123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360 |
- //===- InstCombineSelect.cpp ----------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitSelect function.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/CmpInstAnalysis.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/OverflowInstAnalysis.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include <cassert>
- #include <utility>
- #define DEBUG_TYPE "instcombine"
- #include "llvm/Transforms/Utils/InstructionWorklist.h"
- using namespace llvm;
- using namespace PatternMatch;
- static Value *createMinMax(InstCombiner::BuilderTy &Builder,
- SelectPatternFlavor SPF, Value *A, Value *B) {
- CmpInst::Predicate Pred = getMinMaxPred(SPF);
- assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
- return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
- }
- /// Replace a select operand based on an equality comparison with the identity
- /// constant of a binop.
- static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
- const TargetLibraryInfo &TLI,
- InstCombinerImpl &IC) {
- // The select condition must be an equality compare with a constant operand.
- Value *X;
- Constant *C;
- CmpInst::Predicate Pred;
- if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
- return nullptr;
- bool IsEq;
- if (ICmpInst::isEquality(Pred))
- IsEq = Pred == ICmpInst::ICMP_EQ;
- else if (Pred == FCmpInst::FCMP_OEQ)
- IsEq = true;
- else if (Pred == FCmpInst::FCMP_UNE)
- IsEq = false;
- else
- return nullptr;
- // A select operand must be a binop.
- BinaryOperator *BO;
- if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
- return nullptr;
- // The compare constant must be the identity constant for that binop.
- // If this a floating-point compare with 0.0, any zero constant will do.
- Type *Ty = BO->getType();
- Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
- if (IdC != C) {
- if (!IdC || !CmpInst::isFPPredicate(Pred))
- return nullptr;
- if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
- return nullptr;
- }
- // Last, match the compare variable operand with a binop operand.
- Value *Y;
- if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
- return nullptr;
- if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
- return nullptr;
- // +0.0 compares equal to -0.0, and so it does not behave as required for this
- // transform. Bail out if we can not exclude that possibility.
- if (isa<FPMathOperator>(BO))
- if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
- return nullptr;
- // BO = binop Y, X
- // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
- // =>
- // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
- return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
- }
- /// This folds:
- /// select (icmp eq (and X, C1)), TC, FC
- /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
- /// To something like:
- /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
- /// Or:
- /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
- /// With some variations depending if FC is larger than TC, or the shift
- /// isn't needed, or the bit widths don't match.
- static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
- InstCombiner::BuilderTy &Builder) {
- const APInt *SelTC, *SelFC;
- if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
- !match(Sel.getFalseValue(), m_APInt(SelFC)))
- return nullptr;
- // If this is a vector select, we need a vector compare.
- Type *SelType = Sel.getType();
- if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
- return nullptr;
- Value *V;
- APInt AndMask;
- bool CreateAnd = false;
- ICmpInst::Predicate Pred = Cmp->getPredicate();
- if (ICmpInst::isEquality(Pred)) {
- if (!match(Cmp->getOperand(1), m_Zero()))
- return nullptr;
- V = Cmp->getOperand(0);
- const APInt *AndRHS;
- if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
- return nullptr;
- AndMask = *AndRHS;
- } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
- Pred, V, AndMask)) {
- assert(ICmpInst::isEquality(Pred) && "Not equality test?");
- if (!AndMask.isPowerOf2())
- return nullptr;
- CreateAnd = true;
- } else {
- return nullptr;
- }
- // In general, when both constants are non-zero, we would need an offset to
- // replace the select. This would require more instructions than we started
- // with. But there's one special-case that we handle here because it can
- // simplify/reduce the instructions.
- APInt TC = *SelTC;
- APInt FC = *SelFC;
- if (!TC.isZero() && !FC.isZero()) {
- // If the select constants differ by exactly one bit and that's the same
- // bit that is masked and checked by the select condition, the select can
- // be replaced by bitwise logic to set/clear one bit of the constant result.
- if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
- return nullptr;
- if (CreateAnd) {
- // If we have to create an 'and', then we must kill the cmp to not
- // increase the instruction count.
- if (!Cmp->hasOneUse())
- return nullptr;
- V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
- }
- bool ExtraBitInTC = TC.ugt(FC);
- if (Pred == ICmpInst::ICMP_EQ) {
- // If the masked bit in V is clear, clear or set the bit in the result:
- // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
- // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
- Constant *C = ConstantInt::get(SelType, TC);
- return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
- }
- if (Pred == ICmpInst::ICMP_NE) {
- // If the masked bit in V is set, set or clear the bit in the result:
- // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
- // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
- Constant *C = ConstantInt::get(SelType, FC);
- return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
- }
- llvm_unreachable("Only expecting equality predicates");
- }
- // Make sure one of the select arms is a power-of-2.
- if (!TC.isPowerOf2() && !FC.isPowerOf2())
- return nullptr;
- // Determine which shift is needed to transform result of the 'and' into the
- // desired result.
- const APInt &ValC = !TC.isZero() ? TC : FC;
- unsigned ValZeros = ValC.logBase2();
- unsigned AndZeros = AndMask.logBase2();
- // Insert the 'and' instruction on the input to the truncate.
- if (CreateAnd)
- V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
- // If types don't match, we can still convert the select by introducing a zext
- // or a trunc of the 'and'.
- if (ValZeros > AndZeros) {
- V = Builder.CreateZExtOrTrunc(V, SelType);
- V = Builder.CreateShl(V, ValZeros - AndZeros);
- } else if (ValZeros < AndZeros) {
- V = Builder.CreateLShr(V, AndZeros - ValZeros);
- V = Builder.CreateZExtOrTrunc(V, SelType);
- } else {
- V = Builder.CreateZExtOrTrunc(V, SelType);
- }
- // Okay, now we know that everything is set up, we just don't know whether we
- // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
- bool ShouldNotVal = !TC.isZero();
- ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
- if (ShouldNotVal)
- V = Builder.CreateXor(V, ValC);
- return V;
- }
- /// We want to turn code that looks like this:
- /// %C = or %A, %B
- /// %D = select %cond, %C, %A
- /// into:
- /// %C = select %cond, %B, 0
- /// %D = or %A, %C
- ///
- /// Assuming that the specified instruction is an operand to the select, return
- /// a bitmask indicating which operands of this instruction are foldable if they
- /// equal the other incoming value of the select.
- static unsigned getSelectFoldableOperands(BinaryOperator *I) {
- switch (I->getOpcode()) {
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- return 3; // Can fold through either operand.
- case Instruction::Sub: // Can only fold on the amount subtracted.
- case Instruction::FSub:
- case Instruction::FDiv: // Can only fold on the divisor amount.
- case Instruction::Shl: // Can only fold on the shift amount.
- case Instruction::LShr:
- case Instruction::AShr:
- return 1;
- default:
- return 0; // Cannot fold
- }
- }
- /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
- Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
- Instruction *FI) {
- // Don't break up min/max patterns. The hasOneUse checks below prevent that
- // for most cases, but vector min/max with bitcasts can be transformed. If the
- // one-use restrictions are eased for other patterns, we still don't want to
- // obfuscate min/max.
- if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
- match(&SI, m_SMax(m_Value(), m_Value())) ||
- match(&SI, m_UMin(m_Value(), m_Value())) ||
- match(&SI, m_UMax(m_Value(), m_Value()))))
- return nullptr;
- // If this is a cast from the same type, merge.
- Value *Cond = SI.getCondition();
- Type *CondTy = Cond->getType();
- if (TI->getNumOperands() == 1 && TI->isCast()) {
- Type *FIOpndTy = FI->getOperand(0)->getType();
- if (TI->getOperand(0)->getType() != FIOpndTy)
- return nullptr;
- // The select condition may be a vector. We may only change the operand
- // type if the vector width remains the same (and matches the condition).
- if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
- if (!FIOpndTy->isVectorTy() ||
- CondVTy->getElementCount() !=
- cast<VectorType>(FIOpndTy)->getElementCount())
- return nullptr;
- // TODO: If the backend knew how to deal with casts better, we could
- // remove this limitation. For now, there's too much potential to create
- // worse codegen by promoting the select ahead of size-altering casts
- // (PR28160).
- //
- // Note that ValueTracking's matchSelectPattern() looks through casts
- // without checking 'hasOneUse' when it matches min/max patterns, so this
- // transform may end up happening anyway.
- if (TI->getOpcode() != Instruction::BitCast &&
- (!TI->hasOneUse() || !FI->hasOneUse()))
- return nullptr;
- } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
- // TODO: The one-use restrictions for a scalar select could be eased if
- // the fold of a select in visitLoadInst() was enhanced to match a pattern
- // that includes a cast.
- return nullptr;
- }
- // Fold this by inserting a select from the input values.
- Value *NewSI =
- Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
- SI.getName() + ".v", &SI);
- return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
- TI->getType());
- }
- // Cond ? -X : -Y --> -(Cond ? X : Y)
- Value *X, *Y;
- if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
- (TI->hasOneUse() || FI->hasOneUse())) {
- // Intersect FMF from the fneg instructions and union those with the select.
- FastMathFlags FMF = TI->getFastMathFlags();
- FMF &= FI->getFastMathFlags();
- FMF |= SI.getFastMathFlags();
- Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
- if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
- NewSelI->setFastMathFlags(FMF);
- Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
- NewFNeg->setFastMathFlags(FMF);
- return NewFNeg;
- }
- // Min/max intrinsic with a common operand can have the common operand pulled
- // after the select. This is the same transform as below for binops, but
- // specialized for intrinsic matching and without the restrictive uses clause.
- auto *TII = dyn_cast<IntrinsicInst>(TI);
- auto *FII = dyn_cast<IntrinsicInst>(FI);
- if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
- (TII->hasOneUse() || FII->hasOneUse())) {
- Value *T0, *T1, *F0, *F1;
- if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
- match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
- if (T0 == F0) {
- Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
- return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
- }
- if (T0 == F1) {
- Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
- return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
- }
- if (T1 == F0) {
- Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
- return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
- }
- if (T1 == F1) {
- Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
- return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
- }
- }
- }
- // Only handle binary operators (including two-operand getelementptr) with
- // one-use here. As with the cast case above, it may be possible to relax the
- // one-use constraint, but that needs be examined carefully since it may not
- // reduce the total number of instructions.
- if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
- (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
- !TI->hasOneUse() || !FI->hasOneUse())
- return nullptr;
- // Figure out if the operations have any operands in common.
- Value *MatchOp, *OtherOpT, *OtherOpF;
- bool MatchIsOpZero;
- if (TI->getOperand(0) == FI->getOperand(0)) {
- MatchOp = TI->getOperand(0);
- OtherOpT = TI->getOperand(1);
- OtherOpF = FI->getOperand(1);
- MatchIsOpZero = true;
- } else if (TI->getOperand(1) == FI->getOperand(1)) {
- MatchOp = TI->getOperand(1);
- OtherOpT = TI->getOperand(0);
- OtherOpF = FI->getOperand(0);
- MatchIsOpZero = false;
- } else if (!TI->isCommutative()) {
- return nullptr;
- } else if (TI->getOperand(0) == FI->getOperand(1)) {
- MatchOp = TI->getOperand(0);
- OtherOpT = TI->getOperand(1);
- OtherOpF = FI->getOperand(0);
- MatchIsOpZero = true;
- } else if (TI->getOperand(1) == FI->getOperand(0)) {
- MatchOp = TI->getOperand(1);
- OtherOpT = TI->getOperand(0);
- OtherOpF = FI->getOperand(1);
- MatchIsOpZero = true;
- } else {
- return nullptr;
- }
- // If the select condition is a vector, the operands of the original select's
- // operands also must be vectors. This may not be the case for getelementptr
- // for example.
- if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
- !OtherOpF->getType()->isVectorTy()))
- return nullptr;
- // If we reach here, they do have operations in common.
- Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
- SI.getName() + ".v", &SI);
- Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
- Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
- if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
- BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
- NewBO->copyIRFlags(TI);
- NewBO->andIRFlags(FI);
- return NewBO;
- }
- if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
- auto *FGEP = cast<GetElementPtrInst>(FI);
- Type *ElementType = TGEP->getResultElementType();
- return TGEP->isInBounds() && FGEP->isInBounds()
- ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
- : GetElementPtrInst::Create(ElementType, Op0, {Op1});
- }
- llvm_unreachable("Expected BinaryOperator or GEP");
- return nullptr;
- }
- static bool isSelect01(const APInt &C1I, const APInt &C2I) {
- if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
- return false;
- return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
- }
- /// Try to fold the select into one of the operands to allow further
- /// optimization.
- Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
- Value *FalseVal) {
- // See the comment above GetSelectFoldableOperands for a description of the
- // transformation we are doing here.
- if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
- if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
- if (unsigned SFO = getSelectFoldableOperands(TVI)) {
- unsigned OpToFold = 0;
- if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
- OpToFold = 1;
- } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
- OpToFold = 2;
- }
- if (OpToFold) {
- Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
- TVI->getType(), true);
- Value *OOp = TVI->getOperand(2-OpToFold);
- // Avoid creating select between 2 constants unless it's selecting
- // between 0, 1 and -1.
- const APInt *OOpC;
- bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
- if (!isa<Constant>(OOp) ||
- (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
- Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
- NewSel->takeName(TVI);
- BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
- FalseVal, NewSel);
- BO->copyIRFlags(TVI);
- return BO;
- }
- }
- }
- }
- }
- if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
- if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
- if (unsigned SFO = getSelectFoldableOperands(FVI)) {
- unsigned OpToFold = 0;
- if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
- OpToFold = 1;
- } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
- OpToFold = 2;
- }
- if (OpToFold) {
- Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
- FVI->getType(), true);
- Value *OOp = FVI->getOperand(2-OpToFold);
- // Avoid creating select between 2 constants unless it's selecting
- // between 0, 1 and -1.
- const APInt *OOpC;
- bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
- if (!isa<Constant>(OOp) ||
- (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
- Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
- NewSel->takeName(FVI);
- BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
- TrueVal, NewSel);
- BO->copyIRFlags(FVI);
- return BO;
- }
- }
- }
- }
- }
- return nullptr;
- }
- /// We want to turn:
- /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
- /// into:
- /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
- /// Note:
- /// Z may be 0 if lshr is missing.
- /// Worst-case scenario is that we will replace 5 instructions with 5 different
- /// instructions, but we got rid of select.
- static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
- Value *TVal, Value *FVal,
- InstCombiner::BuilderTy &Builder) {
- if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
- Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
- match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
- return nullptr;
- // The TrueVal has general form of: and %B, 1
- Value *B;
- if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
- return nullptr;
- // Where %B may be optionally shifted: lshr %X, %Z.
- Value *X, *Z;
- const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
- if (!HasShift)
- X = B;
- Value *Y;
- if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
- return nullptr;
- // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
- // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
- Constant *One = ConstantInt::get(SelType, 1);
- Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
- Value *FullMask = Builder.CreateOr(Y, MaskB);
- Value *MaskedX = Builder.CreateAnd(X, FullMask);
- Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
- return new ZExtInst(ICmpNeZero, SelType);
- }
- /// We want to turn:
- /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
- /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
- /// into:
- /// ashr (X, Y)
- static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
- Value *FalseVal,
- InstCombiner::BuilderTy &Builder) {
- ICmpInst::Predicate Pred = IC->getPredicate();
- Value *CmpLHS = IC->getOperand(0);
- Value *CmpRHS = IC->getOperand(1);
- if (!CmpRHS->getType()->isIntOrIntVectorTy())
- return nullptr;
- Value *X, *Y;
- unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
- if ((Pred != ICmpInst::ICMP_SGT ||
- !match(CmpRHS,
- m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
- (Pred != ICmpInst::ICMP_SLT ||
- !match(CmpRHS,
- m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
- return nullptr;
- // Canonicalize so that ashr is in FalseVal.
- if (Pred == ICmpInst::ICMP_SLT)
- std::swap(TrueVal, FalseVal);
- if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
- match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
- match(CmpLHS, m_Specific(X))) {
- const auto *Ashr = cast<Instruction>(FalseVal);
- // if lshr is not exact and ashr is, this new ashr must not be exact.
- bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
- return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
- }
- return nullptr;
- }
- /// We want to turn:
- /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
- /// into:
- /// (or (shl (and X, C1), C3), Y)
- /// iff:
- /// C1 and C2 are both powers of 2
- /// where:
- /// C3 = Log(C2) - Log(C1)
- ///
- /// This transform handles cases where:
- /// 1. The icmp predicate is inverted
- /// 2. The select operands are reversed
- /// 3. The magnitude of C2 and C1 are flipped
- static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
- Value *FalseVal,
- InstCombiner::BuilderTy &Builder) {
- // Only handle integer compares. Also, if this is a vector select, we need a
- // vector compare.
- if (!TrueVal->getType()->isIntOrIntVectorTy() ||
- TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
- return nullptr;
- Value *CmpLHS = IC->getOperand(0);
- Value *CmpRHS = IC->getOperand(1);
- Value *V;
- unsigned C1Log;
- bool IsEqualZero;
- bool NeedAnd = false;
- if (IC->isEquality()) {
- if (!match(CmpRHS, m_Zero()))
- return nullptr;
- const APInt *C1;
- if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
- return nullptr;
- V = CmpLHS;
- C1Log = C1->logBase2();
- IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
- } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
- IC->getPredicate() == ICmpInst::ICMP_SGT) {
- // We also need to recognize (icmp slt (trunc (X)), 0) and
- // (icmp sgt (trunc (X)), -1).
- IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
- if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
- (!IsEqualZero && !match(CmpRHS, m_Zero())))
- return nullptr;
- if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
- return nullptr;
- C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
- NeedAnd = true;
- } else {
- return nullptr;
- }
- const APInt *C2;
- bool OrOnTrueVal = false;
- bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
- if (!OrOnFalseVal)
- OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
- if (!OrOnFalseVal && !OrOnTrueVal)
- return nullptr;
- Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
- unsigned C2Log = C2->logBase2();
- bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
- bool NeedShift = C1Log != C2Log;
- bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
- V->getType()->getScalarSizeInBits();
- // Make sure we don't create more instructions than we save.
- Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
- if ((NeedShift + NeedXor + NeedZExtTrunc) >
- (IC->hasOneUse() + Or->hasOneUse()))
- return nullptr;
- if (NeedAnd) {
- // Insert the AND instruction on the input to the truncate.
- APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
- V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
- }
- if (C2Log > C1Log) {
- V = Builder.CreateZExtOrTrunc(V, Y->getType());
- V = Builder.CreateShl(V, C2Log - C1Log);
- } else if (C1Log > C2Log) {
- V = Builder.CreateLShr(V, C1Log - C2Log);
- V = Builder.CreateZExtOrTrunc(V, Y->getType());
- } else
- V = Builder.CreateZExtOrTrunc(V, Y->getType());
- if (NeedXor)
- V = Builder.CreateXor(V, *C2);
- return Builder.CreateOr(V, Y);
- }
- /// Canonicalize a set or clear of a masked set of constant bits to
- /// select-of-constants form.
- static Instruction *foldSetClearBits(SelectInst &Sel,
- InstCombiner::BuilderTy &Builder) {
- Value *Cond = Sel.getCondition();
- Value *T = Sel.getTrueValue();
- Value *F = Sel.getFalseValue();
- Type *Ty = Sel.getType();
- Value *X;
- const APInt *NotC, *C;
- // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
- if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
- match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
- Constant *Zero = ConstantInt::getNullValue(Ty);
- Constant *OrC = ConstantInt::get(Ty, *C);
- Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
- return BinaryOperator::CreateOr(T, NewSel);
- }
- // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
- if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
- match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
- Constant *Zero = ConstantInt::getNullValue(Ty);
- Constant *OrC = ConstantInt::get(Ty, *C);
- Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
- return BinaryOperator::CreateOr(F, NewSel);
- }
- return nullptr;
- }
- // select (x == 0), 0, x * y --> freeze(y) * x
- // select (y == 0), 0, x * y --> freeze(x) * y
- // select (x == 0), undef, x * y --> freeze(y) * x
- // select (x == undef), 0, x * y --> freeze(y) * x
- // Usage of mul instead of 0 will make the result more poisonous,
- // so the operand that was not checked in the condition should be frozen.
- // The latter folding is applied only when a constant compared with x is
- // is a vector consisting of 0 and undefs. If a constant compared with x
- // is a scalar undefined value or undefined vector then an expression
- // should be already folded into a constant.
- static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
- auto *CondVal = SI.getCondition();
- auto *TrueVal = SI.getTrueValue();
- auto *FalseVal = SI.getFalseValue();
- Value *X, *Y;
- ICmpInst::Predicate Predicate;
- // Assuming that constant compared with zero is not undef (but it may be
- // a vector with some undef elements). Otherwise (when a constant is undef)
- // the select expression should be already simplified.
- if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
- !ICmpInst::isEquality(Predicate))
- return nullptr;
- if (Predicate == ICmpInst::ICMP_NE)
- std::swap(TrueVal, FalseVal);
- // Check that TrueVal is a constant instead of matching it with m_Zero()
- // to handle the case when it is a scalar undef value or a vector containing
- // non-zero elements that are masked by undef elements in the compare
- // constant.
- auto *TrueValC = dyn_cast<Constant>(TrueVal);
- if (TrueValC == nullptr ||
- !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
- !isa<Instruction>(FalseVal))
- return nullptr;
- auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
- auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
- // If X is compared with 0 then TrueVal could be either zero or undef.
- // m_Zero match vectors containing some undef elements, but for scalars
- // m_Undef should be used explicitly.
- if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
- return nullptr;
- auto *FalseValI = cast<Instruction>(FalseVal);
- auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
- *FalseValI);
- IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
- return IC.replaceInstUsesWith(SI, FalseValI);
- }
- /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
- /// There are 8 commuted/swapped variants of this pattern.
- /// TODO: Also support a - UMIN(a,b) patterns.
- static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
- const Value *TrueVal,
- const Value *FalseVal,
- InstCombiner::BuilderTy &Builder) {
- ICmpInst::Predicate Pred = ICI->getPredicate();
- if (!ICmpInst::isUnsigned(Pred))
- return nullptr;
- // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
- if (match(TrueVal, m_Zero())) {
- Pred = ICmpInst::getInversePredicate(Pred);
- std::swap(TrueVal, FalseVal);
- }
- if (!match(FalseVal, m_Zero()))
- return nullptr;
- Value *A = ICI->getOperand(0);
- Value *B = ICI->getOperand(1);
- if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
- // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
- std::swap(A, B);
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
- assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
- "Unexpected isUnsigned predicate!");
- // Ensure the sub is of the form:
- // (a > b) ? a - b : 0 -> usub.sat(a, b)
- // (a > b) ? b - a : 0 -> -usub.sat(a, b)
- // Checking for both a-b and a+(-b) as a constant.
- bool IsNegative = false;
- const APInt *C;
- if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
- (match(A, m_APInt(C)) &&
- match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
- IsNegative = true;
- else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
- !(match(B, m_APInt(C)) &&
- match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
- return nullptr;
- // If we are adding a negate and the sub and icmp are used anywhere else, we
- // would end up with more instructions.
- if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
- return nullptr;
- // (a > b) ? a - b : 0 -> usub.sat(a, b)
- // (a > b) ? b - a : 0 -> -usub.sat(a, b)
- Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
- if (IsNegative)
- Result = Builder.CreateNeg(Result);
- return Result;
- }
- static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
- InstCombiner::BuilderTy &Builder) {
- if (!Cmp->hasOneUse())
- return nullptr;
- // Match unsigned saturated add with constant.
- Value *Cmp0 = Cmp->getOperand(0);
- Value *Cmp1 = Cmp->getOperand(1);
- ICmpInst::Predicate Pred = Cmp->getPredicate();
- Value *X;
- const APInt *C, *CmpC;
- if (Pred == ICmpInst::ICMP_ULT &&
- match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
- match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
- // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
- return Builder.CreateBinaryIntrinsic(
- Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
- }
- // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
- // There are 8 commuted variants.
