1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799 |
- //===- InstCombineAndOrXor.cpp --------------------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the visitAnd, visitOr, and visitXor functions.
- //
- //===----------------------------------------------------------------------===//
- #include "InstCombineInternal.h"
- #include "llvm/Analysis/CmpInstAnalysis.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/IR/ConstantRange.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Transforms/InstCombine/InstCombiner.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- using namespace PatternMatch;
- #define DEBUG_TYPE "instcombine"
- /// Similar to getICmpCode but for FCmpInst. This encodes a fcmp predicate into
- /// a four bit mask.
- static unsigned getFCmpCode(FCmpInst::Predicate CC) {
- assert(FCmpInst::FCMP_FALSE <= CC && CC <= FCmpInst::FCMP_TRUE &&
- "Unexpected FCmp predicate!");
- // Take advantage of the bit pattern of FCmpInst::Predicate here.
- // U L G E
- static_assert(FCmpInst::FCMP_FALSE == 0, ""); // 0 0 0 0
- static_assert(FCmpInst::FCMP_OEQ == 1, ""); // 0 0 0 1
- static_assert(FCmpInst::FCMP_OGT == 2, ""); // 0 0 1 0
- static_assert(FCmpInst::FCMP_OGE == 3, ""); // 0 0 1 1
- static_assert(FCmpInst::FCMP_OLT == 4, ""); // 0 1 0 0
- static_assert(FCmpInst::FCMP_OLE == 5, ""); // 0 1 0 1
- static_assert(FCmpInst::FCMP_ONE == 6, ""); // 0 1 1 0
- static_assert(FCmpInst::FCMP_ORD == 7, ""); // 0 1 1 1
- static_assert(FCmpInst::FCMP_UNO == 8, ""); // 1 0 0 0
- static_assert(FCmpInst::FCMP_UEQ == 9, ""); // 1 0 0 1
- static_assert(FCmpInst::FCMP_UGT == 10, ""); // 1 0 1 0
- static_assert(FCmpInst::FCMP_UGE == 11, ""); // 1 0 1 1
- static_assert(FCmpInst::FCMP_ULT == 12, ""); // 1 1 0 0
- static_assert(FCmpInst::FCMP_ULE == 13, ""); // 1 1 0 1
- static_assert(FCmpInst::FCMP_UNE == 14, ""); // 1 1 1 0
- static_assert(FCmpInst::FCMP_TRUE == 15, ""); // 1 1 1 1
- return CC;
- }
- /// This is the complement of getICmpCode, which turns an opcode and two
- /// operands into either a constant true or false, or a brand new ICmp
- /// instruction. The sign is passed in to determine which kind of predicate to
- /// use in the new icmp instruction.
- static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
- InstCombiner::BuilderTy &Builder) {
- ICmpInst::Predicate NewPred;
- if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
- return TorF;
- return Builder.CreateICmp(NewPred, LHS, RHS);
- }
- /// This is the complement of getFCmpCode, which turns an opcode and two
- /// operands into either a FCmp instruction, or a true/false constant.
- static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
- InstCombiner::BuilderTy &Builder) {
- const auto Pred = static_cast<FCmpInst::Predicate>(Code);
- assert(FCmpInst::FCMP_FALSE <= Pred && Pred <= FCmpInst::FCMP_TRUE &&
- "Unexpected FCmp predicate!");
- if (Pred == FCmpInst::FCMP_FALSE)
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
- if (Pred == FCmpInst::FCMP_TRUE)
- return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
- return Builder.CreateFCmp(Pred, LHS, RHS);
- }
- /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
- /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
- /// \param I Binary operator to transform.
- /// \return Pointer to node that must replace the original binary operator, or
- /// null pointer if no transformation was made.
- static Value *SimplifyBSwap(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
- Value *OldLHS = I.getOperand(0);
- Value *OldRHS = I.getOperand(1);
- Value *NewLHS;
- if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
- return nullptr;
- Value *NewRHS;
- const APInt *C;
- if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
- // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
- if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
- return nullptr;
- // NewRHS initialized by the matcher.
- } else if (match(OldRHS, m_APInt(C))) {
- // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
- if (!OldLHS->hasOneUse())
- return nullptr;
- NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
- } else
- return nullptr;
- Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
- Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
- I.getType());
- return Builder.CreateCall(F, BinOp);
- }
- /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
- /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
- /// whether to treat V, Lo, and Hi as signed or not.
- Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
- const APInt &Hi, bool isSigned,
- bool Inside) {
- assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
- "Lo is not < Hi in range emission code!");
- Type *Ty = V->getType();
- // V >= Min && V < Hi --> V < Hi
- // V < Min || V >= Hi --> V >= Hi
- ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
- if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
- Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
- return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
- }
- // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
- // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
- Value *VMinusLo =
- Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
- Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
- return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
- }
- /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
- /// that can be simplified.
- /// One of A and B is considered the mask. The other is the value. This is
- /// described as the "AMask" or "BMask" part of the enum. If the enum contains
- /// only "Mask", then both A and B can be considered masks. If A is the mask,
- /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
- /// If both A and C are constants, this proof is also easy.
- /// For the following explanations, we assume that A is the mask.
- ///
- /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
- /// bits of A are set in B.
- /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
- ///
- /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
- /// bits of A are cleared in B.
- /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
- ///
- /// "Mixed" declares that (A & B) == C and C might or might not contain any
- /// number of one bits and zero bits.
- /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
- ///
- /// "Not" means that in above descriptions "==" should be replaced by "!=".
- /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
- ///
- /// If the mask A contains a single bit, then the following is equivalent:
- /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
- /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
- enum MaskedICmpType {
- AMask_AllOnes = 1,
- AMask_NotAllOnes = 2,
- BMask_AllOnes = 4,
- BMask_NotAllOnes = 8,
- Mask_AllZeros = 16,
- Mask_NotAllZeros = 32,
- AMask_Mixed = 64,
- AMask_NotMixed = 128,
- BMask_Mixed = 256,
- BMask_NotMixed = 512
- };
- /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
- /// satisfies.
- static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
- ICmpInst::Predicate Pred) {
- const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
- match(A, m_APInt(ConstA));
- match(B, m_APInt(ConstB));
- match(C, m_APInt(ConstC));
- bool IsEq = (Pred == ICmpInst::ICMP_EQ);
- bool IsAPow2 = ConstA && ConstA->isPowerOf2();
- bool IsBPow2 = ConstB && ConstB->isPowerOf2();
- unsigned MaskVal = 0;
- if (ConstC && ConstC->isZero()) {
- // if C is zero, then both A and B qualify as mask
- MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
- : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
- if (IsAPow2)
- MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
- : (AMask_AllOnes | AMask_Mixed));
- if (IsBPow2)
- MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
- : (BMask_AllOnes | BMask_Mixed));
- return MaskVal;
- }
- if (A == C) {
- MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
- : (AMask_NotAllOnes | AMask_NotMixed));
- if (IsAPow2)
- MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
- : (Mask_AllZeros | AMask_Mixed));
- } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
- MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
- }
- if (B == C) {
- MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
- : (BMask_NotAllOnes | BMask_NotMixed));
- if (IsBPow2)
- MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
- : (Mask_AllZeros | BMask_Mixed));
- } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
- MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
- }
- return MaskVal;
- }
- /// Convert an analysis of a masked ICmp into its equivalent if all boolean
- /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
- /// is adjacent to the corresponding normal flag (recording ==), this just
- /// involves swapping those bits over.
- static unsigned conjugateICmpMask(unsigned Mask) {
- unsigned NewMask;
- NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
- AMask_Mixed | BMask_Mixed))
- << 1;
- NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
- AMask_NotMixed | BMask_NotMixed))
- >> 1;
- return NewMask;
- }
- // Adapts the external decomposeBitTestICmp for local use.
- static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
- Value *&X, Value *&Y, Value *&Z) {
- APInt Mask;
- if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
- return false;
- Y = ConstantInt::get(X->getType(), Mask);
- Z = ConstantInt::get(X->getType(), 0);
- return true;
- }
- /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
- /// Return the pattern classes (from MaskedICmpType) for the left hand side and
- /// the right hand side as a pair.
- /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
- /// and PredR are their predicates, respectively.
- static
- Optional<std::pair<unsigned, unsigned>>
- getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C,
- Value *&D, Value *&E, ICmpInst *LHS,
- ICmpInst *RHS,
- ICmpInst::Predicate &PredL,
- ICmpInst::Predicate &PredR) {
- // Don't allow pointers. Splat vectors are fine.
- if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() ||
- !RHS->getOperand(0)->getType()->isIntOrIntVectorTy())
- return None;
- // Here comes the tricky part:
- // LHS might be of the form L11 & L12 == X, X == L21 & L22,
- // and L11 & L12 == L21 & L22. The same goes for RHS.
- // Now we must find those components L** and R**, that are equal, so
- // that we can extract the parameters A, B, C, D, and E for the canonical
- // above.
- Value *L1 = LHS->getOperand(0);
- Value *L2 = LHS->getOperand(1);
- Value *L11, *L12, *L21, *L22;
- // Check whether the icmp can be decomposed into a bit test.
- if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
- L21 = L22 = L1 = nullptr;
- } else {
- // Look for ANDs in the LHS icmp.
- if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
- // Any icmp can be viewed as being trivially masked; if it allows us to
- // remove one, it's worth it.
- L11 = L1;
- L12 = Constant::getAllOnesValue(L1->getType());
- }
- if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
- L21 = L2;
- L22 = Constant::getAllOnesValue(L2->getType());
- }
- }
- // Bail if LHS was a icmp that can't be decomposed into an equality.
- if (!ICmpInst::isEquality(PredL))
- return None;
- Value *R1 = RHS->getOperand(0);
- Value *R2 = RHS->getOperand(1);
- Value *R11, *R12;
- bool Ok = false;
- if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
- if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
- A = R11;
- D = R12;
- } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
- A = R12;
- D = R11;
- } else {
- return None;
- }
- E = R2;
- R1 = nullptr;
- Ok = true;
- } else {
- if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
- // As before, model no mask as a trivial mask if it'll let us do an
- // optimization.
- R11 = R1;
- R12 = Constant::getAllOnesValue(R1->getType());
- }
- if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
- A = R11;
- D = R12;
- E = R2;
- Ok = true;
- } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
- A = R12;
- D = R11;
- E = R2;
- Ok = true;
- }
- }
- // Bail if RHS was a icmp that can't be decomposed into an equality.
- if (!ICmpInst::isEquality(PredR))
- return None;
- // Look for ANDs on the right side of the RHS icmp.
- if (!Ok) {
- if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
- R11 = R2;
- R12 = Constant::getAllOnesValue(R2->getType());
- }
- if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
- A = R11;
- D = R12;
- E = R1;
- Ok = true;
- } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
- A = R12;
- D = R11;
- E = R1;
- Ok = true;
- } else {
- return None;
- }
- assert(Ok && "Failed to find AND on the right side of the RHS icmp.");
- }
- if (L11 == A) {
- B = L12;
- C = L2;
- } else if (L12 == A) {
- B = L11;
- C = L2;
- } else if (L21 == A) {
- B = L22;
- C = L1;
- } else if (L22 == A) {
- B = L21;
- C = L1;
- }
- unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
- unsigned RightType = getMaskedICmpType(A, D, E, PredR);
- return Optional<std::pair<unsigned, unsigned>>(std::make_pair(LeftType, RightType));
- }
- /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
- /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
- /// and the right hand side is of type BMask_Mixed. For example,
- /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
- static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
- ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
- Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
- InstCombiner::BuilderTy &Builder) {
- // We are given the canonical form:
- // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
- // where D & E == E.
