123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668 |
- //===- InstCombineMulDivRem.cpp -------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
- // srem, urem, frem.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/ADT/APFloat.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Operator.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <utility>
- #define DEBUG_TYPE "instcombine"
- #include "llvm/Transforms/Utils/InstructionWorklist.h"
- using namespace llvm;
- using namespace PatternMatch;
- /// The specific integer value is used in a context where it is known to be
- /// non-zero. If this allows us to simplify the computation, do so and return
- /// the new operand, otherwise return null.
- static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
- Instruction &CxtI) {
- // If V has multiple uses, then we would have to do more analysis to determine
- // if this is safe. For example, the use could be in dynamically unreached
- // code.
- if (!V->hasOneUse()) return nullptr;
- bool MadeChange = false;
- // ((1 << A) >>u B) --> (1 << (A-B))
- // Because V cannot be zero, we know that B is less than A.
- Value *A = nullptr, *B = nullptr, *One = nullptr;
- if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
- match(One, m_One())) {
- A = IC.Builder.CreateSub(A, B);
- return IC.Builder.CreateShl(One, A);
- }
- // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
- // inexact. Similarly for <<.
- BinaryOperator *I = dyn_cast<BinaryOperator>(V);
- if (I && I->isLogicalShift() &&
- IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
- // We know that this is an exact/nuw shift and that the input is a
- // non-zero context as well.
- if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
- IC.replaceOperand(*I, 0, V2);
- MadeChange = true;
- }
- if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
- I->setIsExact();
- MadeChange = true;
- }
- if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
- I->setHasNoUnsignedWrap();
- MadeChange = true;
- }
- }
- // TODO: Lots more we could do here:
- // If V is a phi node, we can call this on each of its operands.
- // "select cond, X, 0" can simplify to "X".
- return MadeChange ? V : nullptr;
- }
- // TODO: This is a specific form of a much more general pattern.
- // We could detect a select with any binop identity constant, or we
- // could use SimplifyBinOp to see if either arm of the select reduces.
- // But that needs to be done carefully and/or while removing potential
- // reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
- static Value *foldMulSelectToNegate(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *Cond, *OtherOp;
- // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
- // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
- if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
- m_Value(OtherOp)))) {
- bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
- Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
- return Builder.CreateSelect(Cond, OtherOp, Neg);
- }
- // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
- // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
- if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
- m_Value(OtherOp)))) {
- bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
- Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
- return Builder.CreateSelect(Cond, Neg, OtherOp);
- }
- // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
- // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
- if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
- m_SpecificFP(-1.0))),
- m_Value(OtherOp)))) {
- IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
- Builder.setFastMathFlags(I.getFastMathFlags());
- return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
- }
- // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
- // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
- if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
- m_SpecificFP(1.0))),
- m_Value(OtherOp)))) {
- IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
- Builder.setFastMathFlags(I.getFastMathFlags());
- return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
- if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- unsigned BitWidth = I.getType()->getScalarSizeInBits();
- // X * -1 == 0 - X
- if (match(Op1, m_AllOnes())) {
- BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
- if (I.hasNoSignedWrap())
- BO->setHasNoSignedWrap();
- return BO;
- }
- // Also allow combining multiply instructions on vectors.
- {
- Value *NewOp;
- Constant *C1, *C2;
- const APInt *IVal;
- if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
- m_Constant(C1))) &&
- match(C1, m_APInt(IVal))) {
- // ((X << C2)*C1) == (X * (C1 << C2))
- Constant *Shl = ConstantExpr::getShl(C1, C2);
- BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
- BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
- if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
- BO->setHasNoUnsignedWrap();
- if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
- Shl->isNotMinSignedValue())
- BO->setHasNoSignedWrap();
- return BO;
- }
- if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
- // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
- if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
- BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
- if (I.hasNoUnsignedWrap())
- Shl->setHasNoUnsignedWrap();
- if (I.hasNoSignedWrap()) {
- const APInt *V;
- if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
- Shl->setHasNoSignedWrap();
- }
- return Shl;
- }
- }
- }
- if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
- // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
- // The "* (1<<C)" thus becomes a potential shifting opportunity.
- if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
- return BinaryOperator::CreateMul(
- NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
- }
- if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
- return FoldedMul;
- if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
- return replaceInstUsesWith(I, FoldedMul);
- // Simplify mul instructions with a constant RHS.
- if (isa<Constant>(Op1)) {
- // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
- Value *X;
- Constant *C1;
- if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
- Value *Mul = Builder.CreateMul(C1, Op1);
- // Only go forward with the transform if C1*CI simplifies to a tidier
- // constant.
