
- assert(PDT.verify());
- LI.verify(DT);
- SE.verify();
- #endif
- LLVM_DEBUG(dbgs() << "Fusion done:\n");
- return FC0.L;
- }
- };
- struct LoopFuseLegacy : public FunctionPass {
- static char ID;
- LoopFuseLegacy() : FunctionPass(ID) {
- initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequired<ScalarEvolutionWrapperPass>();
- AU.addRequired<LoopInfoWrapperPass>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addRequired<PostDominatorTreeWrapperPass>();
- AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
- AU.addRequired<DependenceAnalysisWrapperPass>();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- AU.addPreserved<ScalarEvolutionWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<PostDominatorTreeWrapperPass>();
- }
- bool runOnFunction(Function &F) override {
- if (skipFunction(F))
- return false;
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
- auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
- auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
- auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
- auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- const TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
- const DataLayout &DL = F.getParent()->getDataLayout();
- LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
- return LF.fuseLoops(F);
- }
- };
- } // namespace
- PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
- auto &LI = AM.getResult<LoopAnalysis>(F);
- auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
- auto &DI = AM.getResult<DependenceAnalysis>(F);
- auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
- auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
- auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
- auto &AC = AM.getResult<AssumptionAnalysis>(F);
- const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
- const DataLayout &DL = F.getParent()->getDataLayout();
- LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
- bool Changed = LF.fuseLoops(F);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<PostDominatorTreeAnalysis>();
- PA.preserve<ScalarEvolutionAnalysis>();
- PA.preserve<LoopAnalysis>();
- return PA;
- }
- char LoopFuseLegacy::ID = 0;
- INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
- false)
- INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
- FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
|