- //
- // If IsAnd is false, we get it in negated form:
- // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
- // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
- //
- // We currently handle the case of B, C, D, E are constant.
- //
- ConstantInt *BCst, *CCst, *DCst, *ECst;
- if (!match(B, m_ConstantInt(BCst)) || !match(C, m_ConstantInt(CCst)) ||
- !match(D, m_ConstantInt(DCst)) || !match(E, m_ConstantInt(ECst)))
- return nullptr;
- ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
- // Update E to the canonical form when D is a power of two and RHS is
- // canonicalized as,
- // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
- // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
- if (PredR != NewCC)
- ECst = cast<ConstantInt>(ConstantExpr::getXor(DCst, ECst));
- // If B or D is zero, skip because if LHS or RHS can be trivially folded by
- // other folding rules and this pattern won't apply any more.
- if (BCst->getValue() == 0 || DCst->getValue() == 0)
- return nullptr;
- // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
- // deduce anything from it.
- // For example,
- // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
- if ((BCst->getValue() & DCst->getValue()) == 0)
- return nullptr;
- // If the following two conditions are met:
- //
- // 1. mask B covers only a single bit that's not covered by mask D, that is,
- // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
- // B and D has only one bit set) and,
- //
- // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
- // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
- //
- // then that single bit in B must be one and thus the whole expression can be
- // folded to
- // (A & (B | D)) == (B & (B ^ D)) | E.
- //
- // For example,
- // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
- // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
- if ((((BCst->getValue() & DCst->getValue()) & ECst->getValue()) == 0) &&
- (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())).isPowerOf2()) {
- APInt BorD = BCst->getValue() | DCst->getValue();
- APInt BandBxorDorE = (BCst->getValue() & (BCst->getValue() ^ DCst->getValue())) |
- ECst->getValue();
- Value *NewMask = ConstantInt::get(BCst->getType(), BorD);
- Value *NewMaskedValue = ConstantInt::get(BCst->getType(), BandBxorDorE);
- Value *NewAnd = Builder.CreateAnd(A, NewMask);
- return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
- }
- auto IsSubSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
- return (C1->getValue() & C2->getValue()) == C1->getValue();
- };
- auto IsSuperSetOrEqual = [](ConstantInt *C1, ConstantInt *C2) {
- return (C1->getValue() & C2->getValue()) == C2->getValue();
- };
- // In the following, we consider only the cases where B is a superset of D, B
- // is a subset of D, or B == D because otherwise there's at least one bit
- // covered by B but not D, in which case we can't deduce much from it, so
- // no folding (aside from the single must-be-one bit case right above.)
- // For example,
- // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
- if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
- return nullptr;
- // At this point, either B is a superset of D, B is a subset of D or B == D.
- // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
- // and the whole expression becomes false (or true if negated), otherwise, no
- // folding.
- // For example,
- // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
- // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
- if (ECst->isZero()) {
- if (IsSubSetOrEqual(BCst, DCst))
- return ConstantInt::get(LHS->getType(), !IsAnd);
- return nullptr;
- }
- // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
- // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
- // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
- // RHS. For example,
- // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
- // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
- if (IsSuperSetOrEqual(BCst, DCst))
- return RHS;
- // Otherwise, B is a subset of D. If B and E have a common bit set,
- // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
- // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
- assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
- if ((BCst->getValue() & ECst->getValue()) != 0)
- return RHS;
- // Otherwise, LHS and RHS contradict and the whole expression becomes false
- // (or true if negated.) For example,
- // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
- // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
- return ConstantInt::get(LHS->getType(), !IsAnd);
- }
- /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
- /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
- /// aren't of the common mask pattern type.
- static Value *foldLogOpOfMaskedICmpsAsymmetric(
- ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
- Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
- unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
- assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
- "Expected equality predicates for masked type of icmps.");
- // Handle Mask_NotAllZeros-BMask_Mixed cases.
- // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
- // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
- // which gets swapped to
- // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
- if (!IsAnd) {
- LHSMask = conjugateICmpMask(LHSMask);
- RHSMask = conjugateICmpMask(RHSMask);
- }
- if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
- if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
- LHS, RHS, IsAnd, A, B, C, D, E,
- PredL, PredR, Builder)) {
- return V;
- }
- } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
- if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
- RHS, LHS, IsAnd, A, D, E, B, C,
- PredR, PredL, Builder)) {
- return V;
- }
- }
- return nullptr;
- }
- /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
- /// into a single (icmp(A & X) ==/!= Y).
- static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
- InstCombiner::BuilderTy &Builder) {
- Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
- ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
- Optional<std::pair<unsigned, unsigned>> MaskPair =
- getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
- if (!MaskPair)
- return nullptr;
- assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
- "Expected equality predicates for masked type of icmps.");
- unsigned LHSMask = MaskPair->first;
- unsigned RHSMask = MaskPair->second;
- unsigned Mask = LHSMask & RHSMask;
- if (Mask == 0) {
- // Even if the two sides don't share a common pattern, check if folding can
- // still happen.
- if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
- LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
- Builder))
- return V;
- return nullptr;
- }
- // In full generality:
- // (icmp (A & B) Op C) | (icmp (A & D) Op E)
- // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
- //
- // If the latter can be converted into (icmp (A & X) Op Y) then the former is
- // equivalent to (icmp (A & X) !Op Y).
- //
- // Therefore, we can pretend for the rest of this function that we're dealing
- // with the conjunction, provided we flip the sense of any comparisons (both
- // input and output).
- // In most cases we're going to produce an EQ for the "&&" case.
- ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
- if (!IsAnd) {
- // Convert the masking analysis into its equivalent with negated
- // comparisons.
- Mask = conjugateICmpMask(Mask);
- }
- if (Mask & Mask_AllZeros) {
- // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
- // -> (icmp eq (A & (B|D)), 0)
- Value *NewOr = Builder.CreateOr(B, D);
- Value *NewAnd = Builder.CreateAnd(A, NewOr);
- // We can't use C as zero because we might actually handle
- // (icmp ne (A & B), B) & (icmp ne (A & D), D)
- // with B and D, having a single bit set.
- Value *Zero = Constant::getNullValue(A->getType());
- return Builder.CreateICmp(NewCC, NewAnd, Zero);
- }
- if (Mask & BMask_AllOnes) {
- // (icmp eq (A & B), B) & (icmp eq (A & D), D)
- // -> (icmp eq (A & (B|D)), (B|D))
- Value *NewOr = Builder.CreateOr(B, D);
- Value *NewAnd = Builder.CreateAnd(A, NewOr);
- return Builder.CreateICmp(NewCC, NewAnd, NewOr);
- }
- if (Mask & AMask_AllOnes) {
- // (icmp eq (A & B), A) & (icmp eq (A & D), A)
- // -> (icmp eq (A & (B&D)), A)
- Value *NewAnd1 = Builder.CreateAnd(B, D);
- Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
- return Builder.CreateICmp(NewCC, NewAnd2, A);
- }
- // Remaining cases assume at least that B and D are constant, and depend on
- // their actual values. This isn't strictly necessary, just a "handle the
- // easy cases for now" decision.
- const APInt *ConstB, *ConstD;
- if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD)))
- return nullptr;
- if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
- // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
- // (icmp ne (A & B), B) & (icmp ne (A & D), D)
- // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
- // Only valid if one of the masks is a superset of the other (check "B&D" is
- // the same as either B or D).
- APInt NewMask = *ConstB & *ConstD;
- if (NewMask == *ConstB)
- return LHS;
- else if (NewMask == *ConstD)
- return RHS;
- }
- if (Mask & AMask_NotAllOnes) {
- // (icmp ne (A & B), B) & (icmp ne (A & D), D)
- // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
- // Only valid if one of the masks is a superset of the other (check "B|D" is
- // the same as either B or D).
- APInt NewMask = *ConstB | *ConstD;
- if (NewMask == *ConstB)
- return LHS;
- else if (NewMask == *ConstD)
- return RHS;
- }
- if (Mask & BMask_Mixed) {
- // (icmp eq (A & B), C) & (icmp eq (A & D), E)
- // We already know that B & C == C && D & E == E.
- // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
- // C and E, which are shared by both the mask B and the mask D, don't
- // contradict, then we can transform to
- // -> (icmp eq (A & (B|D)), (C|E))
- // Currently, we only handle the case of B, C, D, and E being constant.
- // We can't simply use C and E because we might actually handle
- // (icmp ne (A & B), B) & (icmp eq (A & D), D)
- // with B and D, having a single bit set.
- const APInt *OldConstC, *OldConstE;
- if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
- return nullptr;
- const APInt ConstC = PredL != NewCC ? *ConstB ^ *OldConstC : *OldConstC;
- const APInt ConstE = PredR != NewCC ? *ConstD ^ *OldConstE : *OldConstE;
- // If there is a conflict, we should actually return a false for the
- // whole construct.
- if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
- return ConstantInt::get(LHS->getType(), !IsAnd);
- Value *NewOr1 = Builder.CreateOr(B, D);
- Value *NewAnd = Builder.CreateAnd(A, NewOr1);
- Constant *NewOr2 = ConstantInt::get(A->getType(), ConstC | ConstE);
- return Builder.CreateICmp(NewCC, NewAnd, NewOr2);
- }
- return nullptr;
- }
- /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
- /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
- /// If \p Inverted is true then the check is for the inverted range, e.g.
- /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
- Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
- bool Inverted) {
- // Check the lower range comparison, e.g. x >= 0
- // InstCombine already ensured that if there is a constant it's on the RHS.
- ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
- if (!RangeStart)
- return nullptr;
- ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
- Cmp0->getPredicate());
- // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
- if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
- (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
- return nullptr;
- ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
- Cmp1->getPredicate());
- Value *Input = Cmp0->getOperand(0);
- Value *RangeEnd;
- if (Cmp1->getOperand(0) == Input) {
- // For the upper range compare we have: icmp x, n
- RangeEnd = Cmp1->getOperand(1);
- } else if (Cmp1->getOperand(1) == Input) {
- // For the upper range compare we have: icmp n, x
- RangeEnd = Cmp1->getOperand(0);
- Pred1 = ICmpInst::getSwappedPredicate(Pred1);
- } else {
- return nullptr;
- }
- // Check the upper range comparison, e.g. x < n
- ICmpInst::Predicate NewPred;
- switch (Pred1) {
- case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
- case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
- default: return nullptr;
- }
- // This simplification is only valid if the upper range is not negative.
- KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
- if (!Known.isNonNegative())
- return nullptr;
- if (Inverted)
- NewPred = ICmpInst::getInversePredicate(NewPred);
- return Builder.CreateICmp(NewPred, Input, RangeEnd);
- }
- static Value *
- foldAndOrOfEqualityCmpsWithConstants(ICmpInst *LHS, ICmpInst *RHS,
- bool JoinedByAnd,
- InstCombiner::BuilderTy &Builder) {
- Value *X = LHS->getOperand(0);
- if (X != RHS->getOperand(0))
- return nullptr;
- const APInt *C1, *C2;
- if (!match(LHS->getOperand(1), m_APInt(C1)) ||
- !match(RHS->getOperand(1), m_APInt(C2)))
- return nullptr;
- // We only handle (X != C1 && X != C2) and (X == C1 || X == C2).