- // Canonicalize -1 (saturated result) to true value of the select.
- if (match(FVal, m_AllOnes())) {
- std::swap(TVal, FVal);
- Pred = CmpInst::getInversePredicate(Pred);
- }
- if (!match(TVal, m_AllOnes()))
- return nullptr;
- // Canonicalize predicate to less-than or less-or-equal-than.
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
- std::swap(Cmp0, Cmp1);
- Pred = CmpInst::getSwappedPredicate(Pred);
- }
- if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
- return nullptr;
- // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
- // Strictness of the comparison is irrelevant.
- Value *Y;
- if (match(Cmp0, m_Not(m_Value(X))) &&
- match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
- // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
- // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
- return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
- }
- // The 'not' op may be included in the sum but not the compare.
- // Strictness of the comparison is irrelevant.
- X = Cmp0;
- Y = Cmp1;
- if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
- // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
- // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
- BinaryOperator *BO = cast<BinaryOperator>(FVal);
- return Builder.CreateBinaryIntrinsic(
- Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
- }
- // The overflow may be detected via the add wrapping round.
- // This is only valid for strict comparison!
- if (Pred == ICmpInst::ICMP_ULT &&
- match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
- match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
- // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
- // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
- return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
- }
- return nullptr;
- }
- /// Fold the following code sequence:
- /// \code
- /// int a = ctlz(x & -x);
- // x ? 31 - a : a;
- /// \code
- ///
- /// into:
- /// cttz(x)
- static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
- Value *FalseVal,
- InstCombiner::BuilderTy &Builder) {
- unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
- if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
- return nullptr;
- if (ICI->getPredicate() == ICmpInst::ICMP_NE)
- std::swap(TrueVal, FalseVal);
- if (!match(FalseVal,
- m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
- return nullptr;
- if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
- return nullptr;
- Value *X = ICI->getOperand(0);
- auto *II = cast<IntrinsicInst>(TrueVal);
- if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
- return nullptr;
- Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
- II->getType());
- return CallInst::Create(F, {X, II->getArgOperand(1)});
- }
- /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
- /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
- ///
- /// For example, we can fold the following code sequence:
- /// \code
- /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
- /// %1 = icmp ne i32 %x, 0
- /// %2 = select i1 %1, i32 %0, i32 32
- /// \code
- ///
- /// into:
- /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
- static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
- InstCombiner::BuilderTy &Builder) {
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *CmpLHS = ICI->getOperand(0);
- Value *CmpRHS = ICI->getOperand(1);
- // Check if the condition value compares a value for equality against zero.
- if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
- return nullptr;
- Value *SelectArg = FalseVal;
- Value *ValueOnZero = TrueVal;
- if (Pred == ICmpInst::ICMP_NE)
- std::swap(SelectArg, ValueOnZero);
- // Skip zero extend/truncate.
- Value *Count = nullptr;
- if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
- !match(SelectArg, m_Trunc(m_Value(Count))))
- Count = SelectArg;
- // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
- // input to the cttz/ctlz is used as LHS for the compare instruction.
- if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
- !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
- return nullptr;
- IntrinsicInst *II = cast<IntrinsicInst>(Count);
- // Check if the value propagated on zero is a constant number equal to the
- // sizeof in bits of 'Count'.
- unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
- if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
- // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
- // true to false on this flag, so we can replace it for all users.
- II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
- return SelectArg;
- }
- // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
- // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
- // not be used if the input is zero. Relax to 'zero is poison' for that case.
- if (II->hasOneUse() && SelectArg->hasOneUse() &&
- !match(II->getArgOperand(1), m_One()))
- II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
- return nullptr;
- }
- /// Return true if we find and adjust an icmp+select pattern where the compare
- /// is with a constant that can be incremented or decremented to match the
- /// minimum or maximum idiom.
- static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
- ICmpInst::Predicate Pred = Cmp.getPredicate();
- Value *CmpLHS = Cmp.getOperand(0);
- Value *CmpRHS = Cmp.getOperand(1);
- Value *TrueVal = Sel.getTrueValue();
- Value *FalseVal = Sel.getFalseValue();
- // We may move or edit the compare, so make sure the select is the only user.
- const APInt *CmpC;
- if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
- return false;
- // These transforms only work for selects of integers or vector selects of
- // integer vectors.
- Type *SelTy = Sel.getType();
- auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
- if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
- return false;
- Constant *AdjustedRHS;
- if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
- AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
- else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
- AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
- else
- return false;
- // X > C ? X : C+1 --> X < C+1 ? C+1 : X
- // X < C ? X : C-1 --> X > C-1 ? C-1 : X
- if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
- (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
- ; // Nothing to do here. Values match without any sign/zero extension.
- }
- // Types do not match. Instead of calculating this with mixed types, promote
- // all to the larger type. This enables scalar evolution to analyze this
- // expression.
- else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
- Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
- // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
- // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
- // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
- // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
- if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
- CmpLHS = TrueVal;
- AdjustedRHS = SextRHS;
- } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
- SextRHS == TrueVal) {
- CmpLHS = FalseVal;
- AdjustedRHS = SextRHS;
- } else if (Cmp.isUnsigned()) {
- Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
- // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
- // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
- // zext + signed compare cannot be changed:
- // 0xff <s 0x00, but 0x00ff >s 0x0000
- if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
- CmpLHS = TrueVal;
- AdjustedRHS = ZextRHS;
- } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
- ZextRHS == TrueVal) {
- CmpLHS = FalseVal;
- AdjustedRHS = ZextRHS;
- } else {
- return false;
- }
- } else {
- return false;
- }
- } else {
- return false;
- }
- Pred = ICmpInst::getSwappedPredicate(Pred);
- CmpRHS = AdjustedRHS;
- std::swap(FalseVal, TrueVal);
- Cmp.setPredicate(Pred);
- Cmp.setOperand(0, CmpLHS);
- Cmp.setOperand(1, CmpRHS);
- Sel.setOperand(1, TrueVal);
- Sel.setOperand(2, FalseVal);
- Sel.swapProfMetadata();
- // Move the compare instruction right before the select instruction. Otherwise
- // the sext/zext value may be defined after the compare instruction uses it.
- Cmp.moveBefore(&Sel);
- return true;
- }
- /// If this is an integer min/max (icmp + select) with a constant operand,
- /// create the canonical icmp for the min/max operation and canonicalize the
- /// constant to the 'false' operand of the select:
- /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
- /// Note: if C1 != C2, this will change the icmp constant to the existing
- /// constant operand of the select.
- static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
- ICmpInst &Cmp,
- InstCombinerImpl &IC) {
- if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
- return nullptr;
- // Canonicalize the compare predicate based on whether we have min or max.
- Value *LHS, *RHS;
- SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
- if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
- return nullptr;
- // Is this already canonical?
- ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
- if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
- Cmp.getPredicate() == CanonicalPred)
- return nullptr;
- // Bail out on unsimplified X-0 operand (due to some worklist management bug),
- // as this may cause an infinite combine loop. Let the sub be folded first.
- if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
- match(RHS, m_Sub(m_Value(), m_Zero())))
- return nullptr;
- // Create the canonical compare and plug it into the select.
- IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
- // If the select operands did not change, we're done.
- if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
- return &Sel;
- // If we are swapping the select operands, swap the metadata too.
- assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
- "Unexpected results from matchSelectPattern");
- Sel.swapValues();
- Sel.swapProfMetadata();
- return &Sel;
- }
- static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
- InstCombinerImpl &IC) {
- if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
- return nullptr;
- Value *LHS, *RHS;
- SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
- if (SPF != SelectPatternFlavor::SPF_ABS &&
- SPF != SelectPatternFlavor::SPF_NABS)
- return nullptr;
- // Note that NSW flag can only be propagated for normal, non-negated abs!
- bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
- match(RHS, m_NSWNeg(m_Specific(LHS)));
- Constant *IntMinIsPoisonC =
- ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
- Instruction *Abs =
- IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
- if (SPF == SelectPatternFlavor::SPF_NABS)
- return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
- return IC.replaceInstUsesWith(Sel, Abs);
- }
- /// If we have a select with an equality comparison, then we know the value in
- /// one of the arms of the select. See if substituting this value into an arm
- /// and simplifying the result yields the same value as the other arm.
- ///
- /// To make this transform safe, we must drop poison-generating flags
- /// (nsw, etc) if we simplified to a binop because the select may be guarding
- /// that poison from propagating. If the existing binop already had no
- /// poison-generating flags, then this transform can be done by instsimplify.
- ///
- /// Consider:
- /// %cmp = icmp eq i32 %x, 2147483647
- /// %add = add nsw i32 %x, 1
- /// %sel = select i1 %cmp, i32 -2147483648, i32 %add
- ///
- /// We can't replace %sel with %add unless we strip away the flags.
- /// TODO: Wrapping flags could be preserved in some cases with better analysis.
- Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
- ICmpInst &Cmp) {
- // Value equivalence substitution requires an all-or-nothing replacement.
- // It does not make sense for a vector compare where each lane is chosen
- // independently.
- if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
- return nullptr;
- // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
- Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
- bool Swapped = false;
- if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
- std::swap(TrueVal, FalseVal);
- Swapped = true;
- }
- // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
- // Make sure Y cannot be undef though, as we might pick different values for
- // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
- // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
- // replacement cycle.
- Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
- if (TrueVal != CmpLHS &&
- isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
- if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
- /* AllowRefinement */ true))
- return replaceOperand(Sel, Swapped ? 2 : 1, V);
- // Even if TrueVal does not simplify, we can directly replace a use of
- // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
- // else and is safe to speculatively execute (we may end up executing it
- // with different operands, which should not cause side-effects or trigger
- // undefined behavior). Only do this if CmpRHS is a constant, as
- // profitability is not clear for other cases.
- // FIXME: The replacement could be performed recursively.
- if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
- if (auto *I = dyn_cast<Instruction>(TrueVal))
- if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
- for (Use &U : I->operands())
- if (U == CmpLHS) {
- replaceUse(U, CmpRHS);
- return &Sel;
- }
- }
- if (TrueVal != CmpRHS &&
- isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
- if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
- /* AllowRefinement */ true))
- return replaceOperand(Sel, Swapped ? 2 : 1, V);
- auto *FalseInst = dyn_cast<Instruction>(FalseVal);
- if (!FalseInst)
- return nullptr;
- // InstSimplify already performed this fold if it was possible subject to
- // current poison-generating flags. Try the transform again with
- // poison-generating flags temporarily dropped.
- bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
- if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
- WasNUW = OBO->hasNoUnsignedWrap();
- WasNSW = OBO->hasNoSignedWrap();
- FalseInst->setHasNoUnsignedWrap(false);
- FalseInst->setHasNoSignedWrap(false);
- }
- if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
- WasExact = PEO->isExact();
- FalseInst->setIsExact(false);
- }
- if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
- WasInBounds = GEP->isInBounds();
- GEP->setIsInBounds(false);
- }
- // Try each equivalence substitution possibility.
- // We have an 'EQ' comparison, so the select's false value will propagate.
- // Example:
- // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
- if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
- /* AllowRefinement */ false) == TrueVal ||
- simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
- /* AllowRefinement */ false) == TrueVal) {
- return replaceInstUsesWith(Sel, FalseVal);
- }
- // Restore poison-generating flags if the transform did not apply.