- if (!match(Mul, m_Mul(m_Value(), m_Value())))
- return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
- }
- }
- // abs(X) * abs(X) -> X * X
- // nabs(X) * nabs(X) -> X * X
- if (Op0 == Op1) {
- Value *X, *Y;
- SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
- if (SPF == SPF_ABS || SPF == SPF_NABS)
- return BinaryOperator::CreateMul(X, X);
- if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
- return BinaryOperator::CreateMul(X, X);
- }
- // -X * C --> X * -C
- Value *X, *Y;
- Constant *Op1C;
- if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
- return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
- // -X * -Y --> X * Y
- if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
- auto *NewMul = BinaryOperator::CreateMul(X, Y);
- if (I.hasNoSignedWrap() &&
- cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
- cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
- NewMul->setHasNoSignedWrap();
- return NewMul;
- }
- // -X * Y --> -(X * Y)
- // X * -Y --> -(X * Y)
- if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
- return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
- // (X / Y) * Y = X - (X % Y)
- // (X / Y) * -Y = (X % Y) - X
- {
- Value *Y = Op1;
- BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
- if (!Div || (Div->getOpcode() != Instruction::UDiv &&
- Div->getOpcode() != Instruction::SDiv)) {
- Y = Op0;
- Div = dyn_cast<BinaryOperator>(Op1);
- }
- Value *Neg = dyn_castNegVal(Y);
- if (Div && Div->hasOneUse() &&
- (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
- (Div->getOpcode() == Instruction::UDiv ||
- Div->getOpcode() == Instruction::SDiv)) {
- Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
- // If the division is exact, X % Y is zero, so we end up with X or -X.
- if (Div->isExact()) {
- if (DivOp1 == Y)
- return replaceInstUsesWith(I, X);
- return BinaryOperator::CreateNeg(X);
- }
- auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
- : Instruction::SRem;
- Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
- if (DivOp1 == Y)
- return BinaryOperator::CreateSub(X, Rem);
- return BinaryOperator::CreateSub(Rem, X);
- }
- }
- /// i1 mul -> i1 and.
- if (I.getType()->isIntOrIntVectorTy(1))
- return BinaryOperator::CreateAnd(Op0, Op1);
- // X*(1 << Y) --> X << Y
- // (1 << Y)*X --> X << Y
- {
- Value *Y;
- BinaryOperator *BO = nullptr;
- bool ShlNSW = false;
- if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
- BO = BinaryOperator::CreateShl(Op1, Y);
- ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
- } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
- BO = BinaryOperator::CreateShl(Op0, Y);
- ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
- }
- if (BO) {
- if (I.hasNoUnsignedWrap())
- BO->setHasNoUnsignedWrap();
- if (I.hasNoSignedWrap() && ShlNSW)
- BO->setHasNoSignedWrap();
- return BO;
- }
- }
- // (zext bool X) * (zext bool Y) --> zext (and X, Y)
- // (sext bool X) * (sext bool Y) --> zext (and X, Y)
- // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
- if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
- (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
- X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
- (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
- Value *And = Builder.CreateAnd(X, Y, "mulbool");
- return CastInst::Create(Instruction::ZExt, And, I.getType());
- }
- // (sext bool X) * (zext bool Y) --> sext (and X, Y)
- // (zext bool X) * (sext bool Y) --> sext (and X, Y)
- // Note: -1 * 1 == 1 * -1 == -1
- if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
- (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
- X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
- (Op0->hasOneUse() || Op1->hasOneUse())) {
- Value *And = Builder.CreateAnd(X, Y, "mulbool");
- return CastInst::Create(Instruction::SExt, And, I.getType());
- }
- // (zext bool X) * Y --> X ? Y : 0
- // Y * (zext bool X) --> X ? Y : 0
- if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
- if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
- // (sext bool X) * C --> X ? -C : 0
- Constant *ImmC;
- if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1) &&
- match(Op1, m_ImmConstant(ImmC))) {
- Constant *NegC = ConstantExpr::getNeg(ImmC);
- return SelectInst::Create(X, NegC, ConstantInt::getNullValue(I.getType()));
- }
- // (lshr X, 31) * Y --> (ashr X, 31) & Y
- // Y * (lshr X, 31) --> (ashr X, 31) & Y
- // TODO: We are not checking one-use because the elimination of the multiply
- // is better for analysis?
- // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
- // more similar to what we're doing above.