- ICmpInst::Predicate Pred = LHS->getPredicate();
- if (Pred != RHS->getPredicate())
- return nullptr;
- if (JoinedByAnd && Pred != ICmpInst::ICMP_NE)
- return nullptr;
- if (!JoinedByAnd && Pred != ICmpInst::ICMP_EQ)
- return nullptr;
- // The larger unsigned constant goes on the right.
- if (C1->ugt(*C2))
- std::swap(C1, C2);
- APInt Xor = *C1 ^ *C2;
- if (Xor.isPowerOf2()) {
- // If LHSC and RHSC differ by only one bit, then set that bit in X and
- // compare against the larger constant:
- // (X == C1 || X == C2) --> (X | (C1 ^ C2)) == C2
- // (X != C1 && X != C2) --> (X | (C1 ^ C2)) != C2
- // We choose an 'or' with a Pow2 constant rather than the inverse mask with
- // 'and' because that may lead to smaller codegen from a smaller constant.
- Value *Or = Builder.CreateOr(X, ConstantInt::get(X->getType(), Xor));
- return Builder.CreateICmp(Pred, Or, ConstantInt::get(X->getType(), *C2));
- }
- return nullptr;
- }
- // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
- // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
- Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
- ICmpInst *RHS,
- Instruction *CxtI,
- bool IsAnd,
- bool IsLogical) {
- CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
- if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
- return nullptr;
- if (!match(LHS->getOperand(1), m_Zero()) ||
- !match(RHS->getOperand(1), m_Zero()))
- return nullptr;
- Value *L1, *L2, *R1, *R2;
- if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) &&
- match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) {
- if (L1 == R2 || L2 == R2)
- std::swap(R1, R2);
- if (L2 == R1)
- std::swap(L1, L2);
- if (L1 == R1 &&
- isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) &&
- isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) {
- // If this is a logical and/or, then we must prevent propagation of a
- // poison value from the RHS by inserting freeze.
- if (IsLogical)
- R2 = Builder.CreateFreeze(R2);
- Value *Mask = Builder.CreateOr(L2, R2);
- Value *Masked = Builder.CreateAnd(L1, Mask);
- auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
- return Builder.CreateICmp(NewPred, Masked, Mask);
- }
- }
- return nullptr;
- }
- /// General pattern:
- /// X & Y
- ///
- /// Where Y is checking that all the high bits (covered by a mask 4294967168)
- /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
- /// Pattern can be one of:
- /// %t = add i32 %arg, 128
- /// %r = icmp ult i32 %t, 256
- /// Or
- /// %t0 = shl i32 %arg, 24
- /// %t1 = ashr i32 %t0, 24
- /// %r = icmp eq i32 %t1, %arg
- /// Or
- /// %t0 = trunc i32 %arg to i8
- /// %t1 = sext i8 %t0 to i32
- /// %r = icmp eq i32 %t1, %arg
- /// This pattern is a signed truncation check.
- ///
- /// And X is checking that some bit in that same mask is zero.
- /// I.e. can be one of:
- /// %r = icmp sgt i32 %arg, -1
- /// Or
- /// %t = and i32 %arg, 2147483648
- /// %r = icmp eq i32 %t, 0
- ///
- /// Since we are checking that all the bits in that mask are the same,
- /// and a particular bit is zero, what we are really checking is that all the
- /// masked bits are zero.
- /// So this should be transformed to:
- /// %r = icmp ult i32 %arg, 128
- static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
- Instruction &CxtI,
- InstCombiner::BuilderTy &Builder) {
- assert(CxtI.getOpcode() == Instruction::And);
- // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
- auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
- APInt &SignBitMask) -> bool {
- CmpInst::Predicate Pred;
- const APInt *I01, *I1; // powers of two; I1 == I01 << 1
- if (!(match(ICmp,
- m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
- Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
- return false;
- // Which bit is the new sign bit as per the 'signed truncation' pattern?
- SignBitMask = *I01;
- return true;
- };
- // One icmp needs to be 'signed truncation check'.
- // We need to match this first, else we will mismatch commutative cases.
- Value *X1;
- APInt HighestBit;
- ICmpInst *OtherICmp;
- if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
- OtherICmp = ICmp0;
- else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
- OtherICmp = ICmp1;
- else
- return nullptr;
- assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
- // Try to match/decompose into: icmp eq (X & Mask), 0
- auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
- APInt &UnsetBitsMask) -> bool {
- CmpInst::Predicate Pred = ICmp->getPredicate();
- // Can it be decomposed into icmp eq (X & Mask), 0 ?
- if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
- Pred, X, UnsetBitsMask,
- /*LookThroughTrunc=*/false) &&
- Pred == ICmpInst::ICMP_EQ)
- return true;
- // Is it icmp eq (X & Mask), 0 already?
- const APInt *Mask;
- if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
- Pred == ICmpInst::ICMP_EQ) {
- UnsetBitsMask = *Mask;
- return true;
- }
- return false;
- };
- // And the other icmp needs to be decomposable into a bit test.
- Value *X0;
- APInt UnsetBitsMask;
- if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
- return nullptr;
- assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
- // Are they working on the same value?
- Value *X;
- if (X1 == X0) {
- // Ok as is.
- X = X1;
- } else if (match(X0, m_Trunc(m_Specific(X1)))) {
- UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
- X = X1;
- } else
- return nullptr;
- // So which bits should be uniform as per the 'signed truncation check'?
- // (all the bits starting with (i.e. including) HighestBit)
- APInt SignBitsMask = ~(HighestBit - 1U);
- // UnsetBitsMask must have some common bits with SignBitsMask,
- if (!UnsetBitsMask.intersects(SignBitsMask))
- return nullptr;
- // Does UnsetBitsMask contain any bits outside of SignBitsMask?
- if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
- APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
- if (!OtherHighestBit.isPowerOf2())
- return nullptr;
- HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
- }
- // Else, if it does not, then all is ok as-is.
- // %r = icmp ult %X, SignBit
- return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
- CxtI.getName() + ".simplified");
- }
- /// Reduce a pair of compares that check if a value has exactly 1 bit set.
- static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
- InstCombiner::BuilderTy &Builder) {
- // Handle 'and' / 'or' commutation: make the equality check the first operand.
- if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
- std::swap(Cmp0, Cmp1);
- else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
- std::swap(Cmp0, Cmp1);
- // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
- CmpInst::Predicate Pred0, Pred1;
- Value *X;
- if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
- match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
- m_SpecificInt(2))) &&
- Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
- Value *CtPop = Cmp1->getOperand(0);
- return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
- }
- // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
- if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
- match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
- m_SpecificInt(1))) &&
- Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
- Value *CtPop = Cmp1->getOperand(0);
- return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
- }
- return nullptr;
- }
- /// Commuted variants are assumed to be handled by calling this function again
- /// with the parameters swapped.
- static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
- ICmpInst *UnsignedICmp, bool IsAnd,
- const SimplifyQuery &Q,
- InstCombiner::BuilderTy &Builder) {
- Value *ZeroCmpOp;
- ICmpInst::Predicate EqPred;
- if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
- !ICmpInst::isEquality(EqPred))
- return nullptr;
- auto IsKnownNonZero = [&](Value *V) {
- return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
- };
- ICmpInst::Predicate UnsignedPred;
- Value *A, *B;
- if (match(UnsignedICmp,
- m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
- match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
- (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
- auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
- if (!IsKnownNonZero(NonZero))
- std::swap(NonZero, Other);
- return IsKnownNonZero(NonZero);
- };
- // Given ZeroCmpOp = (A + B)
- // ZeroCmpOp <= A && ZeroCmpOp != 0 --> (0-B) < A
- // ZeroCmpOp > A || ZeroCmpOp == 0 --> (0-B) >= A
- //
- // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
- // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
- // with X being the value (A/B) that is known to be non-zero,
- // and Y being remaining value.
- if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
- IsAnd)
- return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
- if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
- IsAnd && GetKnownNonZeroAndOther(B, A))
- return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
- if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
- !IsAnd)
- return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
- if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
- !IsAnd && GetKnownNonZeroAndOther(B, A))
- return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
- }
- Value *Base, *Offset;
- if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
- return nullptr;
- if (!match(UnsignedICmp,
- m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
- !ICmpInst::isUnsigned(UnsignedPred))
- return nullptr;
- // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset
- // (no overflow and not null)
- if ((UnsignedPred == ICmpInst::ICMP_UGE ||
- UnsignedPred == ICmpInst::ICMP_UGT) &&
- EqPred == ICmpInst::ICMP_NE && IsAnd)
- return Builder.CreateICmpUGT(Base, Offset);
- // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset
- // (overflow or null)
- if ((UnsignedPred == ICmpInst::ICMP_ULE ||
- UnsignedPred == ICmpInst::ICMP_ULT) &&
- EqPred == ICmpInst::ICMP_EQ && !IsAnd)
- return Builder.CreateICmpULE(Base, Offset);
- // Base <= Offset && (Base - Offset) != 0 --> Base < Offset
- if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
- IsAnd)
- return Builder.CreateICmpULT(Base, Offset);
- // Base > Offset || (Base - Offset) == 0 --> Base >= Offset
- if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
- !IsAnd)
- return Builder.CreateICmpUGE(Base, Offset);
- return nullptr;
- }
- struct IntPart {
- Value *From;
- unsigned StartBit;
- unsigned NumBits;
- };
- /// Match an extraction of bits from an integer.
- static Optional<IntPart> matchIntPart(Value *V) {
- Value *X;
- if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
- return None;
- unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
- unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
- Value *Y;
- const APInt *Shift;
- // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
- // from Y, not any shifted-in zeroes.
- if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
- Shift->ule(NumOriginalBits - NumExtractedBits))
- return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
- return {{X, 0, NumExtractedBits}};
- }
- /// Materialize an extraction of bits from an integer in IR.
- static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
- Value *V = P.From;
- if (P.StartBit)
- V = Builder.CreateLShr(V, P.StartBit);
- Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
- if (TruncTy != V->getType())
- V = Builder.CreateTrunc(V, TruncTy);
- return V;
- }
- /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
- /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
- /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
- Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1,
- bool IsAnd) {
- if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
- return nullptr;
- CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
- if (Cmp0->getPredicate() != Pred || Cmp1->getPredicate() != Pred)
- return nullptr;
- Optional<IntPart> L0 = matchIntPart(Cmp0->getOperand(0));
- Optional<IntPart> R0 = matchIntPart(Cmp0->getOperand(1));
- Optional<IntPart> L1 = matchIntPart(Cmp1->getOperand(0));
- Optional<IntPart> R1 = matchIntPart(Cmp1->getOperand(1));
- if (!L0 || !R0 || !L1 || !R1)
- return nullptr;
- // Make sure the LHS/RHS compare a part of the same value, possibly after
- // an operand swap.
- if (L0->From != L1->From || R0->From != R1->From) {
- if (L0->From != R1->From || R0->From != L1->From)
- return nullptr;
- std::swap(L1, R1);
- }
- // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
- // the low part and L1/R1 being the high part.
- if (L0->StartBit + L0->NumBits != L1->StartBit ||
- R0->StartBit + R0->NumBits != R1->StartBit) {
- if (L1->StartBit + L1->NumBits != L0->StartBit ||
- R1->StartBit + R1->NumBits != R0->StartBit)
- return nullptr;
- std::swap(L0, L1);
- std::swap(R0, R1);
- }
- // We can simplify to a comparison of these larger parts of the integers.
- IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
- IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
- Value *LValue = extractIntPart(L, Builder);
- Value *RValue = extractIntPart(R, Builder);
- return Builder.CreateICmp(Pred, LValue, RValue);
- }
- /// Reduce logic-of-compares with equality to a constant by substituting a
- /// common operand with the constant. Callers are expected to call this with
- /// Cmp0/Cmp1 switched to handle logic op commutativity.
- static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
- BinaryOperator &Logic,
- InstCombiner::BuilderTy &Builder,
- const SimplifyQuery &Q) {
- bool IsAnd = Logic.getOpcode() == Instruction::And;
- assert((IsAnd || Logic.getOpcode() == Instruction::Or) && "Wrong logic op");
- // Match an equality compare with a non-poison constant as Cmp0.
- // Also, give up if the compare can be constant-folded to avoid looping.
- ICmpInst::Predicate Pred0;
- Value *X;
- Constant *C;
- if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
- !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
- return nullptr;
- if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
- (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
- return nullptr;
- // The other compare must include a common operand (X). Canonicalize the
- // common operand as operand 1 (Pred1 is swapped if the common operand was
- // operand 0).
- Value *Y;
- ICmpInst::Predicate Pred1;
- if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
- return nullptr;
- // Replace variable with constant value equivalence to remove a variable use:
- // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
- // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
- // Can think of the 'or' substitution with the 'and' bool equivalent:
- // A || B --> A || (!A && B)
- Value *SubstituteCmp = SimplifyICmpInst(Pred1, Y, C, Q);
- if (!SubstituteCmp) {
- // If we need to create a new instruction, require that the old compare can
- // be removed.
- if (!Cmp1->hasOneUse())
- return nullptr;
- SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
- }
- return Builder.CreateBinOp(Logic.getOpcode(), Cmp0, SubstituteCmp);
- }
- /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
- /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
- /// into a single comparison using range-based reasoning.
- static Value *foldAndOrOfICmpsUsingRanges(
- ICmpInst::Predicate Pred1, Value *V1, const APInt &C1,
- ICmpInst::Predicate Pred2, Value *V2, const APInt &C2,
- IRBuilderBase &Builder, bool IsAnd) {
- // Look through add of a constant offset on V1, V2, or both operands. This
- // allows us to interpret the V + C' < C'' range idiom into a proper range.
- const APInt *Offset1 = nullptr, *Offset2 = nullptr;
- if (V1 != V2) {
- Value *X;
- if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
- V1 = X;
- if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
- V2 = X;
- }
- if (V1 != V2)
- return nullptr;
- ConstantRange CR1 = ConstantRange::makeExactICmpRegion(Pred1, C1);
- if (Offset1)
- CR1 = CR1.subtract(*Offset1);
- ConstantRange CR2 = ConstantRange::makeExactICmpRegion(Pred2, C2);
- if (Offset2)
- CR2 = CR2.subtract(*Offset2);
- Optional<ConstantRange> CR =
- IsAnd ? CR1.exactIntersectWith(CR2) : CR1.exactUnionWith(CR2);
- if (!CR)
- return nullptr;
- CmpInst::Predicate NewPred;
- APInt NewC, Offset;
- CR->getEquivalentICmp(NewPred, NewC, Offset);
- Type *Ty = V1->getType();
- Value *NewV = V1;
- if (Offset != 0)
- NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
- return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
- }
- /// Fold (icmp)&(icmp) if possible.
- Value *InstCombinerImpl::foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS,
- BinaryOperator &And) {
- const SimplifyQuery Q = SQ.getWithInstruction(&And);
- // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
- // if K1 and K2 are a one-bit mask.
- if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &And,
- /* IsAnd */ true))
- return V;
- ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
- // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
- if (predicatesFoldable(PredL, PredR)) {
- if (LHS->getOperand(0) == RHS->getOperand(1) &&
- LHS->getOperand(1) == RHS->getOperand(0))
- LHS->swapOperands();
- if (LHS->getOperand(0) == RHS->getOperand(0) &&
- LHS->getOperand(1) == RHS->getOperand(1)) {
- Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
- unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
- bool IsSigned = LHS->isSigned() || RHS->isSigned();
- return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
- }
- }
- // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
- if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, true, Builder))
- return V;
- if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, And, Builder, Q))
- return V;
- if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, And, Builder, Q))
- return V;
- // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
- if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/false))
- return V;
- // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
- if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/false))
- return V;
- if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, true, Builder))
- return V;
- if (Value *V = foldSignedTruncationCheck(LHS, RHS, And, Builder))
- return V;
- if (Value *V = foldIsPowerOf2(LHS, RHS, true /* JoinedByAnd */, Builder))
- return V;
- if (Value *X =
- foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/true, Q, Builder))
- return X;
- if (Value *X =
- foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/true, Q, Builder))
- return X;
- if (Value *X = foldEqOfParts(LHS, RHS, /*IsAnd=*/true))
- return X;
- // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
- Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
- // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
- // TODO: Remove this when foldLogOpOfMaskedICmps can handle undefs.
- if (PredL == ICmpInst::ICMP_EQ && match(LHS->getOperand(1), m_ZeroInt()) &&
- PredR == ICmpInst::ICMP_EQ && match(RHS->getOperand(1), m_ZeroInt()) &&
- LHS0->getType() == RHS0->getType()) {
- Value *NewOr = Builder.CreateOr(LHS0, RHS0);
- return Builder.CreateICmp(PredL, NewOr,
- Constant::getNullValue(NewOr->getType()));
- }
- const APInt *LHSC, *RHSC;
- if (!match(LHS->getOperand(1), m_APInt(LHSC)) ||
- !match(RHS->getOperand(1), m_APInt(RHSC)))
- return nullptr;
- // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
- // where CMAX is the all ones value for the truncated type,
- // iff the lower bits of C2 and CA are zero.
- if (PredL == ICmpInst::ICMP_EQ && PredL == PredR && LHS->hasOneUse() &&
- RHS->hasOneUse()) {
- Value *V;
- const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
- // (trunc x) == C1 & (and x, CA) == C2
- // (and x, CA) == C2 & (trunc x) == C1
- if (match(RHS0, m_Trunc(m_Value(V))) &&
- match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
- SmallC = RHSC;
- BigC = LHSC;
- } else if (match(LHS0, m_Trunc(m_Value(V))) &&
- match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
- SmallC = LHSC;
- BigC = RHSC;
- }
- if (SmallC && BigC) {
- unsigned BigBitSize = BigC->getBitWidth();
- unsigned SmallBitSize = SmallC->getBitWidth();
- // Check that the low bits are zero.
- APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
- if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
- Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
- APInt N = SmallC->zext(BigBitSize) | *BigC;
- Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
- return Builder.CreateICmp(PredL, NewAnd, NewVal);
- }
- }
- }
- return foldAndOrOfICmpsUsingRanges(PredL, LHS0, *LHSC, PredR, RHS0, *RHSC,
- Builder, /* IsAnd */ true);
- }
- Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
- bool IsAnd) {
- Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
- Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
- FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
- if (LHS0 == RHS1 && RHS0 == LHS1) {
- // Swap RHS operands to match LHS.
- PredR = FCmpInst::getSwappedPredicate(PredR);
- std::swap(RHS0, RHS1);
- }
- // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
- // Suppose the relation between x and y is R, where R is one of
- // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
- // testing the desired relations.
- //
- // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
- // bool(R & CC0) && bool(R & CC1)
- // = bool((R & CC0) & (R & CC1))
- // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
- //
- // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
- // bool(R & CC0) || bool(R & CC1)
- // = bool((R & CC0) | (R & CC1))
- // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
- if (LHS0 == RHS0 && LHS1 == RHS1) {
- unsigned FCmpCodeL = getFCmpCode(PredL);
- unsigned FCmpCodeR = getFCmpCode(PredR);
- unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
- return getFCmpValue(NewPred, LHS0, LHS1, Builder);
- }
- if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
- (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
- if (LHS0->getType() != RHS0->getType())
- return nullptr;
- // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
- // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
- if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
- // Ignore the constants because they are obviously not NANs:
- // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
- // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
- return Builder.CreateFCmp(PredL, LHS0, RHS0);
- }
- return nullptr;
- }
- /// This a limited reassociation for a special case (see above) where we are
- /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
- /// This could be handled more generally in '-reassociation', but it seems like
- /// an unlikely pattern for a large number of logic ops and fcmps.
- static Instruction *reassociateFCmps(BinaryOperator &BO,
- InstCombiner::BuilderTy &Builder) {
- Instruction::BinaryOps Opcode = BO.getOpcode();
- assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
- "Expecting and/or op for fcmp transform");
- // There are 4 commuted variants of the pattern. Canonicalize operands of this
- // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
- Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
- FCmpInst::Predicate Pred;
- if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
- std::swap(Op0, Op1);
- // Match inner binop and the predicate for combining 2 NAN checks into 1.
- Value *BO10, *BO11;
- FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
- : FCmpInst::FCMP_UNO;
- if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
- !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
- return nullptr;
- // The inner logic op must have a matching fcmp operand.
- Value *Y;
- if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
- Pred != NanPred || X->getType() != Y->getType())
- std::swap(BO10, BO11);
- if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
- Pred != NanPred || X->getType() != Y->getType())
- return nullptr;
- // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
- // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
- Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
- if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
- // Intersect FMF from the 2 source fcmps.
- NewFCmpInst->copyIRFlags(Op0);
- NewFCmpInst->andIRFlags(BO10);
- }
- return BinaryOperator::Create(Opcode, NewFCmp, BO11);
- }
- /// Match variations of De Morgan's Laws:
- /// (~A & ~B) == (~(A | B))
- /// (~A | ~B) == (~(A & B))
- static Instruction *matchDeMorgansLaws(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- const Instruction::BinaryOps Opcode = I.getOpcode();
- assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
- "Trying to match De Morgan's Laws with something other than and/or");
- // Flip the logic operation.
- const Instruction::BinaryOps FlippedOpcode =
- (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *A, *B;
- if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
- match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
- !InstCombiner::isFreeToInvert(A, A->hasOneUse()) &&
- !InstCombiner::isFreeToInvert(B, B->hasOneUse())) {
- Value *AndOr =
- Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
- return BinaryOperator::CreateNot(AndOr);
- }
- // The 'not' ops may require reassociation.
- // (A & ~B) & ~C --> A & ~(B | C)
- // (~B & A) & ~C --> A & ~(B | C)
- // (A | ~B) | ~C --> A | ~(B & C)
- // (~B | A) | ~C --> A | ~(B & C)
- Value *C;
- if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
- match(Op1, m_Not(m_Value(C)))) {
- Value *FlippedBO = Builder.CreateBinOp(FlippedOpcode, B, C);
- return BinaryOperator::Create(Opcode, A, Builder.CreateNot(FlippedBO));
- }
- return nullptr;
- }
- bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
- Value *CastSrc = CI->getOperand(0);
- // Noop casts and casts of constants should be eliminated trivially.
- if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
- return false;
- // If this cast is paired with another cast that can be eliminated, we prefer
- // to have it eliminated.
- if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
- if (isEliminableCastPair(PrecedingCI, CI))
- return false;
- return true;
- }
- /// Fold {and,or,xor} (cast X), C.