- if (WasNUW)
- FalseInst->setHasNoUnsignedWrap();
- if (WasNSW)
- FalseInst->setHasNoSignedWrap();
- if (WasExact)
- FalseInst->setIsExact();
- if (WasInBounds)
- cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
- return nullptr;
- }
- // See if this is a pattern like:
- // %old_cmp1 = icmp slt i32 %x, C2
- // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
- // %old_x_offseted = add i32 %x, C1
- // %old_cmp0 = icmp ult i32 %old_x_offseted, C0
- // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
- // This can be rewritten as more canonical pattern:
- // %new_cmp1 = icmp slt i32 %x, -C1
- // %new_cmp2 = icmp sge i32 %x, C0-C1
- // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
- // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
- // Iff -C1 s<= C2 s<= C0-C1
- // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
- // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
- static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
- InstCombiner::BuilderTy &Builder) {
- Value *X = Sel0.getTrueValue();
- Value *Sel1 = Sel0.getFalseValue();
- // First match the condition of the outermost select.
- // Said condition must be one-use.
- if (!Cmp0.hasOneUse())
- return nullptr;
- ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
- Value *Cmp00 = Cmp0.getOperand(0);
- Constant *C0;
- if (!match(Cmp0.getOperand(1),
- m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
- return nullptr;
- if (!isa<SelectInst>(Sel1)) {
- Pred0 = ICmpInst::getInversePredicate(Pred0);
- std::swap(X, Sel1);
- }
- // Canonicalize Cmp0 into ult or uge.
- // FIXME: we shouldn't care about lanes that are 'undef' in the end?
- switch (Pred0) {
- case ICmpInst::Predicate::ICMP_ULT:
- case ICmpInst::Predicate::ICMP_UGE:
- // Although icmp ult %x, 0 is an unusual thing to try and should generally
- // have been simplified, it does not verify with undef inputs so ensure we
- // are not in a strange state.
- if (!match(C0, m_SpecificInt_ICMP(
- ICmpInst::Predicate::ICMP_NE,
- APInt::getZero(C0->getType()->getScalarSizeInBits()))))
- return nullptr;
- break; // Great!
- case ICmpInst::Predicate::ICMP_ULE:
- case ICmpInst::Predicate::ICMP_UGT:
- // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
- // C0, which again means it must not have any all-ones elements.
- if (!match(C0,
- m_SpecificInt_ICMP(
- ICmpInst::Predicate::ICMP_NE,
- APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
- return nullptr; // Can't do, have all-ones element[s].
- C0 = InstCombiner::AddOne(C0);
- break;
- default:
- return nullptr; // Unknown predicate.
- }
- // Now that we've canonicalized the ICmp, we know the X we expect;
- // the select in other hand should be one-use.
- if (!Sel1->hasOneUse())
- return nullptr;
- // If the types do not match, look through any truncs to the underlying
- // instruction.
- if (Cmp00->getType() != X->getType() && X->hasOneUse())
- match(X, m_TruncOrSelf(m_Value(X)));
- // We now can finish matching the condition of the outermost select:
- // it should either be the X itself, or an addition of some constant to X.
- Constant *C1;
- if (Cmp00 == X)
- C1 = ConstantInt::getNullValue(X->getType());
- else if (!match(Cmp00,
- m_Add(m_Specific(X),
- m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
- return nullptr;
- Value *Cmp1;
- ICmpInst::Predicate Pred1;
- Constant *C2;
- Value *ReplacementLow, *ReplacementHigh;
- if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
- m_Value(ReplacementHigh))) ||
- !match(Cmp1,
- m_ICmp(Pred1, m_Specific(X),
- m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
- return nullptr;
- if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
- return nullptr; // Not enough one-use instructions for the fold.
- // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
- // two comparisons we'll need to build.
- // Canonicalize Cmp1 into the form we expect.
- // FIXME: we shouldn't care about lanes that are 'undef' in the end?
- switch (Pred1) {
- case ICmpInst::Predicate::ICMP_SLT:
- break;
- case ICmpInst::Predicate::ICMP_SLE:
- // We'd have to increment C2 by one, and for that it must not have signed
- // max element, but then it would have been canonicalized to 'slt' before
- // we get here. So we can't do anything useful with 'sle'.
- return nullptr;
- case ICmpInst::Predicate::ICMP_SGT:
- // We want to canonicalize it to 'slt', so we'll need to increment C2,
- // which again means it must not have any signed max elements.
- if (!match(C2,
- m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
- APInt::getSignedMaxValue(
- C2->getType()->getScalarSizeInBits()))))
- return nullptr; // Can't do, have signed max element[s].
- C2 = InstCombiner::AddOne(C2);
- LLVM_FALLTHROUGH;
- case ICmpInst::Predicate::ICMP_SGE:
- // Also non-canonical, but here we don't need to change C2,
- // so we don't have any restrictions on C2, so we can just handle it.
- std::swap(ReplacementLow, ReplacementHigh);
- break;
- default:
- return nullptr; // Unknown predicate.
- }
- // The thresholds of this clamp-like pattern.
- auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
- auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
- if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
- std::swap(ThresholdLowIncl, ThresholdHighExcl);
- // The fold has a precondition 1: C2 s>= ThresholdLow
- auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
- ThresholdLowIncl);
- if (!match(Precond1, m_One()))
- return nullptr;
- // The fold has a precondition 2: C2 s<= ThresholdHigh
- auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
- ThresholdHighExcl);
- if (!match(Precond2, m_One()))
- return nullptr;
- // If we are matching from a truncated input, we need to sext the
- // ReplacementLow and ReplacementHigh values. Only do the transform if they
- // are free to extend due to being constants.
- if (X->getType() != Sel0.getType()) {
- Constant *LowC, *HighC;
- if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
- !match(ReplacementHigh, m_ImmConstant(HighC)))
- return nullptr;
- ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
- ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
- }
- // All good, finally emit the new pattern.
- Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
- Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
- Value *MaybeReplacedLow =
- Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
- // Create the final select. If we looked through a truncate above, we will
- // need to retruncate the result.
- Value *MaybeReplacedHigh = Builder.CreateSelect(
- ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
- return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
- }
- // If we have
- // %cmp = icmp [canonical predicate] i32 %x, C0
- // %r = select i1 %cmp, i32 %y, i32 C1
- // Where C0 != C1 and %x may be different from %y, see if the constant that we
- // will have if we flip the strictness of the predicate (i.e. without changing
- // the result) is identical to the C1 in select. If it matches we can change
- // original comparison to one with swapped predicate, reuse the constant,
- // and swap the hands of select.
- static Instruction *
- tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
- InstCombinerImpl &IC) {
- ICmpInst::Predicate Pred;
- Value *X;
- Constant *C0;
- if (!match(&Cmp, m_OneUse(m_ICmp(
- Pred, m_Value(X),
- m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
- return nullptr;
- // If comparison predicate is non-relational, we won't be able to do anything.
- if (ICmpInst::isEquality(Pred))
- return nullptr;
- // If comparison predicate is non-canonical, then we certainly won't be able
- // to make it canonical; canonicalizeCmpWithConstant() already tried.
- if (!InstCombiner::isCanonicalPredicate(Pred))
- return nullptr;
- // If the [input] type of comparison and select type are different, lets abort
- // for now. We could try to compare constants with trunc/[zs]ext though.
- if (C0->getType() != Sel.getType())
- return nullptr;
- // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
- // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
- // Or should we just abandon this transform entirely?
- if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
- return nullptr;
- Value *SelVal0, *SelVal1; // We do not care which one is from where.
- match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
- // At least one of these values we are selecting between must be a constant
- // else we'll never succeed.
- if (!match(SelVal0, m_AnyIntegralConstant()) &&
- !match(SelVal1, m_AnyIntegralConstant()))
- return nullptr;
- // Does this constant C match any of the `select` values?
- auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
- return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
- };
- // If C0 *already* matches true/false value of select, we are done.
- if (MatchesSelectValue(C0))
- return nullptr;
- // Check the constant we'd have with flipped-strictness predicate.
- auto FlippedStrictness =
- InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
- if (!FlippedStrictness)
- return nullptr;
- // If said constant doesn't match either, then there is no hope,
- if (!MatchesSelectValue(FlippedStrictness->second))
- return nullptr;
- // It matched! Lets insert the new comparison just before select.
- InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
- IC.Builder.SetInsertPoint(&Sel);
- Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
- Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
- Cmp.getName() + ".inv");
- IC.replaceOperand(Sel, 0, NewCmp);
- Sel.swapValues();
- Sel.swapProfMetadata();
- return &Sel;
- }
- /// Visit a SelectInst that has an ICmpInst as its first operand.
- Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
- ICmpInst *ICI) {
- if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
- return NewSel;
- if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
- return NewSel;
- if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
- return NewAbs;
- if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
- return replaceInstUsesWith(SI, V);
- if (Instruction *NewSel =
- tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
- return NewSel;
- bool Changed = adjustMinMax(SI, *ICI);
- if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
- return replaceInstUsesWith(SI, V);
- // NOTE: if we wanted to, this is where to detect integer MIN/MAX
- Value *TrueVal = SI.getTrueValue();
- Value *FalseVal = SI.getFalseValue();
- ICmpInst::Predicate Pred = ICI->getPredicate();
- Value *CmpLHS = ICI->getOperand(0);
- Value *CmpRHS = ICI->getOperand(1);
- if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
- if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
- // Transform (X == C) ? X : Y -> (X == C) ? C : Y
- SI.setOperand(1, CmpRHS);
- Changed = true;
- } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
- // Transform (X != C) ? Y : X -> (X != C) ? Y : C
- SI.setOperand(2, CmpRHS);
- Changed = true;
- }
- }
- // Canonicalize a signbit condition to use zero constant by swapping:
- // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
- // To avoid conflicts (infinite loops) with other canonicalizations, this is
- // not applied with any constant select arm.
- if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
- !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
- ICI->hasOneUse()) {
- InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
- Builder.SetInsertPoint(&SI);
- Value *IsNeg = Builder.CreateICmpSLT(
- CmpLHS, ConstantInt::getNullValue(CmpLHS->getType()), ICI->getName());
- replaceOperand(SI, 0, IsNeg);
- SI.swapValues();
- SI.swapProfMetadata();
- return &SI;
- }
- // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
- // decomposeBitTestICmp() might help.
- {
- unsigned BitWidth =
- DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
- APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
- Value *X;
- const APInt *Y, *C;
- bool TrueWhenUnset;
- bool IsBitTest = false;
- if (ICmpInst::isEquality(Pred) &&
- match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
- match(CmpRHS, m_Zero())) {
- IsBitTest = true;
- TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
- } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
- X = CmpLHS;
- Y = &MinSignedValue;
- IsBitTest = true;
- TrueWhenUnset = false;
- } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
- X = CmpLHS;
- Y = &MinSignedValue;
- IsBitTest = true;
- TrueWhenUnset = true;
- }
- if (IsBitTest) {
- Value *V = nullptr;
- // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
- if (TrueWhenUnset && TrueVal == X &&
- match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
- V = Builder.CreateAnd(X, ~(*Y));
- // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
- else if (!TrueWhenUnset && FalseVal == X &&
- match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
- V = Builder.CreateAnd(X, ~(*Y));
- // (X & Y) == 0 ? X ^ Y : X --> X | Y
- else if (TrueWhenUnset && FalseVal == X &&
- match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
- V = Builder.CreateOr(X, *Y);
- // (X & Y) != 0 ? X : X ^ Y --> X | Y
- else if (!TrueWhenUnset && TrueVal == X &&
- match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
- V = Builder.CreateOr(X, *Y);
- if (V)
- return replaceInstUsesWith(SI, V);
- }
- }
- if (Instruction *V =
- foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
- return V;
- if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
- return V;
- if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
- return replaceInstUsesWith(SI, V);
- if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
- return replaceInstUsesWith(SI, V);
- if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
- return replaceInstUsesWith(SI, V);
- if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
- return replaceInstUsesWith(SI, V);
- if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
- return replaceInstUsesWith(SI, V);
- return Changed ? &SI : nullptr;
- }
- /// SI is a select whose condition is a PHI node (but the two may be in
- /// different blocks). See if the true/false values (V) are live in all of the
- /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
- ///
- /// X = phi [ C1, BB1], [C2, BB2]
- /// Y = add
- /// Z = select X, Y, 0
- ///
- /// because Y is not live in BB1/BB2.