- const APInt *C;
- if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
- return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
- if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
- return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
- // ((ashr X, 31) | 1) * X --> abs(X)
- // X * ((ashr X, 31) | 1) --> abs(X)
- if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
- m_SpecificIntAllowUndef(BitWidth - 1)),
- m_One()),
- m_Deferred(X)))) {
- Value *Abs = Builder.CreateBinaryIntrinsic(
- Intrinsic::abs, X,
- ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
- Abs->takeName(&I);
- return replaceInstUsesWith(I, Abs);
- }
- if (Instruction *Ext = narrowMathIfNoOverflow(I))
- return Ext;
- bool Changed = false;
- if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoSignedWrap(true);
- }
- if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
- Changed = true;
- I.setHasNoUnsignedWrap(true);
- }
- return Changed ? &I : nullptr;
- }
- Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
- BinaryOperator::BinaryOps Opcode = I.getOpcode();
- assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&
- "Expected fmul or fdiv");
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *X, *Y;
- // -X * -Y --> X * Y
- // -X / -Y --> X / Y
- if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
- return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
- // fabs(X) * fabs(X) -> X * X
- // fabs(X) / fabs(X) -> X / X
- if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
- return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
- // fabs(X) * fabs(Y) --> fabs(X * Y)
- // fabs(X) / fabs(Y) --> fabs(X / Y)
- if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
- (Op0->hasOneUse() || Op1->hasOneUse())) {
- IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
- Builder.setFastMathFlags(I.getFastMathFlags());
- Value *XY = Builder.CreateBinOp(Opcode, X, Y);
- Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
- Fabs->takeName(&I);
- return replaceInstUsesWith(I, Fabs);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
- if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
- return FoldedMul;
- if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
- return replaceInstUsesWith(I, FoldedMul);
- if (Instruction *R = foldFPSignBitOps(I))
- return R;
- // X * -1.0 --> -X
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (match(Op1, m_SpecificFP(-1.0)))
- return UnaryOperator::CreateFNegFMF(Op0, &I);
- // -X * C --> X * -C
- Value *X, *Y;
- Constant *C;
- if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
- return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
- // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
- if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
- return replaceInstUsesWith(I, V);
- if (I.hasAllowReassoc()) {
- // Reassociate constant RHS with another constant to form constant
- // expression.
- if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
- Constant *C1;
- if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
- // (C1 / X) * C --> (C * C1) / X
- Constant *CC1 = ConstantExpr::getFMul(C, C1);
- if (CC1->isNormalFP())
- return BinaryOperator::CreateFDivFMF(CC1, X, &I);
- }
- if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
- // (X / C1) * C --> X * (C / C1)
- Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
- if (CDivC1->isNormalFP())
- return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
- // If the constant was a denormal, try reassociating differently.
- // (X / C1) * C --> X / (C1 / C)
- Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
- if (Op0->hasOneUse() && C1DivC->isNormalFP())
- return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
- }
- // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
- // canonicalized to 'fadd X, C'. Distributing the multiply may allow
- // further folds and (X * C) + C2 is 'fma'.
- if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
- // (X + C1) * C --> (X * C) + (C * C1)
- Constant *CC1 = ConstantExpr::getFMul(C, C1);
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
- }
- if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
- // (C1 - X) * C --> (C * C1) - (X * C)
- Constant *CC1 = ConstantExpr::getFMul(C, C1);
- Value *XC = Builder.CreateFMulFMF(X, C, &I);
- return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
- }
- }
- Value *Z;
- if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
- m_Value(Z)))) {
- // Sink division: (X / Y) * Z --> (X * Z) / Y
- Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
- return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
- }
- // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
- // nnan disallows the possibility of returning a number if both operands are
- // negative (in that case, we should return NaN).
- if (I.hasNoNaNs() &&
- match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
- match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
- Value *XY = Builder.CreateFMulFMF(X, Y, &I);
- Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
- return replaceInstUsesWith(I, Sqrt);
- }
- // The following transforms are done irrespective of the number of uses
- // for the expression "1.0/sqrt(X)".
- // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
- // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
- // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
- // has the necessary (reassoc) fast-math-flags.
- if (I.hasNoSignedZeros() &&
- match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
- match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
- return BinaryOperator::CreateFDivFMF(X, Y, &I);
- if (I.hasNoSignedZeros() &&
- match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
- match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
- return BinaryOperator::CreateFDivFMF(X, Y, &I);
- // Like the similar transform in instsimplify, this requires 'nsz' because
- // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
- if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
- Op0->hasNUses(2)) {
- // Peek through fdiv to find squaring of square root:
- // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
- if (match(Op0, m_FDiv(m_Value(X),
- m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
- Value *XX = Builder.CreateFMulFMF(X, X, &I);
- return BinaryOperator::CreateFDivFMF(XX, Y, &I);
- }
- // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
- if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
- m_Value(X)))) {
- Value *XX = Builder.CreateFMulFMF(X, X, &I);
- return BinaryOperator::CreateFDivFMF(Y, XX, &I);
- }
- }
- if (I.isOnlyUserOfAnyOperand()) {
- // pow(x, y) * pow(x, z) -> pow(x, y + z)
- if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
- auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
- auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
- return replaceInstUsesWith(I, NewPow);
- }
- // powi(x, y) * powi(x, z) -> powi(x, y + z)
- if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
- match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
- Y->getType() == Z->getType()) {
- auto *YZ = Builder.CreateAdd(Y, Z);
- auto *NewPow = Builder.CreateIntrinsic(
- Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
- return replaceInstUsesWith(I, NewPow);
- }
- // exp(X) * exp(Y) -> exp(X + Y)
- if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
- Value *XY = Builder.CreateFAddFMF(X, Y, &I);
- Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
- return replaceInstUsesWith(I, Exp);
- }
- // exp2(X) * exp2(Y) -> exp2(X + Y)
- if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
- Value *XY = Builder.CreateFAddFMF(X, Y, &I);
- Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
- return replaceInstUsesWith(I, Exp2);
- }
- }
- // (X*Y) * X => (X*X) * Y where Y != X
- // The purpose is two-fold:
- // 1) to form a power expression (of X).