- static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
- InstCombiner::BuilderTy &Builder) {
- Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
- if (!C)
- return nullptr;
- auto LogicOpc = Logic.getOpcode();
- Type *DestTy = Logic.getType();
- Type *SrcTy = Cast->getSrcTy();
- // Move the logic operation ahead of a zext or sext if the constant is
- // unchanged in the smaller source type. Performing the logic in a smaller
- // type may provide more information to later folds, and the smaller logic
- // instruction may be cheaper (particularly in the case of vectors).
- Value *X;
- if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
- Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
- Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
- if (ZextTruncC == C) {
- // LogicOpc (zext X), C --> zext (LogicOpc X, C)
- Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
- return new ZExtInst(NewOp, DestTy);
- }
- }
- if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
- Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
- Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
- if (SextTruncC == C) {
- // LogicOpc (sext X), C --> sext (LogicOpc X, C)
- Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
- return new SExtInst(NewOp, DestTy);
- }
- }
- return nullptr;
- }
- /// Fold {and,or,xor} (cast X), Y.
- Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
- auto LogicOpc = I.getOpcode();
- assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- CastInst *Cast0 = dyn_cast<CastInst>(Op0);
- if (!Cast0)
- return nullptr;
- // This must be a cast from an integer or integer vector source type to allow
- // transformation of the logic operation to the source type.
- Type *DestTy = I.getType();
- Type *SrcTy = Cast0->getSrcTy();
- if (!SrcTy->isIntOrIntVectorTy())
- return nullptr;
- if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
- return Ret;
- CastInst *Cast1 = dyn_cast<CastInst>(Op1);
- if (!Cast1)
- return nullptr;
- // Both operands of the logic operation are casts. The casts must be of the
- // same type for reduction.
- auto CastOpcode = Cast0->getOpcode();
- if (CastOpcode != Cast1->getOpcode() || SrcTy != Cast1->getSrcTy())
- return nullptr;
- Value *Cast0Src = Cast0->getOperand(0);
- Value *Cast1Src = Cast1->getOperand(0);
- // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
- if (shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
- Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
- I.getName());
- return CastInst::Create(CastOpcode, NewOp, DestTy);
- }
- // For now, only 'and'/'or' have optimizations after this.
- if (LogicOpc == Instruction::Xor)
- return nullptr;
- // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
- // cast is otherwise not optimizable. This happens for vector sexts.
- ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
- ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
- if (ICmp0 && ICmp1) {
- Value *Res = LogicOpc == Instruction::And ? foldAndOfICmps(ICmp0, ICmp1, I)
- : foldOrOfICmps(ICmp0, ICmp1, I);
- if (Res)
- return CastInst::Create(CastOpcode, Res, DestTy);
- return nullptr;
- }
- // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
- // cast is otherwise not optimizable. This happens for vector sexts.
- FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
- FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
- if (FCmp0 && FCmp1)
- if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
- return CastInst::Create(CastOpcode, R, DestTy);
- return nullptr;
- }
- static Instruction *foldAndToXor(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- assert(I.getOpcode() == Instruction::And);
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
- Value *A, *B;
- // Operand complexity canonicalization guarantees that the 'or' is Op0.
- // (A | B) & ~(A & B) --> A ^ B
- // (A | B) & ~(B & A) --> A ^ B
- if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
- m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
- return BinaryOperator::CreateXor(A, B);
- // (A | ~B) & (~A | B) --> ~(A ^ B)
- // (A | ~B) & (B | ~A) --> ~(A ^ B)
- // (~B | A) & (~A | B) --> ~(A ^ B)
- // (~B | A) & (B | ~A) --> ~(A ^ B)
- if (Op0->hasOneUse() || Op1->hasOneUse())
- if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
- m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
- return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
- return nullptr;
- }
- static Instruction *foldOrToXor(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- assert(I.getOpcode() == Instruction::Or);
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
- Value *A, *B;
- // Operand complexity canonicalization guarantees that the 'and' is Op0.
- // (A & B) | ~(A | B) --> ~(A ^ B)
- // (A & B) | ~(B | A) --> ~(A ^ B)
- if (Op0->hasOneUse() || Op1->hasOneUse())
- if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
- return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
- // Operand complexity canonicalization guarantees that the 'xor' is Op0.
- // (A ^ B) | ~(A | B) --> ~(A & B)
- // (A ^ B) | ~(B | A) --> ~(A & B)
- if (Op0->hasOneUse() || Op1->hasOneUse())
- if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
- match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
- return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
- // (A & ~B) | (~A & B) --> A ^ B
- // (A & ~B) | (B & ~A) --> A ^ B
- // (~B & A) | (~A & B) --> A ^ B
- // (~B & A) | (B & ~A) --> A ^ B
- if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
- return BinaryOperator::CreateXor(A, B);
- return nullptr;
- }
- /// Return true if a constant shift amount is always less than the specified
- /// bit-width. If not, the shift could create poison in the narrower type.
- static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
- APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
- return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
- }
- /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
- /// a common zext operand: and (binop (zext X), C), (zext X).
- Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
- // This transform could also apply to {or, and, xor}, but there are better
- // folds for those cases, so we don't expect those patterns here. AShr is not
- // handled because it should always be transformed to LShr in this sequence.
- // The subtract transform is different because it has a constant on the left.
- // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
- Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
- Constant *C;
- if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
- !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
- !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
- !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
- !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
- return nullptr;
- Value *X;
- if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
- return nullptr;
- Type *Ty = And.getType();
- if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
- return nullptr;
- // If we're narrowing a shift, the shift amount must be safe (less than the
- // width) in the narrower type. If the shift amount is greater, instsimplify
- // usually handles that case, but we can't guarantee/assert it.
- Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
- if (Opc == Instruction::LShr || Opc == Instruction::Shl)
- if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
- return nullptr;
- // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
- // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
- Value *NewC = ConstantExpr::getTrunc(C, X->getType());
- Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
- : Builder.CreateBinOp(Opc, X, NewC);
- return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
- }
- /// Try folding relatively complex patterns for both And and Or operations
- /// with all And and Or swapped.
- static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- const Instruction::BinaryOps Opcode = I.getOpcode();
- assert(Opcode == Instruction::And || Opcode == Instruction::Or);
- // Flip the logic operation.
- const Instruction::BinaryOps FlippedOpcode =
- (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *A, *B, *C, *X, *Y, *Dummy;
- // Match following expressions:
- // (~(A | B) & C)
- // (~(A & B) | C)
- // Captures X = ~(A | B) or ~(A & B)
- const auto matchNotOrAnd =
- [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
- Value *&X, bool CountUses = false) -> bool {
- if (CountUses && !Op->hasOneUse())
- return false;
- if (match(Op, m_c_BinOp(FlippedOpcode,
- m_CombineAnd(m_Value(X),
- m_Not(m_c_BinOp(Opcode, m_A, m_B))),
- m_C)))
- return !CountUses || X->hasOneUse();
- return false;
- };
- // (~(A | B) & C) | ... --> ...
- // (~(A & B) | C) & ... --> ...
- // TODO: One use checks are conservative. We just need to check that a total
- // number of multiple used values does not exceed reduction
- // in operations.
- if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
- // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
- // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
- if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
- true)) {
- Value *Xor = Builder.CreateXor(B, C);
- return (Opcode == Instruction::Or)
- ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
- : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
- }
- // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
- // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
- if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
- true)) {
- Value *Xor = Builder.CreateXor(A, C);
- return (Opcode == Instruction::Or)
- ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
- : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
- }
- // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
- // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
- if (match(Op1, m_OneUse(m_Not(m_OneUse(
- m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
- return BinaryOperator::CreateNot(Builder.CreateBinOp(
- Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
- // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
- // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
- if (match(Op1, m_OneUse(m_Not(m_OneUse(
- m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
- return BinaryOperator::CreateNot(Builder.CreateBinOp(
- Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
- // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
- // Note, the pattern with swapped and/or is not handled because the
- // result is more undefined than a source:
- // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
- if (Opcode == Instruction::Or && Op0->hasOneUse() &&
- match(Op1, m_OneUse(m_Not(m_CombineAnd(
- m_Value(Y),
- m_c_BinOp(Opcode, m_Specific(C),
- m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
- // X = ~(A | B)
- // Y = (C | (A ^ B)
- Value *Or = cast<BinaryOperator>(X)->getOperand(0);
- return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
- }
- }
- // (~A & B & C) | ... --> ...
- // (~A | B | C) | ... --> ...
- // TODO: One use checks are conservative. We just need to check that a total
- // number of multiple used values does not exceed reduction
- // in operations.
- if (match(Op0,
- m_OneUse(m_c_BinOp(FlippedOpcode,
- m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
- m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
- match(Op0, m_OneUse(m_c_BinOp(
- FlippedOpcode,
- m_c_BinOp(FlippedOpcode, m_Value(C),
- m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
- m_Value(B))))) {
- // X = ~A
- // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
- // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
- if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
- Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
- m_Specific(C))))) ||
- match(Op1, m_OneUse(m_Not(m_c_BinOp(
- Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
- m_Specific(A))))) ||
- match(Op1, m_OneUse(m_Not(m_c_BinOp(
- Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
- m_Specific(B)))))) {
- Value *Xor = Builder.CreateXor(B, C);
- return (Opcode == Instruction::Or)
- ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
- : BinaryOperator::CreateOr(Xor, X);
- }
- // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
- // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
- if (match(Op1, m_OneUse(m_Not(m_OneUse(
- m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
- return BinaryOperator::Create(
- FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
- X);
- // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
- // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
- if (match(Op1, m_OneUse(m_Not(m_OneUse(
- m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
- return BinaryOperator::Create(
- FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
- X);
- }
- return nullptr;
- }
- // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
- // here. We should standardize that construct where it is needed or choose some
- // other way to ensure that commutated variants of patterns are not missed.
- Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
- Type *Ty = I.getType();
- if (Value *V = SimplifyAndInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- // Do this before using distributive laws to catch simple and/or/not patterns.
- if (Instruction *Xor = foldAndToXor(I, Builder))
- return Xor;
- if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
- return X;
- // (A|B)&(A|C) -> A|(B&C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
- if (Value *V = SimplifyBSwap(I, Builder))
- return replaceInstUsesWith(I, V);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *X, *Y;
- if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
- match(Op1, m_One())) {
- // (1 << X) & 1 --> zext(X == 0)
- // (1 >> X) & 1 --> zext(X == 0)
- Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
- return new ZExtInst(IsZero, Ty);
- }
- const APInt *C;
- if (match(Op1, m_APInt(C))) {
- const APInt *XorC;
- if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
- // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
- Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
- Value *And = Builder.CreateAnd(X, Op1);
- And->takeName(Op0);
- return BinaryOperator::CreateXor(And, NewC);
- }
- const APInt *OrC;
- if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
- // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
- // NOTE: This reduces the number of bits set in the & mask, which
- // can expose opportunities for store narrowing for scalars.
- // NOTE: SimplifyDemandedBits should have already removed bits from C1
- // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
- // above, but this feels safer.
- APInt Together = *C & *OrC;
- Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
- And->takeName(Op0);
- return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
- }
- // If the mask is only needed on one incoming arm, push the 'and' op up.
- if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
- match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
- APInt NotAndMask(~(*C));
- BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
- if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
- // Not masking anything out for the LHS, move mask to RHS.