- static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
- const SelectInst &SI) {
- // If the value is a non-instruction value like a constant or argument, it
- // can always be mapped.
- const Instruction *I = dyn_cast<Instruction>(V);
- if (!I) return true;
- // If V is a PHI node defined in the same block as the condition PHI, we can
- // map the arguments.
- const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
- if (const PHINode *VP = dyn_cast<PHINode>(I))
- if (VP->getParent() == CondPHI->getParent())
- return true;
- // Otherwise, if the PHI and select are defined in the same block and if V is
- // defined in a different block, then we can transform it.
- if (SI.getParent() == CondPHI->getParent() &&
- I->getParent() != CondPHI->getParent())
- return true;
- // Otherwise we have a 'hard' case and we can't tell without doing more
- // detailed dominator based analysis, punt.
- return false;
- }
- /// We have an SPF (e.g. a min or max) of an SPF of the form:
- /// SPF2(SPF1(A, B), C)
- Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
- SelectPatternFlavor SPF1, Value *A,
- Value *B, Instruction &Outer,
- SelectPatternFlavor SPF2,
- Value *C) {
- if (Outer.getType() != Inner->getType())
- return nullptr;
- if (C == A || C == B) {
- // MAX(MAX(A, B), B) -> MAX(A, B)
- // MIN(MIN(a, b), a) -> MIN(a, b)
- // TODO: This could be done in instsimplify.
- if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
- return replaceInstUsesWith(Outer, Inner);
- // MAX(MIN(a, b), a) -> a
- // MIN(MAX(a, b), a) -> a
- // TODO: This could be done in instsimplify.
- if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
- (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
- (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
- (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
- return replaceInstUsesWith(Outer, C);
- }
- if (SPF1 == SPF2) {
- const APInt *CB, *CC;
- if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
- // MIN(MIN(A, 23), 97) -> MIN(A, 23)
- // MAX(MAX(A, 97), 23) -> MAX(A, 97)
- // TODO: This could be done in instsimplify.
- if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
- (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
- (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
- (SPF1 == SPF_SMAX && CB->sge(*CC)))
- return replaceInstUsesWith(Outer, Inner);
- // MIN(MIN(A, 97), 23) -> MIN(A, 23)
- // MAX(MAX(A, 23), 97) -> MAX(A, 97)
- if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
- (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
- (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
- (SPF1 == SPF_SMAX && CB->slt(*CC))) {
- Outer.replaceUsesOfWith(Inner, A);
- return &Outer;
- }
- }
- }
- // max(max(A, B), min(A, B)) --> max(A, B)
- // min(min(A, B), max(A, B)) --> min(A, B)
- // TODO: This could be done in instsimplify.
- if (SPF1 == SPF2 &&
- ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
- (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
- (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
- (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
- return replaceInstUsesWith(Outer, Inner);
- // ABS(ABS(X)) -> ABS(X)
- // NABS(NABS(X)) -> NABS(X)
- // TODO: This could be done in instsimplify.
- if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
- return replaceInstUsesWith(Outer, Inner);
- }
- // ABS(NABS(X)) -> ABS(X)
- // NABS(ABS(X)) -> NABS(X)
- if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
- (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
- SelectInst *SI = cast<SelectInst>(Inner);
- Value *NewSI =
- Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
- SI->getTrueValue(), SI->getName(), SI);
- return replaceInstUsesWith(Outer, NewSI);
- }
- auto IsFreeOrProfitableToInvert =
- [&](Value *V, Value *&NotV, bool &ElidesXor) {
- if (match(V, m_Not(m_Value(NotV)))) {
- // If V has at most 2 uses then we can get rid of the xor operation
- // entirely.
- ElidesXor |= !V->hasNUsesOrMore(3);
- return true;
- }
- if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
- NotV = nullptr;
- return true;
- }
- return false;
- };
- Value *NotA, *NotB, *NotC;
- bool ElidesXor = false;
- // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
- // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
- // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
- // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
- //
- // This transform is performance neutral if we can elide at least one xor from
- // the set of three operands, since we'll be tacking on an xor at the very
- // end.
- if (SelectPatternResult::isMinOrMax(SPF1) &&
- SelectPatternResult::isMinOrMax(SPF2) &&
- IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
- IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
- IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
- if (!NotA)
- NotA = Builder.CreateNot(A);
- if (!NotB)
- NotB = Builder.CreateNot(B);
- if (!NotC)
- NotC = Builder.CreateNot(C);
- Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
- NotB);
- Value *NewOuter = Builder.CreateNot(
- createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
- return replaceInstUsesWith(Outer, NewOuter);
- }
- return nullptr;
- }
- /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
- /// This is even legal for FP.
- static Instruction *foldAddSubSelect(SelectInst &SI,
- InstCombiner::BuilderTy &Builder) {
- Value *CondVal = SI.getCondition();
- Value *TrueVal = SI.getTrueValue();
- Value *FalseVal = SI.getFalseValue();
- auto *TI = dyn_cast<Instruction>(TrueVal);
- auto *FI = dyn_cast<Instruction>(FalseVal);
- if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
- return nullptr;
- Instruction *AddOp = nullptr, *SubOp = nullptr;
- if ((TI->getOpcode() == Instruction::Sub &&
- FI->getOpcode() == Instruction::Add) ||
- (TI->getOpcode() == Instruction::FSub &&
- FI->getOpcode() == Instruction::FAdd)) {
- AddOp = FI;
- SubOp = TI;
- } else if ((FI->getOpcode() == Instruction::Sub &&
- TI->getOpcode() == Instruction::Add) ||
- (FI->getOpcode() == Instruction::FSub &&
- TI->getOpcode() == Instruction::FAdd)) {
- AddOp = TI;
- SubOp = FI;
- }
- if (AddOp) {
- Value *OtherAddOp = nullptr;
- if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
- OtherAddOp = AddOp->getOperand(1);
- } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
- OtherAddOp = AddOp->getOperand(0);
- }
- if (OtherAddOp) {
- // So at this point we know we have (Y -> OtherAddOp):
- // select C, (add X, Y), (sub X, Z)
- Value *NegVal; // Compute -Z
- if (SI.getType()->isFPOrFPVectorTy()) {
- NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
- if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
- FastMathFlags Flags = AddOp->getFastMathFlags();
- Flags &= SubOp->getFastMathFlags();
- NegInst->setFastMathFlags(Flags);
- }
- } else {
- NegVal = Builder.CreateNeg(SubOp->getOperand(1));
- }
- Value *NewTrueOp = OtherAddOp;
- Value *NewFalseOp = NegVal;
- if (AddOp != TI)
- std::swap(NewTrueOp, NewFalseOp);
- Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
- SI.getName() + ".p", &SI);
- if (SI.getType()->isFPOrFPVectorTy()) {
- Instruction *RI =
- BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
- FastMathFlags Flags = AddOp->getFastMathFlags();
- Flags &= SubOp->getFastMathFlags();
- RI->setFastMathFlags(Flags);
- return RI;
- } else
- return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
- }
- }
- return nullptr;
- }
- /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
- /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
- /// Along with a number of patterns similar to:
- /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
- /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
- static Instruction *
- foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
- Value *CondVal = SI.getCondition();
- Value *TrueVal = SI.getTrueValue();
- Value *FalseVal = SI.getFalseValue();
- WithOverflowInst *II;
- if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
- !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
- return nullptr;
- Value *X = II->getLHS();
- Value *Y = II->getRHS();
- auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
- Type *Ty = Limit->getType();
- ICmpInst::Predicate Pred;
- Value *TrueVal, *FalseVal, *Op;
- const APInt *C;
- if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
- m_Value(TrueVal), m_Value(FalseVal))))
- return false;
- auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
- auto IsMinMax = [&](Value *Min, Value *Max) {
- APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
- APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
- return match(Min, m_SpecificInt(MinVal)) &&
- match(Max, m_SpecificInt(MaxVal));
- };
- if (Op != X && Op != Y)
- return false;
- if (IsAdd) {
- // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
- if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
- IsMinMax(TrueVal, FalseVal))
- return true;
- // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
- if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
- IsMinMax(FalseVal, TrueVal))
- return true;
- } else {
- // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
- if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
- IsMinMax(TrueVal, FalseVal))
- return true;
- // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
- if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
- IsMinMax(FalseVal, TrueVal))
- return true;
- // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
- if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
- IsMinMax(FalseVal, TrueVal))
- return true;
- // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
- if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
- IsMinMax(TrueVal, FalseVal))
- return true;
- }
- return false;
- };
- Intrinsic::ID NewIntrinsicID;
- if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
- match(TrueVal, m_AllOnes()))
- // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
- NewIntrinsicID = Intrinsic::uadd_sat;
- else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
- match(TrueVal, m_Zero()))
- // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
- NewIntrinsicID = Intrinsic::usub_sat;
- else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
- IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
- // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
- // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
- NewIntrinsicID = Intrinsic::sadd_sat;
- else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
- IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
- // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
- // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
- NewIntrinsicID = Intrinsic::ssub_sat;
- else
- return nullptr;
- Function *F =
- Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
- return CallInst::Create(F, {X, Y});
- }
- Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
- Constant *C;
- if (!match(Sel.getTrueValue(), m_Constant(C)) &&
- !match(Sel.getFalseValue(), m_Constant(C)))
- return nullptr;
- Instruction *ExtInst;
- if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
- !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
- return nullptr;
- auto ExtOpcode = ExtInst->getOpcode();
- if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
- return nullptr;
- // If we are extending from a boolean type or if we can create a select that
- // has the same size operands as its condition, try to narrow the select.
- Value *X = ExtInst->getOperand(0);
- Type *SmallType = X->getType();
- Value *Cond = Sel.getCondition();
- auto *Cmp = dyn_cast<CmpInst>(Cond);
- if (!SmallType->isIntOrIntVectorTy(1) &&
- (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
- return nullptr;
- // If the constant is the same after truncation to the smaller type and
- // extension to the original type, we can narrow the select.
- Type *SelType = Sel.getType();
- Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
- Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
- if (ExtC == C && ExtInst->hasOneUse()) {
- Value *TruncCVal = cast<Value>(TruncC);
- if (ExtInst == Sel.getFalseValue())
- std::swap(X, TruncCVal);
- // select Cond, (ext X), C --> ext(select Cond, X, C')
- // select Cond, C, (ext X) --> ext(select Cond, C', X)
- Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
- return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
- }
- // If one arm of the select is the extend of the condition, replace that arm
- // with the extension of the appropriate known bool value.
- if (Cond == X) {
- if (ExtInst == Sel.getTrueValue()) {
- // select X, (sext X), C --> select X, -1, C
- // select X, (zext X), C --> select X, 1, C
- Constant *One = ConstantInt::getTrue(SmallType);
- Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
- return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
- } else {
- // select X, C, (sext X) --> select X, C, 0
- // select X, C, (zext X) --> select X, C, 0
- Constant *Zero = ConstantInt::getNullValue(SelType);
- return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
- }
- }
- return nullptr;
- }
- /// Try to transform a vector select with a constant condition vector into a
- /// shuffle for easier combining with other shuffles and insert/extract.
- static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
- Value *CondVal = SI.getCondition();
- Constant *CondC;
- auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
- if (!CondValTy || !match(CondVal, m_Constant(CondC)))
- return nullptr;
- unsigned NumElts = CondValTy->getNumElements();
- SmallVector<int, 16> Mask;
- Mask.reserve(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *Elt = CondC->getAggregateElement(i);
- if (!Elt)
- return nullptr;
- if (Elt->isOneValue()) {
- // If the select condition element is true, choose from the 1st vector.
- Mask.push_back(i);
- } else if (Elt->isNullValue()) {
- // If the select condition element is false, choose from the 2nd vector.
- Mask.push_back(i + NumElts);
- } else if (isa<UndefValue>(Elt)) {
- // Undef in a select condition (choose one of the operands) does not mean
- // the same thing as undef in a shuffle mask (any value is acceptable), so
- // give up.
- return nullptr;
- } else {
- // Bail out on a constant expression.