- // 2) potentially shorten the critical path: After transformation, the
- // latency of the instruction Y is amortized by the expression of X*X,
- // and therefore Y is in a "less critical" position compared to what it
- // was before the transformation.
- if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
- Op1 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
- Op0 != Y) {
- Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
- return BinaryOperator::CreateFMulFMF(XX, Y, &I);
- }
- }
- // log2(X * 0.5) * Y = log2(X) * Y - Y
- if (I.isFast()) {
- IntrinsicInst *Log2 = nullptr;
- if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
- m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
- Log2 = cast<IntrinsicInst>(Op0);
- Y = Op1;
- }
- if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
- m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
- Log2 = cast<IntrinsicInst>(Op1);
- Y = Op0;
- }
- if (Log2) {
- Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
- Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
- return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
- }
- }
- return nullptr;
- }
- /// Fold a divide or remainder with a select instruction divisor when one of the
- /// select operands is zero. In that case, we can use the other select operand
- /// because div/rem by zero is undefined.
- bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
- SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
- if (!SI)
- return false;
- int NonNullOperand;
- if (match(SI->getTrueValue(), m_Zero()))
- // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
- NonNullOperand = 2;
- else if (match(SI->getFalseValue(), m_Zero()))
- // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
- NonNullOperand = 1;
- else
- return false;
- // Change the div/rem to use 'Y' instead of the select.
- replaceOperand(I, 1, SI->getOperand(NonNullOperand));
- // Okay, we know we replace the operand of the div/rem with 'Y' with no
- // problem. However, the select, or the condition of the select may have
- // multiple uses. Based on our knowledge that the operand must be non-zero,
- // propagate the known value for the select into other uses of it, and
- // propagate a known value of the condition into its other users.
- // If the select and condition only have a single use, don't bother with this,
- // early exit.
- Value *SelectCond = SI->getCondition();
- if (SI->use_empty() && SelectCond->hasOneUse())
- return true;
- // Scan the current block backward, looking for other uses of SI.
- BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
- Type *CondTy = SelectCond->getType();
- while (BBI != BBFront) {
- --BBI;
- // If we found an instruction that we can't assume will return, so
- // information from below it cannot be propagated above it.
- if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
- break;
- // Replace uses of the select or its condition with the known values.
- for (Use &Op : BBI->operands()) {
- if (Op == SI) {
- replaceUse(Op, SI->getOperand(NonNullOperand));
- Worklist.push(&*BBI);
- } else if (Op == SelectCond) {
- replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
- : ConstantInt::getFalse(CondTy));
- Worklist.push(&*BBI);
- }
- }
- // If we past the instruction, quit looking for it.
- if (&*BBI == SI)
- SI = nullptr;
- if (&*BBI == SelectCond)
- SelectCond = nullptr;
- // If we ran out of things to eliminate, break out of the loop.
- if (!SelectCond && !SI)
- break;
- }
- return true;
- }
- /// True if the multiply can not be expressed in an int this size.
- static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
- bool IsSigned) {
- bool Overflow;
- Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
- return Overflow;
- }
- /// True if C1 is a multiple of C2. Quotient contains C1/C2.
- static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
- bool IsSigned) {
- assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
- // Bail if we will divide by zero.
- if (C2.isZero())
- return false;
- // Bail if we would divide INT_MIN by -1.
- if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
- return false;
- APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
- if (IsSigned)
- APInt::sdivrem(C1, C2, Quotient, Remainder);
- else
- APInt::udivrem(C1, C2, Quotient, Remainder);
- return Remainder.isMinValue();
- }
- /// This function implements the transforms common to both integer division
- /// instructions (udiv and sdiv). It is called by the visitors to those integer
- /// division instructions.
- /// Common integer divide transforms
- Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- bool IsSigned = I.getOpcode() == Instruction::SDiv;
- Type *Ty = I.getType();
- // The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
- return replaceOperand(I, 1, V);
- // Handle cases involving: [su]div X, (select Cond, Y, Z)
- // This does not apply for fdiv.