- // and ({x}or X, Y), C --> {x}or X, (and Y, C)
- Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
- return BinaryOperator::Create(BinOp, X, NewRHS);
- }
- if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
- // Not masking anything out for the RHS, move mask to LHS.
- // and ({x}or X, Y), C --> {x}or (and X, C), Y
- Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
- return BinaryOperator::Create(BinOp, NewLHS, Y);
- }
- }
- unsigned Width = Ty->getScalarSizeInBits();
- const APInt *ShiftC;
- if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC)))))) {
- if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
- // We are clearing high bits that were potentially set by sext+ashr:
- // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
- Value *Sext = Builder.CreateSExt(X, Ty);
- Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
- return BinaryOperator::CreateLShr(Sext, ShAmtC);
- }
- }
- // If this 'and' clears the sign-bits added by ashr, replace with lshr:
- // and (ashr X, ShiftC), C --> lshr X, ShiftC
- if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
- C->isMask(Width - ShiftC->getZExtValue()))
- return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
- const APInt *AddC;
- if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
- // If we add zeros to every bit below a mask, the add has no effect:
- // (X + AddC) & LowMaskC --> X & LowMaskC
- unsigned Ctlz = C->countLeadingZeros();
- APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz));
- if ((*AddC & LowMask).isZero())
- return BinaryOperator::CreateAnd(X, Op1);
- // If we are masking the result of the add down to exactly one bit and
- // the constant we are adding has no bits set below that bit, then the
- // add is flipping a single bit. Example:
- // (X + 4) & 4 --> (X & 4) ^ 4
- if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
- assert((*C & *AddC) != 0 && "Expected common bit");
- Value *NewAnd = Builder.CreateAnd(X, Op1);
- return BinaryOperator::CreateXor(NewAnd, Op1);
- }
- }
- // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
- // bitwidth of X and OP behaves well when given trunc(C1) and X.
- auto isSuitableBinOpcode = [](BinaryOperator *B) {
- switch (B->getOpcode()) {
- case Instruction::Xor:
- case Instruction::Or:
- case Instruction::Mul:
- case Instruction::Add:
- case Instruction::Sub:
- return true;
- default:
- return false;
- }
- };
- BinaryOperator *BO;
- if (match(Op0, m_OneUse(m_BinOp(BO))) && isSuitableBinOpcode(BO)) {
- Value *X;
- const APInt *C1;
- // TODO: The one-use restrictions could be relaxed a little if the AND
- // is going to be removed.
- if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
- C->isIntN(X->getType()->getScalarSizeInBits())) {
- unsigned XWidth = X->getType()->getScalarSizeInBits();
- Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
- Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
- ? Builder.CreateBinOp(BO->getOpcode(), X, TruncC1)
- : Builder.CreateBinOp(BO->getOpcode(), TruncC1, X);
- Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
- Value *And = Builder.CreateAnd(BinOp, TruncC);
- return new ZExtInst(And, Ty);
- }
- }
- }
- if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
- m_SignMask())) &&
- match(Y, m_SpecificInt_ICMP(
- ICmpInst::Predicate::ICMP_EQ,
- APInt(Ty->getScalarSizeInBits(),
- Ty->getScalarSizeInBits() -
- X->getType()->getScalarSizeInBits())))) {
- auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
- auto *SanitizedSignMask = cast<Constant>(Op1);
- // We must be careful with the undef elements of the sign bit mask, however:
- // the mask elt can be undef iff the shift amount for that lane was undef,
- // otherwise we need to sanitize undef masks to zero.
- SanitizedSignMask = Constant::replaceUndefsWith(
- SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
- SanitizedSignMask =
- Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
- return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
- }
- if (Instruction *Z = narrowMaskedBinOp(I))
- return Z;
- if (I.getType()->isIntOrIntVectorTy(1)) {
- if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
- if (auto *I =
- foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
- return I;
- }
- if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
- if (auto *I =
- foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
- return I;
- }
- }
- if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
- return FoldedLogic;
- if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
- return DeMorgan;
- {
- Value *A, *B, *C;
- // A & (A ^ B) --> A & ~B
- if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
- return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
- // (A ^ B) & A --> A & ~B
- if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
- return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
- // A & ~(A ^ B) --> A & B
- if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
- return BinaryOperator::CreateAnd(Op0, B);
- // ~(A ^ B) & A --> A & B
- if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
- return BinaryOperator::CreateAnd(Op1, B);
- // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
- if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
- if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
- if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
- return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
- // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
- if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
- if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
- if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
- return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
- // (A | B) & (~A ^ B) -> A & B
- // (A | B) & (B ^ ~A) -> A & B
- // (B | A) & (~A ^ B) -> A & B
- // (B | A) & (B ^ ~A) -> A & B
- if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateAnd(A, B);
- // (~A ^ B) & (A | B) -> A & B
- // (~A ^ B) & (B | A) -> A & B
- // (B ^ ~A) & (A | B) -> A & B
- // (B ^ ~A) & (B | A) -> A & B
- if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateAnd(A, B);
- // (~A | B) & (A ^ B) -> ~A & B
- // (~A | B) & (B ^ A) -> ~A & B
- // (B | ~A) & (A ^ B) -> ~A & B
- // (B | ~A) & (B ^ A) -> ~A & B
- if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
- // (A ^ B) & (~A | B) -> ~A & B
- // (B ^ A) & (~A | B) -> ~A & B
- // (A ^ B) & (B | ~A) -> ~A & B
- // (B ^ A) & (B | ~A) -> ~A & B
- if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
- match(Op0, m_c_Xor(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
- }
- {
- ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
- ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
- if (LHS && RHS)
- if (Value *Res = foldAndOfICmps(LHS, RHS, I))
- return replaceInstUsesWith(I, Res);
- // TODO: Make this recursive; it's a little tricky because an arbitrary
- // number of 'and' instructions might have to be created.
- if (LHS && match(Op1, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
- if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
- return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
- if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = foldAndOfICmps(LHS, Cmp, I))
- return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
- }
- if (RHS && match(Op0, m_OneUse(m_And(m_Value(X), m_Value(Y))))) {
- if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
- return replaceInstUsesWith(I, Builder.CreateAnd(Res, Y));
- if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = foldAndOfICmps(Cmp, RHS, I))
- return replaceInstUsesWith(I, Builder.CreateAnd(Res, X));
- }
- }
- if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Value *Res = foldLogicOfFCmps(LHS, RHS, true))
- return replaceInstUsesWith(I, Res);
- if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
- return FoldedFCmps;
- if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
- return CastedAnd;
- if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
- return Sel;
- // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
- // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
- // with binop identity constant. But creating a select with non-constant
- // arm may not be reversible due to poison semantics. Is that a good
- // canonicalization?
- Value *A;
- if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
- A->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(A, Op1, Constant::getNullValue(Ty));
- if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
- A->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(A, Op0, Constant::getNullValue(Ty));
- // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0
- unsigned FullShift = Ty->getScalarSizeInBits() - 1;
- if (match(&I, m_c_And(m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))),
- m_Value(Y)))) {
- Constant *Zero = ConstantInt::getNullValue(Ty);
- Value *Cmp = Builder.CreateICmpSLT(X, Zero, "isneg");
- return SelectInst::Create(Cmp, Y, Zero);
- }
- // If there's a 'not' of the shifted value, swap the select operands:
- // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y
- if (match(&I, m_c_And(m_OneUse(m_Not(
- m_AShr(m_Value(X), m_SpecificInt(FullShift)))),
- m_Value(Y)))) {
- Constant *Zero = ConstantInt::getNullValue(Ty);
- Value *Cmp = Builder.CreateICmpSLT(X, Zero, "isneg");
- return SelectInst::Create(Cmp, Zero, Y);
- }
- // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions
- if (sinkNotIntoOtherHandOfAndOrOr(I))
- return &I;
- // An and recurrence w/loop invariant step is equivelent to (and start, step)
- PHINode *PN = nullptr;
- Value *Start = nullptr, *Step = nullptr;
- if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
- return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
- return nullptr;
- }
- Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
- bool MatchBSwaps,
- bool MatchBitReversals) {
- SmallVector<Instruction *, 4> Insts;
- if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
- Insts))
- return nullptr;
- Instruction *LastInst = Insts.pop_back_val();
- LastInst->removeFromParent();
- for (auto *Inst : Insts)
- Worklist.push(Inst);
- return LastInst;
- }
- /// Match UB-safe variants of the funnel shift intrinsic.
- static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
- // TODO: Can we reduce the code duplication between this and the related
- // rotate matching code under visitSelect and visitTrunc?
- unsigned Width = Or.getType()->getScalarSizeInBits();
- // First, find an or'd pair of opposite shifts:
- // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
- BinaryOperator *Or0, *Or1;
- if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
- !match(Or.getOperand(1), m_BinOp(Or1)))
- return nullptr;
- Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
- if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
- !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
- Or0->getOpcode() == Or1->getOpcode())
- return nullptr;
- // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
- if (Or0->getOpcode() == BinaryOperator::LShr) {
- std::swap(Or0, Or1);
- std::swap(ShVal0, ShVal1);
- std::swap(ShAmt0, ShAmt1);
- }
- assert(Or0->getOpcode() == BinaryOperator::Shl &&
- Or1->getOpcode() == BinaryOperator::LShr &&
- "Illegal or(shift,shift) pair");
- // Match the shift amount operands for a funnel shift pattern. This always
- // matches a subtraction on the R operand.
- auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
- // Check for constant shift amounts that sum to the bitwidth.
- const APInt *LI, *RI;
- if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
- if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
- return ConstantInt::get(L->getType(), *LI);
- Constant *LC, *RC;
- if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
- match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
- match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
- match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
- return ConstantExpr::mergeUndefsWith(LC, RC);
- // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
- // We limit this to X < Width in case the backend re-expands the intrinsic,
- // and has to reintroduce a shift modulo operation (InstCombine might remove
- // it after this fold). This still doesn't guarantee that the final codegen
- // will match this original pattern.
- if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
- KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or);
- return KnownL.getMaxValue().ult(Width) ? L : nullptr;
- }
- // For non-constant cases, the following patterns currently only work for
- // rotation patterns.
- // TODO: Add general funnel-shift compatible patterns.
- if (ShVal0 != ShVal1)
- return nullptr;
- // For non-constant cases we don't support non-pow2 shift masks.
- // TODO: Is it worth matching urem as well?
- if (!isPowerOf2_32(Width))
- return nullptr;
- // The shift amount may be masked with negation:
- // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
- Value *X;
- unsigned Mask = Width - 1;
- if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
- match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
- return X;
- // Similar to above, but the shift amount may be extended after masking,
- // so return the extended value as the parameter for the intrinsic.
- if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
- match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
- m_SpecificInt(Mask))))
- return L;
- if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
- match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
- return L;
- return nullptr;
- };
- Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
- bool IsFshl = true; // Sub on LSHR.
- if (!ShAmt) {
- ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
- IsFshl = false; // Sub on SHL.
- }
- if (!ShAmt)
- return nullptr;
- Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
- Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
- return CallInst::Create(F, {ShVal0, ShVal1, ShAmt});
- }
- /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
- static Instruction *matchOrConcat(Instruction &Or,
- InstCombiner::BuilderTy &Builder) {
- assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
- Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
- Type *Ty = Or.getType();
- unsigned Width = Ty->getScalarSizeInBits();
- if ((Width & 1) != 0)
- return nullptr;
- unsigned HalfWidth = Width / 2;
- // Canonicalize zext (lower half) to LHS.