- return nullptr;
- }
- }
- return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
- }
- /// If we have a select of vectors with a scalar condition, try to convert that
- /// to a vector select by splatting the condition. A splat may get folded with
- /// other operations in IR and having all operands of a select be vector types
- /// is likely better for vector codegen.
- static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
- InstCombinerImpl &IC) {
- auto *Ty = dyn_cast<VectorType>(Sel.getType());
- if (!Ty)
- return nullptr;
- // We can replace a single-use extract with constant index.
- Value *Cond = Sel.getCondition();
- if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
- return nullptr;
- // select (extelt V, Index), T, F --> select (splat V, Index), T, F
- // Splatting the extracted condition reduces code (we could directly create a
- // splat shuffle of the source vector to eliminate the intermediate step).
- return IC.replaceOperand(
- Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
- }
- /// Reuse bitcasted operands between a compare and select:
- /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
- /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
- static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
- InstCombiner::BuilderTy &Builder) {
- Value *Cond = Sel.getCondition();
- Value *TVal = Sel.getTrueValue();
- Value *FVal = Sel.getFalseValue();
- CmpInst::Predicate Pred;
- Value *A, *B;
- if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
- return nullptr;
- // The select condition is a compare instruction. If the select's true/false
- // values are already the same as the compare operands, there's nothing to do.
- if (TVal == A || TVal == B || FVal == A || FVal == B)
- return nullptr;
- Value *C, *D;
- if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
- return nullptr;
- // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
- Value *TSrc, *FSrc;
- if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
- !match(FVal, m_BitCast(m_Value(FSrc))))
- return nullptr;
- // If the select true/false values are *different bitcasts* of the same source
- // operands, make the select operands the same as the compare operands and
- // cast the result. This is the canonical select form for min/max.
- Value *NewSel;
- if (TSrc == C && FSrc == D) {
- // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
- // bitcast (select (cmp A, B), A, B)
- NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
- } else if (TSrc == D && FSrc == C) {
- // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
- // bitcast (select (cmp A, B), B, A)
- NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
- } else {
- return nullptr;
- }
- return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
- }
- /// Try to eliminate select instructions that test the returned flag of cmpxchg
- /// instructions.
- ///
- /// If a select instruction tests the returned flag of a cmpxchg instruction and
- /// selects between the returned value of the cmpxchg instruction its compare
- /// operand, the result of the select will always be equal to its false value.
- /// For example:
- ///
- /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
- /// %1 = extractvalue { i64, i1 } %0, 1
- /// %2 = extractvalue { i64, i1 } %0, 0
- /// %3 = select i1 %1, i64 %compare, i64 %2
- /// ret i64 %3
- ///
- /// The returned value of the cmpxchg instruction (%2) is the original value
- /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
- /// must have been equal to %compare. Thus, the result of the select is always
- /// equal to %2, and the code can be simplified to:
- ///
- /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
- /// %1 = extractvalue { i64, i1 } %0, 0
- /// ret i64 %1
- ///
- static Value *foldSelectCmpXchg(SelectInst &SI) {
- // A helper that determines if V is an extractvalue instruction whose
- // aggregate operand is a cmpxchg instruction and whose single index is equal
- // to I. If such conditions are true, the helper returns the cmpxchg
- // instruction; otherwise, a nullptr is returned.
- auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
- auto *Extract = dyn_cast<ExtractValueInst>(V);
- if (!Extract)
- return nullptr;
- if (Extract->getIndices()[0] != I)
- return nullptr;
- return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
- };
- // If the select has a single user, and this user is a select instruction that
- // we can simplify, skip the cmpxchg simplification for now.
- if (SI.hasOneUse())
- if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
- if (Select->getCondition() == SI.getCondition())
- if (Select->getFalseValue() == SI.getTrueValue() ||
- Select->getTrueValue() == SI.getFalseValue())
- return nullptr;
- // Ensure the select condition is the returned flag of a cmpxchg instruction.
- auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
- if (!CmpXchg)
- return nullptr;
- // Check the true value case: The true value of the select is the returned
- // value of the same cmpxchg used by the condition, and the false value is the
- // cmpxchg instruction's compare operand.
- if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
- if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
- return SI.getFalseValue();
- // Check the false value case: The false value of the select is the returned
- // value of the same cmpxchg used by the condition, and the true value is the
- // cmpxchg instruction's compare operand.
- if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
- if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
- return SI.getFalseValue();
- return nullptr;
- }
- static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
- Value *Y,
- InstCombiner::BuilderTy &Builder) {
- assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
- bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
- SPF == SelectPatternFlavor::SPF_UMAX;
- // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
- // the constant value check to an assert.
- Value *A;
- const APInt *C1, *C2;
- if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
- match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
- // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
- // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
- Value *NewMinMax = createMinMax(Builder, SPF, A,
- ConstantInt::get(X->getType(), *C2 - *C1));
- return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
- ConstantInt::get(X->getType(), *C1));
- }
- if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
- match(Y, m_APInt(C2)) && X->hasNUses(2)) {
- bool Overflow;
- APInt Diff = C2->ssub_ov(*C1, Overflow);
- if (!Overflow) {
- // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
- // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
- Value *NewMinMax = createMinMax(Builder, SPF, A,
- ConstantInt::get(X->getType(), Diff));
- return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
- ConstantInt::get(X->getType(), *C1));
- }
- }
- return nullptr;
- }
- /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
- Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) {
- Type *Ty = MinMax1.getType();
- // We are looking for a tree of:
- // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
- // Where the min and max could be reversed
- Instruction *MinMax2;
- BinaryOperator *AddSub;
- const APInt *MinValue, *MaxValue;
- if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
- if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
- return nullptr;
- } else if (match(&MinMax1,
- m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
- if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
- return nullptr;
- } else
- return nullptr;
- // Check that the constants clamp a saturate, and that the new type would be
- // sensible to convert to.
- if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
- return nullptr;
- // In what bitwidth can this be treated as saturating arithmetics?
- unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
- // FIXME: This isn't quite right for vectors, but using the scalar type is a
- // good first approximation for what should be done there.
- if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
- return nullptr;
- // Also make sure that the number of uses is as expected. The 3 is for the
- // the two items of the compare and the select, or 2 from a min/max.
- unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3;
- if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses))
- return nullptr;
- // Create the new type (which can be a vector type)
- Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
- Intrinsic::ID IntrinsicID;
- if (AddSub->getOpcode() == Instruction::Add)
- IntrinsicID = Intrinsic::sadd_sat;
- else if (AddSub->getOpcode() == Instruction::Sub)
- IntrinsicID = Intrinsic::ssub_sat;
- else
- return nullptr;
- // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
- // is usually achieved via a sext from a smaller type.
- if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
- NewBitWidth ||
- ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
- return nullptr;
- // Finally create and return the sat intrinsic, truncated to the new type
- Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
- Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
- Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
- Value *Sat = Builder.CreateCall(F, {AT, BT});
- return CastInst::Create(Instruction::SExt, Sat, Ty);
- }
- /// Reduce a sequence of min/max with a common operand.
- static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
- Value *RHS,
- InstCombiner::BuilderTy &Builder) {
- assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
- // TODO: Allow FP min/max with nnan/nsz.
- if (!LHS->getType()->isIntOrIntVectorTy())
- return nullptr;
- // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
- Value *A, *B, *C, *D;
- SelectPatternResult L = matchSelectPattern(LHS, A, B);
- SelectPatternResult R = matchSelectPattern(RHS, C, D);
- if (SPF != L.Flavor || L.Flavor != R.Flavor)
- return nullptr;
- // Look for a common operand. The use checks are different than usual because
- // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
- // the select.
- Value *MinMaxOp = nullptr;
- Value *ThirdOp = nullptr;
- if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
- // If the LHS is only used in this chain and the RHS is used outside of it,
- // reuse the RHS min/max because that will eliminate the LHS.
- if (D == A || C == A) {
- // min(min(a, b), min(c, a)) --> min(min(c, a), b)
- // min(min(a, b), min(a, d)) --> min(min(a, d), b)
- MinMaxOp = RHS;
- ThirdOp = B;
- } else if (D == B || C == B) {
- // min(min(a, b), min(c, b)) --> min(min(c, b), a)
- // min(min(a, b), min(b, d)) --> min(min(b, d), a)
- MinMaxOp = RHS;
- ThirdOp = A;
- }
- } else if (!RHS->hasNUsesOrMore(3)) {
- // Reuse the LHS. This will eliminate the RHS.
- if (D == A || D == B) {
- // min(min(a, b), min(c, a)) --> min(min(a, b), c)
- // min(min(a, b), min(c, b)) --> min(min(a, b), c)
- MinMaxOp = LHS;
- ThirdOp = C;
- } else if (C == A || C == B) {
- // min(min(a, b), min(b, d)) --> min(min(a, b), d)
- // min(min(a, b), min(c, b)) --> min(min(a, b), d)
- MinMaxOp = LHS;
- ThirdOp = D;
- }
- }
- if (!MinMaxOp || !ThirdOp)
- return nullptr;
- CmpInst::Predicate P = getMinMaxPred(SPF);
- Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
- return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
- }
- /// Try to reduce a funnel/rotate pattern that includes a compare and select
- /// into a funnel shift intrinsic. Example:
- /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
- /// --> call llvm.fshl.i32(a, a, b)
- /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
- /// --> call llvm.fshl.i32(a, b, c)
- /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
- /// --> call llvm.fshr.i32(a, b, c)
- static Instruction *foldSelectFunnelShift(SelectInst &Sel,
- InstCombiner::BuilderTy &Builder) {
- // This must be a power-of-2 type for a bitmasking transform to be valid.
- unsigned Width = Sel.getType()->getScalarSizeInBits();
- if (!isPowerOf2_32(Width))
- return nullptr;
- BinaryOperator *Or0, *Or1;
- if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
- return nullptr;
- Value *SV0, *SV1, *SA0, *SA1;
- if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
- m_ZExtOrSelf(m_Value(SA0))))) ||
- !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
- m_ZExtOrSelf(m_Value(SA1))))) ||
- Or0->getOpcode() == Or1->getOpcode())
- return nullptr;
- // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
- if (Or0->getOpcode() == BinaryOperator::LShr) {
- std::swap(Or0, Or1);
- std::swap(SV0, SV1);
- std::swap(SA0, SA1);
- }
- assert(Or0->getOpcode() == BinaryOperator::Shl &&
- Or1->getOpcode() == BinaryOperator::LShr &&
- "Illegal or(shift,shift) pair");
- // Check the shift amounts to see if they are an opposite pair.
- Value *ShAmt;
- if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
- ShAmt = SA0;
- else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
- ShAmt = SA1;
- else
- return nullptr;
- // We should now have this pattern:
- // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
- // The false value of the select must be a funnel-shift of the true value:
- // IsFShl -> TVal must be SV0 else TVal must be SV1.
- bool IsFshl = (ShAmt == SA0);
- Value *TVal = Sel.getTrueValue();
- if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
- return nullptr;
- // Finally, see if the select is filtering out a shift-by-zero.
- Value *Cond = Sel.getCondition();
- ICmpInst::Predicate Pred;
- if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
- Pred != ICmpInst::ICMP_EQ)
- return nullptr;
- // If this is not a rotate then the select was blocking poison from the
- // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
- if (SV0 != SV1) {
- if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
- SV1 = Builder.CreateFreeze(SV1);
- else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
- SV0 = Builder.CreateFreeze(SV0);
- }
- // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
- // Convert to funnel shift intrinsic.
- Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
- Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
- ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
- return CallInst::Create(F, { SV0, SV1, ShAmt });
- }
- static Instruction *foldSelectToCopysign(SelectInst &Sel,
- InstCombiner::BuilderTy &Builder) {
- Value *Cond = Sel.getCondition();
- Value *TVal = Sel.getTrueValue();
- Value *FVal = Sel.getFalseValue();
- Type *SelType = Sel.getType();
- // Match select ?, TC, FC where the constants are equal but negated.