- if (simplifyDivRemOfSelectWithZeroOp(I))
- return &I;
- // If the divisor is a select-of-constants, try to constant fold all div ops:
- // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
- // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
- if (match(Op0, m_ImmConstant()) &&
- match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
- if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1)))
- return R;
- }
- const APInt *C2;
- if (match(Op1, m_APInt(C2))) {
- Value *X;
- const APInt *C1;
- // (X / C1) / C2 -> X / (C1*C2)
- if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
- (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
- APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
- if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
- return BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, Product));
- }
- if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
- (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
- APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
- // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
- if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
- auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, Quotient));
- NewDiv->setIsExact(I.isExact());
- return NewDiv;
- }
- // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
- if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
- auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
- ConstantInt::get(Ty, Quotient));
- auto *OBO = cast<OverflowingBinaryOperator>(Op0);
- Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
- Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
- return Mul;
- }
- }
- if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
- C1->ult(C1->getBitWidth() - 1)) ||
- (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
- C1->ult(C1->getBitWidth()))) {
- APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
- APInt C1Shifted = APInt::getOneBitSet(
- C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
- // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
- if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
- auto *BO = BinaryOperator::Create(I.getOpcode(), X,
- ConstantInt::get(Ty, Quotient));
- BO->setIsExact(I.isExact());
- return BO;
- }
- // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
- if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
- auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
- ConstantInt::get(Ty, Quotient));
- auto *OBO = cast<OverflowingBinaryOperator>(Op0);
- Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
- Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
- return Mul;
- }
- }
- if (!C2->isZero()) // avoid X udiv 0
- if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
- return FoldedDiv;
- }
- if (match(Op0, m_One())) {
- assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
- if (IsSigned) {
- // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
- // result is one, if Op1 is -1 then the result is minus one, otherwise
- // it's zero.
- Value *Inc = Builder.CreateAdd(Op1, Op0);
- Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
- return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
- } else {
- // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
- // result is one, otherwise it's zero.
- return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
- }
- }
- // See if we can fold away this div instruction.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
- Value *X, *Z;
- if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
- if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
- (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
- return BinaryOperator::Create(I.getOpcode(), X, Op1);
- // (X << Y) / X -> 1 << Y
- Value *Y;
- if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
- return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
- if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
- return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
- // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
- if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
- bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
- bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
- if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
- replaceOperand(I, 0, ConstantInt::get(Ty, 1));
- replaceOperand(I, 1, Y);
- return &I;
- }
- }
- return nullptr;
- }
- static const unsigned MaxDepth = 6;
- namespace {
- using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
- const BinaryOperator &I,
- InstCombinerImpl &IC);
- /// Used to maintain state for visitUDivOperand().
- struct UDivFoldAction {
- /// Informs visitUDiv() how to fold this operand. This can be zero if this
- /// action joins two actions together.
- FoldUDivOperandCb FoldAction;
- /// Which operand to fold.
- Value *OperandToFold;
- union {
- /// The instruction returned when FoldAction is invoked.
- Instruction *FoldResult;
- /// Stores the LHS action index if this action joins two actions together.
- size_t SelectLHSIdx;
- };
- UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
- : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
- UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
- : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
- };
- } // end anonymous namespace
- // X udiv 2^C -> X >> C
- static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
- const BinaryOperator &I,
- InstCombinerImpl &IC) {
- Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
- if (!C1)
- llvm_unreachable("Failed to constant fold udiv -> logbase2");
- BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
- if (I.isExact())
- LShr->setIsExact();
- return LShr;
- }
- // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
- // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
- static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
- InstCombinerImpl &IC) {
- Value *ShiftLeft;
- if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
- ShiftLeft = Op1;
- Constant *CI;
- Value *N;
- if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
- llvm_unreachable("match should never fail here!");
- Constant *Log2Base = ConstantExpr::getExactLogBase2(CI);
- if (!Log2Base)
- llvm_unreachable("getLogBase2 should never fail here!");
- N = IC.Builder.CreateAdd(N, Log2Base);
- if (Op1 != ShiftLeft)
- N = IC.Builder.CreateZExt(N, Op1->getType());
- BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
- if (I.isExact())
- LShr->setIsExact();
- return LShr;
- }
- // Recursively visits the possible right hand operands of a udiv
- // instruction, seeing through select instructions, to determine if we can
- // replace the udiv with something simpler. If we find that an operand is not
- // able to simplify the udiv, we abort the entire transformation.
- static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
- SmallVectorImpl<UDivFoldAction> &Actions,
- unsigned Depth = 0) {
- // FIXME: assert that Op1 isn't/doesn't contain undef.
- // Check to see if this is an unsigned division with an exact power of 2,
- // if so, convert to a right shift.
- if (match(Op1, m_Power2())) {
- Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
- return Actions.size();
- }
- // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
- if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
- match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
- Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
- return Actions.size();
- }
- // The remaining tests are all recursive, so bail out if we hit the limit.
- if (Depth++ == MaxDepth)
- return 0;
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- // FIXME: missed optimization: if one of the hands of select is/contains
- // undef, just directly pick the other one.
- // FIXME: can both hands contain undef?
- if (size_t LHSIdx =
- visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
- if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
- Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
- return Actions.size();
- }
- return 0;
- }
- /// If we have zero-extended operands of an unsigned div or rem, we may be able
- /// to narrow the operation (sink the zext below the math).
- static Instruction *narrowUDivURem(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Instruction::BinaryOps Opcode = I.getOpcode();
- Value *N = I.getOperand(0);
- Value *D = I.getOperand(1);
- Type *Ty = I.getType();
- Value *X, *Y;
- if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
- X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
- // udiv (zext X), (zext Y) --> zext (udiv X, Y)
- // urem (zext X), (zext Y) --> zext (urem X, Y)
- Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
- return new ZExtInst(NarrowOp, Ty);
- }
- Constant *C;
- if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
- (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
- // If the constant is the same in the smaller type, use the narrow version.
- Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
- if (ConstantExpr::getZExt(TruncC, Ty) != C)
- return nullptr;
- // udiv (zext X), C --> zext (udiv X, C')
- // urem (zext X), C --> zext (urem X, C')
- // udiv C, (zext X) --> zext (udiv C', X)
- // urem C, (zext X) --> zext (urem C', X)
- Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
- : Builder.CreateBinOp(Opcode, TruncC, X);
- return new ZExtInst(NarrowOp, Ty);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
- if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- // Handle the integer div common cases
- if (Instruction *Common = commonIDivTransforms(I))
- return Common;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *X;
- const APInt *C1, *C2;
- if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
- // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
- bool Overflow;
- APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
- if (!Overflow) {
- bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
- BinaryOperator *BO = BinaryOperator::CreateUDiv(
- X, ConstantInt::get(X->getType(), C2ShlC1));
- if (IsExact)
- BO->setIsExact();
- return BO;
- }
- }
- // Op0 / C where C is large (negative) --> zext (Op0 >= C)
- // TODO: Could use isKnownNegative() to handle non-constant values.
- Type *Ty = I.getType();
- if (match(Op1, m_Negative())) {
- Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
- return CastInst::CreateZExtOrBitCast(Cmp, Ty);
- }
- // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
- return CastInst::CreateZExtOrBitCast(Cmp, Ty);
- }
- if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
- return NarrowDiv;
- // If the udiv operands are non-overflowing multiplies with a common operand,
- // then eliminate the common factor:
- // (A * B) / (A * X) --> B / X (and commuted variants)
- // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
- // TODO: If -reassociation handled this generally, we could remove this.
- Value *A, *B;
- if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
- if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
- match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
- return BinaryOperator::CreateUDiv(B, X);
- if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
- match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
- return BinaryOperator::CreateUDiv(A, X);
- }
- // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
- SmallVector<UDivFoldAction, 6> UDivActions;
- if (visitUDivOperand(Op0, Op1, I, UDivActions))
- for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
- FoldUDivOperandCb Action = UDivActions[i].FoldAction;
- Value *ActionOp1 = UDivActions[i].OperandToFold;
- Instruction *Inst;
- if (Action)
- Inst = Action(Op0, ActionOp1, I, *this);
- else {
- // This action joins two actions together. The RHS of this action is
- // simply the last action we processed, we saved the LHS action index in
- // the joining action.
- size_t SelectRHSIdx = i - 1;
- Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
- size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
- Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
- Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
- SelectLHS, SelectRHS);
- }
- // If this is the last action to process, return it to the InstCombiner.
- // Otherwise, we insert it before the UDiv and record it so that we may
- // use it as part of a joining action (i.e., a SelectInst).
- if (e - i != 1) {
- Inst->insertBefore(&I);
- UDivActions[i].FoldResult = Inst;
- } else
- return Inst;
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
- if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- // Handle the integer div common cases
- if (Instruction *Common = commonIDivTransforms(I))
- return Common;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- Value *X;
- // sdiv Op0, -1 --> -Op0
- // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
- if (match(Op1, m_AllOnes()) ||
- (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
- return BinaryOperator::CreateNeg(Op0);
- // X / INT_MIN --> X == INT_MIN
- if (match(Op1, m_SignMask()))
- return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
- // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
- // sdiv exact X, -1<<C --> -(ashr exact X, C)
- if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
- match(Op1, m_NegatedPower2()))) {
- bool DivisorWasNegative = match(Op1, m_NegatedPower2());
- if (DivisorWasNegative)
- Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
- auto *AShr = BinaryOperator::CreateExactAShr(
- Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
- if (!DivisorWasNegative)
- return AShr;
- Builder.Insert(AShr);
- AShr->setName(I.getName() + ".neg");
- return BinaryOperator::CreateNeg(AShr, I.getName());
- }
- const APInt *Op1C;
- if (match(Op1, m_APInt(Op1C))) {
- // If the dividend is sign-extended and the constant divisor is small enough
- // to fit in the source type, shrink the division to the narrower type:
- // (sext X) sdiv C --> sext (X sdiv C)
- Value *Op0Src;
- if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
- Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
- // In the general case, we need to make sure that the dividend is not the
- // minimum signed value because dividing that by -1 is UB. But here, we
- // know that the -1 divisor case is already handled above.
- Constant *NarrowDivisor =
- ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
- Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
- return new SExtInst(NarrowOp, Ty);
- }
- // -X / C --> X / -C (if the negation doesn't overflow).
- // TODO: This could be enhanced to handle arbitrary vector constants by
- // checking if all elements are not the min-signed-val.