- if (!isa<ZExtInst>(Op0))
- std::swap(Op0, Op1);
- // Find lower/upper half.
- Value *LowerSrc, *ShlVal, *UpperSrc;
- const APInt *C;
- if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
- !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
- !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
- return nullptr;
- if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
- LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
- return nullptr;
- auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
- Value *NewLower = Builder.CreateZExt(Lo, Ty);
- Value *NewUpper = Builder.CreateZExt(Hi, Ty);
- NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
- Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
- Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
- return Builder.CreateCall(F, BinOp);
- };
- // BSWAP: Push the concat down, swapping the lower/upper sources.
- // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
- Value *LowerBSwap, *UpperBSwap;
- if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
- match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
- return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
- // BITREVERSE: Push the concat down, swapping the lower/upper sources.
- // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
- Value *LowerBRev, *UpperBRev;
- if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
- match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
- return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
- return nullptr;
- }
- /// If all elements of two constant vectors are 0/-1 and inverses, return true.
- static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
- unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
- for (unsigned i = 0; i != NumElts; ++i) {
- Constant *EltC1 = C1->getAggregateElement(i);
- Constant *EltC2 = C2->getAggregateElement(i);
- if (!EltC1 || !EltC2)
- return false;
- // One element must be all ones, and the other must be all zeros.
- if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
- (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
- return false;
- }
- return true;
- }
- /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
- /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
- /// B, it can be used as the condition operand of a select instruction.
- Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B) {
- // We may have peeked through bitcasts in the caller.
- // Exit immediately if we don't have (vector) integer types.
- Type *Ty = A->getType();
- if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
- return nullptr;
- // If A is the 'not' operand of B and has enough signbits, we have our answer.
- if (match(B, m_Not(m_Specific(A)))) {
- // If these are scalars or vectors of i1, A can be used directly.
- if (Ty->isIntOrIntVectorTy(1))
- return A;
- // If we look through a vector bitcast, the caller will bitcast the operands
- // to match the condition's number of bits (N x i1).
- // To make this poison-safe, disallow bitcast from wide element to narrow
- // element. That could allow poison in lanes where it was not present in the
- // original code.
- A = peekThroughBitcast(A);
- if (A->getType()->isIntOrIntVectorTy()) {
- unsigned NumSignBits = ComputeNumSignBits(A);
- if (NumSignBits == A->getType()->getScalarSizeInBits() &&
- NumSignBits <= Ty->getScalarSizeInBits())
- return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
- }
- return nullptr;
- }
- // If both operands are constants, see if the constants are inverse bitmasks.
- Constant *AConst, *BConst;
- if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
- if (AConst == ConstantExpr::getNot(BConst) &&
- ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
- return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
- // Look for more complex patterns. The 'not' op may be hidden behind various
- // casts. Look through sexts and bitcasts to find the booleans.
- Value *Cond;
- Value *NotB;
- if (match(A, m_SExt(m_Value(Cond))) &&
- Cond->getType()->isIntOrIntVectorTy(1)) {
- // A = sext i1 Cond; B = sext (not (i1 Cond))
- if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
- return Cond;
- // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
- // TODO: The one-use checks are unnecessary or misplaced. If the caller
- // checked for uses on logic ops/casts, that should be enough to
- // make this transform worthwhile.
- if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
- NotB = peekThroughBitcast(NotB, true);
- if (match(NotB, m_SExt(m_Specific(Cond))))
- return Cond;
- }
- }
- // All scalar (and most vector) possibilities should be handled now.
- // Try more matches that only apply to non-splat constant vectors.
- if (!Ty->isVectorTy())
- return nullptr;
- // If both operands are xor'd with constants using the same sexted boolean
- // operand, see if the constants are inverse bitmasks.
- // TODO: Use ConstantExpr::getNot()?
- if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
- match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
- Cond->getType()->isIntOrIntVectorTy(1) &&
- areInverseVectorBitmasks(AConst, BConst)) {
- AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
- return Builder.CreateXor(Cond, AConst);
- }
- return nullptr;
- }
- /// We have an expression of the form (A & C) | (B & D). Try to simplify this
- /// to "A' ? C : D", where A' is a boolean or vector of booleans.
- Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
- Value *D) {
- // The potential condition of the select may be bitcasted. In that case, look
- // through its bitcast and the corresponding bitcast of the 'not' condition.
- Type *OrigType = A->getType();
- A = peekThroughBitcast(A, true);
- B = peekThroughBitcast(B, true);
- if (Value *Cond = getSelectCondition(A, B)) {
- // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
- // If this is a vector, we may need to cast to match the condition's length.
- // The bitcasts will either all exist or all not exist. The builder will
- // not create unnecessary casts if the types already match.
- Type *SelTy = A->getType();
- if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
- // For a fixed or scalable vector get N from <{vscale x} N x iM>
- unsigned Elts = VecTy->getElementCount().getKnownMinValue();
- // For a fixed or scalable vector, get the size in bits of N x iM; for a
- // scalar this is just M.
- unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinSize();
- Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
- SelTy = VectorType::get(EltTy, VecTy->getElementCount());
- }
- Value *BitcastC = Builder.CreateBitCast(C, SelTy);
- Value *BitcastD = Builder.CreateBitCast(D, SelTy);
- Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
- return Builder.CreateBitCast(Select, OrigType);
- }
- return nullptr;
- }
- /// Fold (icmp)|(icmp) if possible.
- Value *InstCombinerImpl::foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
- BinaryOperator &Or) {
- const SimplifyQuery Q = SQ.getWithInstruction(&Or);
- // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
- // if K1 and K2 are a one-bit mask.
- if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &Or,
- /* IsAnd */ false))
- return V;
- ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
- Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
- Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
- const APInt *LHSC = nullptr, *RHSC = nullptr;
- match(LHS1, m_APInt(LHSC));
- match(RHS1, m_APInt(RHSC));
- // Fold (icmp ult/ule (A + C1), C3) | (icmp ult/ule (A + C2), C3)
- // --> (icmp ult/ule ((A & ~(C1 ^ C2)) + max(C1, C2)), C3)
- // The original condition actually refers to the following two ranges:
- // [MAX_UINT-C1+1, MAX_UINT-C1+1+C3] and [MAX_UINT-C2+1, MAX_UINT-C2+1+C3]
- // We can fold these two ranges if:
- // 1) C1 and C2 is unsigned greater than C3.
- // 2) The two ranges are separated.
- // 3) C1 ^ C2 is one-bit mask.
- // 4) LowRange1 ^ LowRange2 and HighRange1 ^ HighRange2 are one-bit mask.
- // This implies all values in the two ranges differ by exactly one bit.
- if ((PredL == ICmpInst::ICMP_ULT || PredL == ICmpInst::ICMP_ULE) &&
- PredL == PredR && LHSC && RHSC && LHS->hasOneUse() && RHS->hasOneUse() &&
- LHSC->getBitWidth() == RHSC->getBitWidth() && *LHSC == *RHSC) {
- Value *AddOpnd;
- const APInt *LAddC, *RAddC;
- if (match(LHS0, m_Add(m_Value(AddOpnd), m_APInt(LAddC))) &&
- match(RHS0, m_Add(m_Specific(AddOpnd), m_APInt(RAddC))) &&
- LAddC->ugt(*LHSC) && RAddC->ugt(*LHSC)) {
- APInt DiffC = *LAddC ^ *RAddC;
- if (DiffC.isPowerOf2()) {
- const APInt *MaxAddC = nullptr;
- if (LAddC->ult(*RAddC))
- MaxAddC = RAddC;
- else
- MaxAddC = LAddC;
- APInt RRangeLow = -*RAddC;
- APInt RRangeHigh = RRangeLow + *LHSC;
- APInt LRangeLow = -*LAddC;
- APInt LRangeHigh = LRangeLow + *LHSC;
- APInt LowRangeDiff = RRangeLow ^ LRangeLow;
- APInt HighRangeDiff = RRangeHigh ^ LRangeHigh;
- APInt RangeDiff = LRangeLow.sgt(RRangeLow) ? LRangeLow - RRangeLow
- : RRangeLow - LRangeLow;
- if (LowRangeDiff.isPowerOf2() && LowRangeDiff == HighRangeDiff &&
- RangeDiff.ugt(*LHSC)) {
- Type *Ty = AddOpnd->getType();
- Value *MaskC = ConstantInt::get(Ty, ~DiffC);
- Value *NewAnd = Builder.CreateAnd(AddOpnd, MaskC);
- Value *NewAdd = Builder.CreateAdd(NewAnd,
- ConstantInt::get(Ty, *MaxAddC));
- return Builder.CreateICmp(LHS->getPredicate(), NewAdd,
- ConstantInt::get(Ty, *LHSC));
- }
- }
- }
- }
- // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
- if (predicatesFoldable(PredL, PredR)) {
- if (LHS0 == RHS1 && LHS1 == RHS0)
- LHS->swapOperands();
- if (LHS0 == RHS0 && LHS1 == RHS1) {
- unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
- bool IsSigned = LHS->isSigned() || RHS->isSigned();
- return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
- }
- }
- // handle (roughly):
- // (icmp ne (A & B), C) | (icmp ne (A & D), E)
- if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, false, Builder))
- return V;
- if (LHS->hasOneUse() || RHS->hasOneUse()) {
- // (icmp eq B, 0) | (icmp ult A, B) -> (icmp ule A, B-1)
- // (icmp eq B, 0) | (icmp ugt B, A) -> (icmp ule A, B-1)
- Value *A = nullptr, *B = nullptr;
- if (PredL == ICmpInst::ICMP_EQ && match(LHS1, m_Zero())) {
- B = LHS0;
- if (PredR == ICmpInst::ICMP_ULT && LHS0 == RHS1)
- A = RHS0;
- else if (PredR == ICmpInst::ICMP_UGT && LHS0 == RHS0)
- A = RHS1;
- }
- // (icmp ult A, B) | (icmp eq B, 0) -> (icmp ule A, B-1)
- // (icmp ugt B, A) | (icmp eq B, 0) -> (icmp ule A, B-1)
- else if (PredR == ICmpInst::ICMP_EQ && match(RHS1, m_Zero())) {
- B = RHS0;
- if (PredL == ICmpInst::ICMP_ULT && RHS0 == LHS1)
- A = LHS0;
- else if (PredL == ICmpInst::ICMP_UGT && RHS0 == LHS0)
- A = LHS1;
- }
- if (A && B && B->getType()->isIntOrIntVectorTy())
- return Builder.CreateICmp(
- ICmpInst::ICMP_UGE,
- Builder.CreateAdd(B, Constant::getAllOnesValue(B->getType())), A);
- }
- if (Value *V = foldAndOrOfICmpsWithConstEq(LHS, RHS, Or, Builder, Q))
- return V;
- if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, Or, Builder, Q))
- return V;
- // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
- if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/true))
- return V;
- // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
- if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/true))
- return V;
- if (Value *V = foldAndOrOfEqualityCmpsWithConstants(LHS, RHS, false, Builder))
- return V;
- if (Value *V = foldIsPowerOf2(LHS, RHS, false /* JoinedByAnd */, Builder))
- return V;
- if (Value *X =
- foldUnsignedUnderflowCheck(LHS, RHS, /*IsAnd=*/false, Q, Builder))
- return X;
- if (Value *X =
- foldUnsignedUnderflowCheck(RHS, LHS, /*IsAnd=*/false, Q, Builder))
- return X;
- if (Value *X = foldEqOfParts(LHS, RHS, /*IsAnd=*/false))
- return X;
- // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
- // TODO: Remove this when foldLogOpOfMaskedICmps can handle undefs.