- // TODO: Generalize to handle a negated variable operand?
- const APFloat *TC, *FC;
- if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
- !abs(*TC).bitwiseIsEqual(abs(*FC)))
- return nullptr;
- assert(TC != FC && "Expected equal select arms to simplify");
- Value *X;
- const APInt *C;
- bool IsTrueIfSignSet;
- ICmpInst::Predicate Pred;
- if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
- !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
- X->getType() != SelType)
- return nullptr;
- // If needed, negate the value that will be the sign argument of the copysign:
- // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
- // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
- // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
- // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
- if (IsTrueIfSignSet ^ TC->isNegative())
- X = Builder.CreateFNegFMF(X, &Sel);
- // Canonicalize the magnitude argument as the positive constant since we do
- // not care about its sign.
- Value *MagArg = TC->isNegative() ? FVal : TVal;
- Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
- Sel.getType());
- Instruction *CopySign = CallInst::Create(F, { MagArg, X });
- CopySign->setFastMathFlags(Sel.getFastMathFlags());
- return CopySign;
- }
- Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
- auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
- if (!VecTy)
- return nullptr;
- unsigned NumElts = VecTy->getNumElements();
- APInt UndefElts(NumElts, 0);
- APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
- if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
- if (V != &Sel)
- return replaceInstUsesWith(Sel, V);
- return &Sel;
- }
- // A select of a "select shuffle" with a common operand can be rearranged
- // to select followed by "select shuffle". Because of poison, this only works
- // in the case of a shuffle with no undefined mask elements.
- Value *Cond = Sel.getCondition();
- Value *TVal = Sel.getTrueValue();
- Value *FVal = Sel.getFalseValue();
- Value *X, *Y;
- ArrayRef<int> Mask;
- if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
- !is_contained(Mask, UndefMaskElem) &&
- cast<ShuffleVectorInst>(TVal)->isSelect()) {
- if (X == FVal) {
- // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
- Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
- return new ShuffleVectorInst(X, NewSel, Mask);
- }
- if (Y == FVal) {
- // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
- Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
- return new ShuffleVectorInst(NewSel, Y, Mask);
- }
- }
- if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
- !is_contained(Mask, UndefMaskElem) &&
- cast<ShuffleVectorInst>(FVal)->isSelect()) {
- if (X == TVal) {
- // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
- Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
- return new ShuffleVectorInst(X, NewSel, Mask);
- }
- if (Y == TVal) {
- // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
- Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
- return new ShuffleVectorInst(NewSel, Y, Mask);
- }
- }
- return nullptr;
- }
- static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
- const DominatorTree &DT,
- InstCombiner::BuilderTy &Builder) {
- // Find the block's immediate dominator that ends with a conditional branch
- // that matches select's condition (maybe inverted).
- auto *IDomNode = DT[BB]->getIDom();
- if (!IDomNode)
- return nullptr;
- BasicBlock *IDom = IDomNode->getBlock();
- Value *Cond = Sel.getCondition();
- Value *IfTrue, *IfFalse;
- BasicBlock *TrueSucc, *FalseSucc;
- if (match(IDom->getTerminator(),
- m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
- m_BasicBlock(FalseSucc)))) {
- IfTrue = Sel.getTrueValue();
- IfFalse = Sel.getFalseValue();
- } else if (match(IDom->getTerminator(),
- m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
- m_BasicBlock(FalseSucc)))) {
- IfTrue = Sel.getFalseValue();
- IfFalse = Sel.getTrueValue();
- } else
- return nullptr;
- // Make sure the branches are actually different.
- if (TrueSucc == FalseSucc)
- return nullptr;
- // We want to replace select %cond, %a, %b with a phi that takes value %a
- // for all incoming edges that are dominated by condition `%cond == true`,
- // and value %b for edges dominated by condition `%cond == false`. If %a
- // or %b are also phis from the same basic block, we can go further and take
- // their incoming values from the corresponding blocks.
- BasicBlockEdge TrueEdge(IDom, TrueSucc);
- BasicBlockEdge FalseEdge(IDom, FalseSucc);
- DenseMap<BasicBlock *, Value *> Inputs;
- for (auto *Pred : predecessors(BB)) {
- // Check implication.
- BasicBlockEdge Incoming(Pred, BB);
- if (DT.dominates(TrueEdge, Incoming))
- Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
- else if (DT.dominates(FalseEdge, Incoming))
- Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
- else
- return nullptr;
- // Check availability.
- if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
- if (!DT.dominates(Insn, Pred->getTerminator()))
- return nullptr;
- }
- Builder.SetInsertPoint(&*BB->begin());
- auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
- for (auto *Pred : predecessors(BB))
- PN->addIncoming(Inputs[Pred], Pred);
- PN->takeName(&Sel);
- return PN;
- }
- static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
- InstCombiner::BuilderTy &Builder) {
- // Try to replace this select with Phi in one of these blocks.
- SmallSetVector<BasicBlock *, 4> CandidateBlocks;
- CandidateBlocks.insert(Sel.getParent());
- for (Value *V : Sel.operands())
- if (auto *I = dyn_cast<Instruction>(V))
- CandidateBlocks.insert(I->getParent());
- for (BasicBlock *BB : CandidateBlocks)
- if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
- return PN;
- return nullptr;
- }
- static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
- FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
- if (!FI)
- return nullptr;
- Value *Cond = FI->getOperand(0);
- Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
- // select (freeze(x == y)), x, y --> y
- // select (freeze(x != y)), x, y --> x
- // The freeze should be only used by this select. Otherwise, remaining uses of
- // the freeze can observe a contradictory value.
- // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1
- // a = select c, x, y ;
- // f(a, c) ; f(poison, 1) cannot happen, but if a is folded
- // ; to y, this can happen.
- CmpInst::Predicate Pred;
- if (FI->hasOneUse() &&
- match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
- (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
- return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
- SelectInst &SI,
- bool IsAnd) {
- Value *CondVal = SI.getCondition();
- Value *A = SI.getTrueValue();
- Value *B = SI.getFalseValue();
- assert(Op->getType()->isIntOrIntVectorTy(1) &&
- "Op must be either i1 or vector of i1.");
- Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
- if (!Res)
- return nullptr;
- Value *Zero = Constant::getNullValue(A->getType());
- Value *One = Constant::getAllOnesValue(A->getType());
- if (*Res == true) {
- if (IsAnd)
- // select op, (select cond, A, B), false => select op, A, false
- // and op, (select cond, A, B) => select op, A, false
- // if op = true implies condval = true.
- return SelectInst::Create(Op, A, Zero);
- else
- // select op, true, (select cond, A, B) => select op, true, A
- // or op, (select cond, A, B) => select op, true, A
- // if op = false implies condval = true.
- return SelectInst::Create(Op, One, A);
- } else {
- if (IsAnd)
- // select op, (select cond, A, B), false => select op, B, false
- // and op, (select cond, A, B) => select op, B, false
- // if op = true implies condval = false.
- return SelectInst::Create(Op, B, Zero);
- else
- // select op, true, (select cond, A, B) => select op, true, B
- // or op, (select cond, A, B) => select op, true, B
- // if op = false implies condval = false.
- return SelectInst::Create(Op, One, B);
- }
- }
- Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
- Value *CondVal = SI.getCondition();
- Value *TrueVal = SI.getTrueValue();
- Value *FalseVal = SI.getFalseValue();
- Type *SelType = SI.getType();
- // FIXME: Remove this workaround when freeze related patches are done.
- // For select with undef operand which feeds into an equality comparison,
- // don't simplify it so loop unswitch can know the equality comparison
- // may have an undef operand. This is a workaround for PR31652 caused by
- // descrepancy about branch on undef between LoopUnswitch and GVN.
- if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
- if (llvm::any_of(SI.users(), [&](User *U) {
- ICmpInst *CI = dyn_cast<ICmpInst>(U);
- if (CI && CI->isEquality())
- return true;
- return false;
- })) {
- return nullptr;
- }
- }
- if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
- SQ.getWithInstruction(&SI)))
- return replaceInstUsesWith(SI, V);
- if (Instruction *I = canonicalizeSelectToShuffle(SI))
- return I;
- if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
- return I;
- CmpInst::Predicate Pred;
- // Avoid potential infinite loops by checking for non-constant condition.
- // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
- // Scalar select must have simplified?
- if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
- TrueVal->getType() == CondVal->getType()) {
- // Folding select to and/or i1 isn't poison safe in general. impliesPoison
- // checks whether folding it does not convert a well-defined value into
- // poison.
- if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) {
- // Change: A = select B, true, C --> A = or B, C
- return BinaryOperator::CreateOr(CondVal, FalseVal);
- }
- if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) {
- // Change: A = select B, C, false --> A = and B, C
- return BinaryOperator::CreateAnd(CondVal, TrueVal);
- }
- auto *One = ConstantInt::getTrue(SelType);
- auto *Zero = ConstantInt::getFalse(SelType);
- // We match the "full" 0 or 1 constant here to avoid a potential infinite
- // loop with vectors that may have undefined/poison elements.
- // select a, false, b -> select !a, b, false
- if (match(TrueVal, m_Specific(Zero))) {
- Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
- return SelectInst::Create(NotCond, FalseVal, Zero);
- }
- // select a, b, true -> select !a, true, b
- if (match(FalseVal, m_Specific(One))) {
- Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
- return SelectInst::Create(NotCond, One, TrueVal);
- }
- // select a, a, b -> select a, true, b
- if (CondVal == TrueVal)
- return replaceOperand(SI, 1, One);
- // select a, b, a -> select a, b, false
- if (CondVal == FalseVal)
- return replaceOperand(SI, 2, Zero);
- // select a, !a, b -> select !a, b, false
- if (match(TrueVal, m_Not(m_Specific(CondVal))))
- return SelectInst::Create(TrueVal, FalseVal, Zero);
- // select a, b, !a -> select !a, true, b
- if (match(FalseVal, m_Not(m_Specific(CondVal))))
- return SelectInst::Create(FalseVal, One, TrueVal);
- Value *A, *B;
- // DeMorgan in select form: !a && !b --> !(a || b)
- // select !a, !b, false --> not (select a, true, b)
- if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
- (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
- !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
- return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
- // DeMorgan in select form: !a || !b --> !(a && b)
- // select !a, true, !b --> not (select a, b, false)
- if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
- (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
- !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
- return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
- // select (select a, true, b), true, b -> select a, true, b
- if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
- match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
- return replaceOperand(SI, 0, A);
- // select (select a, b, false), b, false -> select a, b, false
- if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
- match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
- return replaceOperand(SI, 0, A);
- if (!SelType->isVectorTy()) {
- if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
- /* AllowRefinement */ true))
- return replaceOperand(SI, 1, S);
- if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
- /* AllowRefinement */ true))
- return replaceOperand(SI, 2, S);
- }
- if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
- Use *Y = nullptr;
- bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
- Value *Op1 = IsAnd ? TrueVal : FalseVal;
- if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
- auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
- InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
- replaceUse(*Y, FI);
- return replaceInstUsesWith(SI, Op1);
- }
- if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
- if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
- /* IsAnd */ IsAnd))
- return I;
- if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
- if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
- if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
- /* IsLogical */ true))
- return replaceInstUsesWith(SI, V);
- if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
- return replaceInstUsesWith(SI, V);
- }
- }
- }
- // select (select a, true, b), c, false -> select a, c, false
- // select c, (select a, true, b), false -> select c, a, false
- // if c implies that b is false.