- if (!Op1C->isMinSignedValue() &&
- match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
- Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
- Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
- BO->setIsExact(I.isExact());
- return BO;
- }
- }
- // -X / Y --> -(X / Y)
- Value *Y;
- if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
- return BinaryOperator::CreateNSWNeg(
- Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
- // abs(X) / X --> X > -1 ? 1 : -1
- // X / abs(X) --> X > -1 ? 1 : -1
- if (match(&I, m_c_BinOp(
- m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
- m_Deferred(X)))) {
- Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
- Value *Cond = Builder.CreateICmpSGT(X, NegOne);
- return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
- }
- // If the sign bits of both operands are zero (i.e. we can prove they are
- // unsigned inputs), turn this into a udiv.
- APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
- if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
- if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
- // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
- auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- BO->setIsExact(I.isExact());
- return BO;
- }
- if (match(Op1, m_NegatedPower2())) {
- // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
- // -> -(X udiv (1 << C)) -> -(X u>> C)
- return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst(
- Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this)));
- }
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
- // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
- // Safe because the only negative value (1 << Y) can take on is
- // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
- // the sign bit set.
- auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
- BO->setIsExact(I.isExact());
- return BO;
- }
- }
- return nullptr;
- }
- /// Remove negation and try to convert division into multiplication.
- static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
- Constant *C;
- if (!match(I.getOperand(1), m_Constant(C)))
- return nullptr;
- // -X / C --> X / -C
- Value *X;
- if (match(I.getOperand(0), m_FNeg(m_Value(X))))
- return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
- // If the constant divisor has an exact inverse, this is always safe. If not,
- // then we can still create a reciprocal if fast-math-flags allow it and the
- // constant is a regular number (not zero, infinite, or denormal).
- if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
- return nullptr;
- // Disallow denormal constants because we don't know what would happen
- // on all targets.
- // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
- // denorms are flushed?
- auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
- if (!RecipC->isNormalFP())
- return nullptr;
- // X / C --> X * (1 / C)
- return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
- }
- /// Remove negation and try to reassociate constant math.
- static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
- Constant *C;
- if (!match(I.getOperand(0), m_Constant(C)))
- return nullptr;
- // C / -X --> -C / X
- Value *X;
- if (match(I.getOperand(1), m_FNeg(m_Value(X))))
- return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
- if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
- return nullptr;
- // Try to reassociate C / X expressions where X includes another constant.
- Constant *C2, *NewC = nullptr;
- if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
- // C / (X * C2) --> (C / C2) / X
- NewC = ConstantExpr::getFDiv(C, C2);
- } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
- // C / (X / C2) --> (C * C2) / X
- NewC = ConstantExpr::getFMul(C, C2);
- }
- // Disallow denormal constants because we don't know what would happen
- // on all targets.
- // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
- // denorms are flushed?
- if (!NewC || !NewC->isNormalFP())
- return nullptr;
- return BinaryOperator::CreateFDivFMF(NewC, X, &I);
- }
- /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
- static Instruction *foldFDivPowDivisor(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- auto *II = dyn_cast<IntrinsicInst>(Op1);
- if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
- !I.hasAllowReciprocal())
- return nullptr;
- // Z / pow(X, Y) --> Z * pow(X, -Y)
- // Z / exp{2}(Y) --> Z * exp{2}(-Y)
- // In the general case, this creates an extra instruction, but fmul allows
- // for better canonicalization and optimization than fdiv.
- Intrinsic::ID IID = II->getIntrinsicID();
- SmallVector<Value *> Args;
- switch (IID) {
- case Intrinsic::pow:
- Args.push_back(II->getArgOperand(0));
- Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
- break;
- case Intrinsic::powi: {
- // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
- // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
- // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
- // non-standard results, so this corner case should be acceptable if the
- // code rules out INF values.
- if (!I.hasNoInfs())
- return nullptr;
- Args.push_back(II->getArgOperand(0));
- Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
- Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
- Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
- return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
- }
- case Intrinsic::exp:
- case Intrinsic::exp2:
- Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
- break;
- default:
- return nullptr;
- }
- Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
- return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
- }
- Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
- if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- if (Instruction *R = foldFDivConstantDivisor(I))
- return R;
- if (Instruction *R = foldFDivConstantDividend(I))
- return R;
- if (Instruction *R = foldFPSignBitOps(I))
- return R;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- if (isa<Constant>(Op0))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (isa<Constant>(Op1))
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
- Value *X, *Y;
- if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
- (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
- // (X / Y) / Z => X / (Y * Z)
- Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
- return BinaryOperator::CreateFDivFMF(X, YZ, &I);
- }
- if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
- (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
- // Z / (X / Y) => (Y * Z) / X
- Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
- return BinaryOperator::CreateFDivFMF(YZ, X, &I);
- }
- // Z / (1.0 / Y) => (Y * Z)
- //
- // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
- // m_OneUse check is avoided because even in the case of the multiple uses
- // for 1.0/Y, the number of instructions remain the same and a division is
- // replaced by a multiplication.
- if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
- return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
- }
- if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
- // sin(X) / cos(X) -> tan(X)
- // cos(X) / sin(X) -> 1/tan(X) (cotangent)
- Value *X;
- bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
- bool IsCot =
- !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
- match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
- if ((IsTan || IsCot) &&
- hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
- IRBuilder<> B(&I);
- IRBuilder<>::FastMathFlagGuard FMFGuard(B);
- B.setFastMathFlags(I.getFastMathFlags());
- AttributeList Attrs =
- cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
- Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
- LibFunc_tanl, B, Attrs);
- if (IsCot)
- Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
- return replaceInstUsesWith(I, Res);
- }
- }
- // X / (X * Y) --> 1.0 / Y
- // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
- // We can ignore the possibility that X is infinity because INF/INF is NaN.
- Value *X, *Y;
- if (I.hasNoNaNs() && I.hasAllowReassoc() &&
- match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
- replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
- replaceOperand(I, 1, Y);
- return &I;
- }
- // X / fabs(X) -> copysign(1.0, X)
- // fabs(X) / X -> copysign(1.0, X)
- if (I.hasNoNaNs() && I.hasNoInfs() &&
- (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
- match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
- Value *V = Builder.CreateBinaryIntrinsic(
- Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
- return replaceInstUsesWith(I, V);
- }
- if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
- return Mul;
- return nullptr;
- }
- /// This function implements the transforms common to both integer remainder
- /// instructions (urem and srem). It is called by the visitors to those integer
- /// remainder instructions.
- /// Common integer remainder transforms
- Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- // The RHS is known non-zero.
- if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
- return replaceOperand(I, 1, V);
- // Handle cases involving: rem X, (select Cond, Y, Z)
- if (simplifyDivRemOfSelectWithZeroOp(I))
- return &I;
- // If the divisor is a select-of-constants, try to constant fold all rem ops:
- // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
- // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
- if (match(Op0, m_ImmConstant()) &&
- match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
- if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1)))
- return R;
- }
- if (isa<Constant>(Op1)) {
- if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
- if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
- if (Instruction *R = FoldOpIntoSelect(I, SI))
- return R;
- } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
- const APInt *Op1Int;
- if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
- (I.getOpcode() == Instruction::URem ||
- !Op1Int->isMinSignedValue())) {
- // foldOpIntoPhi will speculate instructions to the end of the PHI's
- // predecessor blocks, so do this only if we know the srem or urem
- // will not fault.
- if (Instruction *NV = foldOpIntoPhi(I, PN))
- return NV;
- }
- }
- // See if we can fold away this rem instruction.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- }
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
- if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *common = commonIRemTransforms(I))
- return common;
- if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
- return NarrowRem;
- // X urem Y -> X and Y-1, where Y is a power of 2,
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
- // This may increase instruction count, we don't enforce that Y is a
- // constant.
- Constant *N1 = Constant::getAllOnesValue(Ty);
- Value *Add = Builder.CreateAdd(Op1, N1);
- return BinaryOperator::CreateAnd(Op0, Add);
- }
- // 1 urem X -> zext(X != 1)
- if (match(Op0, m_One())) {
- Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
- return CastInst::CreateZExtOrBitCast(Cmp, Ty);
- }
- // X urem C -> X < C ? X : X - C, where C >= signbit.
- if (match(Op1, m_Negative())) {
- Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
- Value *Sub = Builder.CreateSub(Op0, Op1);
- return SelectInst::Create(Cmp, Op0, Sub);
- }
- // If the divisor is a sext of a boolean, then the divisor must be max
- // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
- // max unsigned value. In that case, the remainder is 0:
- // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
- Value *X;
- if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
- Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
- return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
- if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- // Handle the integer rem common cases
- if (Instruction *Common = commonIRemTransforms(I))
- return Common;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- {
- const APInt *Y;
- // X % -Y -> X % Y
- if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
- return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
- }
- // -X srem Y --> -(X srem Y)
- Value *X, *Y;
- if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
- return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
- // If the sign bits of both operands are zero (i.e. we can prove they are
- // unsigned inputs), turn this into a urem.
- APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
- if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
- MaskedValueIsZero(Op0, Mask, 0, &I)) {
- // X srem Y -> X urem Y, iff X and Y don't have sign bit set
- return BinaryOperator::CreateURem(Op0, Op1, I.getName());
- }
- // If it's a constant vector, flip any negative values positive.
- if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
- Constant *C = cast<Constant>(Op1);
- unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
- bool hasNegative = false;
- bool hasMissing = false;
- for (unsigned i = 0; i != VWidth; ++i) {
- Constant *Elt = C->getAggregateElement(i);
- if (!Elt) {
- hasMissing = true;
- break;
- }
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
- if (RHS->isNegative())
- hasNegative = true;
- }
- if (hasNegative && !hasMissing) {
- SmallVector<Constant *, 16> Elts(VWidth);
- for (unsigned i = 0; i != VWidth; ++i) {
- Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
- if (RHS->isNegative())
- Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
- }
- }
- Constant *NewRHSV = ConstantVector::get(Elts);
- if (NewRHSV != C) // Don't loop on -MININT
- return replaceOperand(I, 1, NewRHSV);
- }
- }
- return nullptr;
- }
- Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
- if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
- I.getFastMathFlags(),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- return nullptr;
- }
|