- if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
- match(FalseVal, m_Zero())) {
- Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
- if (Res && *Res == false)
- return replaceOperand(SI, 0, A);
- }
- if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
- match(FalseVal, m_Zero())) {
- Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
- if (Res && *Res == false)
- return replaceOperand(SI, 1, A);
- }
- // select c, true, (select a, b, false) -> select c, true, a
- // select (select a, b, false), true, c -> select a, true, c
- // if c = false implies that b = true
- if (match(TrueVal, m_One()) &&
- match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
- Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
- if (Res && *Res == true)
- return replaceOperand(SI, 2, A);
- }
- if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
- match(TrueVal, m_One())) {
- Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
- if (Res && *Res == true)
- return replaceOperand(SI, 0, A);
- }
- // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
- // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
- Value *C1, *C2;
- if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
- match(TrueVal, m_One()) &&
- match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
- if (match(C2, m_Not(m_Specific(C1)))) // first case
- return SelectInst::Create(C1, A, B);
- else if (match(C1, m_Not(m_Specific(C2)))) // second case
- return SelectInst::Create(C2, B, A);
- }
- }
- // Selecting between two integer or vector splat integer constants?
- //
- // Note that we don't handle a scalar select of vectors:
- // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
- // because that may need 3 instructions to splat the condition value:
- // extend, insertelement, shufflevector.
- //
- // Do not handle i1 TrueVal and FalseVal otherwise would result in
- // zext/sext i1 to i1.
- if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
- CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
- // select C, 1, 0 -> zext C to int
- if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
- return new ZExtInst(CondVal, SelType);
- // select C, -1, 0 -> sext C to int
- if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
- return new SExtInst(CondVal, SelType);
- // select C, 0, 1 -> zext !C to int
- if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
- Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
- return new ZExtInst(NotCond, SelType);
- }
- // select C, 0, -1 -> sext !C to int
- if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
- Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
- return new SExtInst(NotCond, SelType);
- }
- }
- if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
- Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
- // Are we selecting a value based on a comparison of the two values?
- if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
- (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
- // Canonicalize to use ordered comparisons by swapping the select
- // operands.
- //
- // e.g.
- // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
- if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
- FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
- IRBuilder<>::FastMathFlagGuard FMFG(Builder);
- // FIXME: The FMF should propagate from the select, not the fcmp.
- Builder.setFastMathFlags(FCmp->getFastMathFlags());
- Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
- FCmp->getName() + ".inv");
- Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
- return replaceInstUsesWith(SI, NewSel);
- }
- // NOTE: if we wanted to, this is where to detect MIN/MAX
- }
- }
- // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
- // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
- // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
- if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
- match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
- (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
- Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
- return replaceInstUsesWith(SI, Fabs);
- }
- // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X)
- if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
- match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
- (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
- Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
- return replaceInstUsesWith(SI, Fabs);
- }
- // With nnan and nsz:
- // (X < +/-0.0) ? -X : X --> fabs(X)
- // (X <= +/-0.0) ? -X : X --> fabs(X)
- if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
- match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() &&
- (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
- Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
- Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
- return replaceInstUsesWith(SI, Fabs);
- }
- // With nnan and nsz:
- // (X > +/-0.0) ? X : -X --> fabs(X)
- // (X >= +/-0.0) ? X : -X --> fabs(X)
- if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
- match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() &&
- (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
- Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
- Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
- return replaceInstUsesWith(SI, Fabs);
- }
- // See if we are selecting two values based on a comparison of the two values.
- if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
- if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
- return Result;
- if (Instruction *Add = foldAddSubSelect(SI, Builder))
- return Add;
- if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
- return Add;
- if (Instruction *Or = foldSetClearBits(SI, Builder))
- return Or;
- if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
- return Mul;
- // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
- auto *TI = dyn_cast<Instruction>(TrueVal);
- auto *FI = dyn_cast<Instruction>(FalseVal);
- if (TI && FI && TI->getOpcode() == FI->getOpcode())
- if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
- return IV;
- if (Instruction *I = foldSelectExtConst(SI))
- return I;
- // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
- // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
- auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
- bool Swap) -> GetElementPtrInst * {
- Value *Ptr = Gep->getPointerOperand();
- if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
- !Gep->hasOneUse())
- return nullptr;
- Value *Idx = Gep->getOperand(1);
- if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
- return nullptr;
- Type *ElementType = Gep->getResultElementType();
- Value *NewT = Idx;
- Value *NewF = Constant::getNullValue(Idx->getType());
- if (Swap)
- std::swap(NewT, NewF);
- Value *NewSI =
- Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
- return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
- };
- if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
- if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
- return NewGep;
- if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
- if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
- return NewGep;
- // See if we can fold the select into one of our operands.
- if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
- if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
- return FoldI;
- Value *LHS, *RHS;
- Instruction::CastOps CastOp;
- SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
- auto SPF = SPR.Flavor;
- if (SPF) {
- Value *LHS2, *RHS2;
- if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
- if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
- RHS2, SI, SPF, RHS))
- return R;
- if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
- if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
- RHS2, SI, SPF, LHS))
- return R;
- // TODO.
- // ABS(-X) -> ABS(X)
- }
- if (SelectPatternResult::isMinOrMax(SPF)) {
- // Canonicalize so that
- // - type casts are outside select patterns.
- // - float clamp is transformed to min/max pattern
- bool IsCastNeeded = LHS->getType() != SelType;
- Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
- Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
- if (IsCastNeeded ||
- (LHS->getType()->isFPOrFPVectorTy() &&
- ((CmpLHS != LHS && CmpLHS != RHS) ||
- (CmpRHS != LHS && CmpRHS != RHS)))) {
- CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
- Value *Cmp;
- if (CmpInst::isIntPredicate(MinMaxPred)) {
- Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
- } else {
- IRBuilder<>::FastMathFlagGuard FMFG(Builder);
- auto FMF =
- cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
- Builder.setFastMathFlags(FMF);
- Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
- }
- Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
- if (!IsCastNeeded)
- return replaceInstUsesWith(SI, NewSI);
- Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
- return replaceInstUsesWith(SI, NewCast);
- }
- // MAX(~a, ~b) -> ~MIN(a, b)
- // MAX(~a, C) -> ~MIN(a, ~C)
- // MIN(~a, ~b) -> ~MAX(a, b)
- // MIN(~a, C) -> ~MAX(a, ~C)
- auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
- Value *A;
- if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
- !isFreeToInvert(A, A->hasOneUse()) &&
- // Passing false to only consider m_Not and constants.
- isFreeToInvert(Y, false)) {
- Value *B = Builder.CreateNot(Y);
- Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
- A, B);
- // Copy the profile metadata.
- if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
- cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
- // Swap the metadata if the operands are swapped.
- if (X == SI.getFalseValue() && Y == SI.getTrueValue())
- cast<SelectInst>(NewMinMax)->swapProfMetadata();
- }
- return BinaryOperator::CreateNot(NewMinMax);
- }
- return nullptr;
- };
- if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
- return I;
- if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
- return I;
- if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
- return I;
- if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
- return I;
- if (Instruction *I = matchSAddSubSat(SI))
- return I;
- }
- }
- // Canonicalize select of FP values where NaN and -0.0 are not valid as
- // minnum/maxnum intrinsics.
- if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
- Value *X, *Y;
- if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
- return replaceInstUsesWith(
- SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
- if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
- return replaceInstUsesWith(
- SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
- }
- // See if we can fold the select into a phi node if the condition is a select.
- if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
- // The true/false values have to be live in the PHI predecessor's blocks.
- if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
- canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
- if (Instruction *NV = foldOpIntoPhi(SI, PN))
- return NV;
- if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
- if (TrueSI->getCondition()->getType() == CondVal->getType()) {
- // select(C, select(C, a, b), c) -> select(C, a, c)
- if (TrueSI->getCondition() == CondVal) {
- if (SI.getTrueValue() == TrueSI->getTrueValue())
- return nullptr;
- return replaceOperand(SI, 1, TrueSI->getTrueValue());
- }
- // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
- // We choose this as normal form to enable folding on the And and
- // shortening paths for the values (this helps getUnderlyingObjects() for
- // example).
- if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
- Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
- replaceOperand(SI, 0, And);
- replaceOperand(SI, 1, TrueSI->getTrueValue());
- return &SI;
- }
- }
- }
- if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
- if (FalseSI->getCondition()->getType() == CondVal->getType()) {
- // select(C, a, select(C, b, c)) -> select(C, a, c)
- if (FalseSI->getCondition() == CondVal) {
- if (SI.getFalseValue() == FalseSI->getFalseValue())
- return nullptr;
- return replaceOperand(SI, 2, FalseSI->getFalseValue());
- }
- // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
- if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
- Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
- replaceOperand(SI, 0, Or);
- replaceOperand(SI, 2, FalseSI->getFalseValue());
- return &SI;
- }
- }
- }
- auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
- // The select might be preventing a division by 0.
- switch (BO->getOpcode()) {
- default:
- return true;
- case Instruction::SRem:
- case Instruction::URem:
- case Instruction::SDiv:
- case Instruction::UDiv:
- return false;
- }
- };
- // Try to simplify a binop sandwiched between 2 selects with the same
- // condition.
- // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
- BinaryOperator *TrueBO;
- if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
- canMergeSelectThroughBinop(TrueBO)) {
- if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
- if (TrueBOSI->getCondition() == CondVal) {
- replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
- Worklist.push(TrueBO);
- return &SI;
- }
- }
- if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
- if (TrueBOSI->getCondition() == CondVal) {
- replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
- Worklist.push(TrueBO);
- return &SI;
- }
- }
- }
- // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
- BinaryOperator *FalseBO;
- if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
- canMergeSelectThroughBinop(FalseBO)) {
- if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
- if (FalseBOSI->getCondition() == CondVal) {
- replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
- Worklist.push(FalseBO);
- return &SI;
- }
- }
- if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
- if (FalseBOSI->getCondition() == CondVal) {
- replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
- Worklist.push(FalseBO);
- return &SI;
- }
- }
- }
- Value *NotCond;
- if (match(CondVal, m_Not(m_Value(NotCond))) &&
- !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
- replaceOperand(SI, 0, NotCond);
- SI.swapValues();
- SI.swapProfMetadata();
- return &SI;
- }
- if (Instruction *I = foldVectorSelect(SI))
- return I;
- // If we can compute the condition, there's no need for a select.
- // Like the above fold, we are attempting to reduce compile-time cost by
- // putting this fold here with limitations rather than in InstSimplify.
- // The motivation for this call into value tracking is to take advantage of
- // the assumption cache, so make sure that is populated.
- if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
- KnownBits Known(1);
- computeKnownBits(CondVal, Known, 0, &SI);
- if (Known.One.isOne())
- return replaceInstUsesWith(SI, TrueVal);
- if (Known.Zero.isOne())
- return replaceInstUsesWith(SI, FalseVal);
- }
- if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
- return BitCastSel;
- // Simplify selects that test the returned flag of cmpxchg instructions.
- if (Value *V = foldSelectCmpXchg(SI))
- return replaceInstUsesWith(SI, V);
- if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
- return Select;
- if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
- return Funnel;
- if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
- return Copysign;
- if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
- return replaceInstUsesWith(SI, PN);
- if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
- return replaceInstUsesWith(SI, Fr);
- // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
- // Load inst is intentionally not checked for hasOneUse()
- if (match(FalseVal, m_Zero()) &&
- match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
- m_CombineOr(m_Undef(), m_Zero())))) {
- auto *MaskedLoad = cast<IntrinsicInst>(TrueVal);
- if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
- MaskedLoad->setArgOperand(3, FalseVal /* Zero */);
- return replaceInstUsesWith(SI, MaskedLoad);
- }
- Value *Mask;
- if (match(TrueVal, m_Zero()) &&
- match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
- m_CombineOr(m_Undef(), m_Zero()))) &&
- (CondVal->getType() == Mask->getType())) {
- // We can remove the select by ensuring the load zeros all lanes the
- // select would have. We determine this by proving there is no overlap
- // between the load and select masks.
- // (i.e (load_mask & select_mask) == 0 == no overlap)
- bool CanMergeSelectIntoLoad = false;
- if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
- CanMergeSelectIntoLoad = match(V, m_Zero());
- if (CanMergeSelectIntoLoad) {
- auto *MaskedLoad = cast<IntrinsicInst>(FalseVal);
- if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
- MaskedLoad->setArgOperand(3, TrueVal /* Zero */);
- return replaceInstUsesWith(SI, MaskedLoad);
- }
- }
- return nullptr;
- }
|