- if (PredL == ICmpInst::ICMP_NE && match(LHS1, m_ZeroInt()) &&
- PredR == ICmpInst::ICMP_NE && match(RHS1, m_ZeroInt()) &&
- LHS0->getType() == RHS0->getType()) {
- Value *NewOr = Builder.CreateOr(LHS0, RHS0);
- return Builder.CreateICmp(PredL, NewOr,
- Constant::getNullValue(NewOr->getType()));
- }
- // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
- if (!LHSC || !RHSC)
- return nullptr;
- return foldAndOrOfICmpsUsingRanges(PredL, LHS0, *LHSC, PredR, RHS0, *RHSC,
- Builder, /* IsAnd */ false);
- }
- // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
- // here. We should standardize that construct where it is needed or choose some
- // other way to ensure that commutated variants of patterns are not missed.
- Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
- if (Value *V = SimplifyOrInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- // Do this before using distributive laws to catch simple and/or/not patterns.
- if (Instruction *Xor = foldOrToXor(I, Builder))
- return Xor;
- if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
- return X;
- // (A&B)|(A&C) -> A&(B|C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
- if (Value *V = SimplifyBSwap(I, Builder))
- return replaceInstUsesWith(I, V);
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Type *Ty = I.getType();
- if (Ty->isIntOrIntVectorTy(1)) {
- if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
- if (auto *I =
- foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
- return I;
- }
- if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
- if (auto *I =
- foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
- return I;
- }
- }
- if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
- return FoldedLogic;
- if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
- /*MatchBitReversals*/ true))
- return BitOp;
- if (Instruction *Funnel = matchFunnelShift(I, *this))
- return Funnel;
- if (Instruction *Concat = matchOrConcat(I, Builder))
- return replaceInstUsesWith(I, Concat);
- Value *X, *Y;
- const APInt *CV;
- if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
- !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
- // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
- // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
- Value *Or = Builder.CreateOr(X, Y);
- return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
- }
- // If the operands have no common bits set:
- // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
- if (match(&I,
- m_c_Or(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), m_Deferred(X))) &&
- haveNoCommonBitsSet(Op0, Op1, DL)) {
- Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
- return BinaryOperator::CreateMul(X, IncrementY);
- }
- // (A & C) | (B & D)
- Value *A, *B, *C, *D;
- if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
- match(Op1, m_And(m_Value(B), m_Value(D)))) {
- // (A & C0) | (B & C1)
- const APInt *C0, *C1;
- if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
- Value *X;
- if (*C0 == ~*C1) {
- // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
- if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
- return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
- // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
- if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
- return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
- // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
- if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
- return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
- // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
- if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
- return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
- }
- if ((*C0 & *C1).isZero()) {
- // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
- // iff (C0 & C1) == 0 and (X & ~C0) == 0
- if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
- MaskedValueIsZero(X, ~*C0, 0, &I)) {
- Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
- return BinaryOperator::CreateAnd(A, C01);
- }
- // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
- // iff (C0 & C1) == 0 and (X & ~C1) == 0
- if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
- MaskedValueIsZero(X, ~*C1, 0, &I)) {
- Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
- return BinaryOperator::CreateAnd(B, C01);
- }
- // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
- // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
- const APInt *C2, *C3;
- if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
- match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
- (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
- Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
- Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
- return BinaryOperator::CreateAnd(Or, C01);
- }
- }
- }
- // Don't try to form a select if it's unlikely that we'll get rid of at
- // least one of the operands. A select is generally more expensive than the
- // 'or' that it is replacing.
- if (Op0->hasOneUse() || Op1->hasOneUse()) {
- // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
- if (Value *V = matchSelectFromAndOr(A, C, B, D))
- return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(A, C, D, B))
- return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(C, A, B, D))
- return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(C, A, D, B))
- return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(B, D, A, C))
- return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(B, D, C, A))
- return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(D, B, A, C))
- return replaceInstUsesWith(I, V);
- if (Value *V = matchSelectFromAndOr(D, B, C, A))
- return replaceInstUsesWith(I, V);
- }
- }
- // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
- if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
- if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
- return BinaryOperator::CreateOr(Op0, C);
- // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
- if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
- if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
- return BinaryOperator::CreateOr(Op1, C);
- // ((B | C) & A) | B -> B | (A & C)
- if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
- return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
- if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
- return DeMorgan;
- // Canonicalize xor to the RHS.
- bool SwappedForXor = false;
- if (match(Op0, m_Xor(m_Value(), m_Value()))) {
- std::swap(Op0, Op1);
- SwappedForXor = true;
- }
- // A | ( A ^ B) -> A | B
- // A | (~A ^ B) -> A | ~B
- // (A & B) | (A ^ B)
- // ~A | (A ^ B) -> ~(A & B)
- // The swap above should always make Op0 the 'not' for the last case.
- if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
- if (Op0 == A || Op0 == B)
- return BinaryOperator::CreateOr(A, B);
- if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
- match(Op0, m_And(m_Specific(B), m_Specific(A))))
- return BinaryOperator::CreateOr(A, B);
- if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
- (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
- return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
- if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
- Value *Not = Builder.CreateNot(B, B->getName() + ".not");
- return BinaryOperator::CreateOr(Not, Op0);
- }
- if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
- Value *Not = Builder.CreateNot(A, A->getName() + ".not");
- return BinaryOperator::CreateOr(Not, Op0);
- }
- }
- // A | ~(A | B) -> A | ~B
- // A | ~(A ^ B) -> A | ~B
- if (match(Op1, m_Not(m_Value(A))))
- if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
- if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
- Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
- B->getOpcode() == Instruction::Xor)) {
- Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
- B->getOperand(0);
- Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
- return BinaryOperator::CreateOr(Not, Op0);
- }
- if (SwappedForXor)
- std::swap(Op0, Op1);
- {
- ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
- ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
- if (LHS && RHS)
- if (Value *Res = foldOrOfICmps(LHS, RHS, I))
- return replaceInstUsesWith(I, Res);
- // TODO: Make this recursive; it's a little tricky because an arbitrary
- // number of 'or' instructions might have to be created.
- Value *X, *Y;
- if (LHS && match(Op1, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
- if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
- return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
- if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = foldOrOfICmps(LHS, Cmp, I))
- return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
- }
- if (RHS && match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
- if (auto *Cmp = dyn_cast<ICmpInst>(X))
- if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
- return replaceInstUsesWith(I, Builder.CreateOr(Res, Y));
- if (auto *Cmp = dyn_cast<ICmpInst>(Y))
- if (Value *Res = foldOrOfICmps(Cmp, RHS, I))
- return replaceInstUsesWith(I, Builder.CreateOr(Res, X));
- }
- }
- if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
- if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
- if (Value *Res = foldLogicOfFCmps(LHS, RHS, false))
- return replaceInstUsesWith(I, Res);
- if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
- return FoldedFCmps;
- if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
- return CastedOr;
- if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
- return Sel;
- // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
- // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
- // with binop identity constant. But creating a select with non-constant
- // arm may not be reversible due to poison semantics. Is that a good
- // canonicalization?
- if (match(Op0, m_OneUse(m_SExt(m_Value(A)))) &&
- A->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op1);
- if (match(Op1, m_OneUse(m_SExt(m_Value(A)))) &&
- A->getType()->isIntOrIntVectorTy(1))
- return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), Op0);
- // Note: If we've gotten to the point of visiting the outer OR, then the
- // inner one couldn't be simplified. If it was a constant, then it won't
- // be simplified by a later pass either, so we try swapping the inner/outer
- // ORs in the hopes that we'll be able to simplify it this way.
- // (X|C) | V --> (X|V) | C
- ConstantInt *CI;
- if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
- match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
- Value *Inner = Builder.CreateOr(A, Op1);
- Inner->takeName(Op0);
- return BinaryOperator::CreateOr(Inner, CI);
- }
- // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
- // Since this OR statement hasn't been optimized further yet, we hope
- // that this transformation will allow the new ORs to be optimized.
- {
- Value *X = nullptr, *Y = nullptr;
- if (Op0->hasOneUse() && Op1->hasOneUse() &&
- match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
- match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
- Value *orTrue = Builder.CreateOr(A, C);
- Value *orFalse = Builder.CreateOr(B, D);
- return SelectInst::Create(X, orTrue, orFalse);
- }
- }
- // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X.
- {
- Value *X, *Y;
- if (match(&I, m_c_Or(m_OneUse(m_AShr(
- m_NSWSub(m_Value(Y), m_Value(X)),
- m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
- m_Deferred(X)))) {
- Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
- Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
- return SelectInst::Create(NewICmpInst, AllOnes, X);
- }
- }
- if (Instruction *V =
- canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
- return V;
- CmpInst::Predicate Pred;
- Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
- // Check if the OR weakens the overflow condition for umul.with.overflow by
- // treating any non-zero result as overflow. In that case, we overflow if both
- // umul.with.overflow operands are != 0, as in that case the result can only
- // be 0, iff the multiplication overflows.
- if (match(&I,
- m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
- m_Value(Ov)),
- m_CombineAnd(m_ICmp(Pred,
- m_CombineAnd(m_ExtractValue<0>(
- m_Deferred(UMulWithOv)),
- m_Value(Mul)),
- m_ZeroInt()),
- m_Value(MulIsNotZero)))) &&
- (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
- Pred == CmpInst::ICMP_NE) {
- Value *A, *B;
- if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
- m_Value(A), m_Value(B)))) {
- Value *NotNullA = Builder.CreateIsNotNull(A);
- Value *NotNullB = Builder.CreateIsNotNull(B);
- return BinaryOperator::CreateAnd(NotNullA, NotNullB);
- }
- }
- // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions
- if (sinkNotIntoOtherHandOfAndOrOr(I))
- return &I;
- // Improve "get low bit mask up to and including bit X" pattern:
- // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X)
- if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
- m_Shl(m_One(), m_Deferred(X)))) &&
- match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
- Value *Sub = Builder.CreateSub(
- ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
- return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
- }
- // An or recurrence w/loop invariant step is equivelent to (or start, step)
- PHINode *PN = nullptr;
- Value *Start = nullptr, *Step = nullptr;
- if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
- return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
- return nullptr;
- }
- /// A ^ B can be specified using other logic ops in a variety of patterns. We
- /// can fold these early and efficiently by morphing an existing instruction.
- static Instruction *foldXorToXor(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- assert(I.getOpcode() == Instruction::Xor);
- Value *Op0 = I.getOperand(0);
- Value *Op1 = I.getOperand(1);
- Value *A, *B;
- // There are 4 commuted variants for each of the basic patterns.
- // (A & B) ^ (A | B) -> A ^ B
- // (A & B) ^ (B | A) -> A ^ B
- // (A | B) ^ (A & B) -> A ^ B
- // (A | B) ^ (B & A) -> A ^ B
- if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
- m_c_Or(m_Deferred(A), m_Deferred(B)))))
- return BinaryOperator::CreateXor(A, B);
- // (A | ~B) ^ (~A | B) -> A ^ B
- // (~B | A) ^ (~A | B) -> A ^ B
- // (~A | B) ^ (A | ~B) -> A ^ B
- // (B | ~A) ^ (A | ~B) -> A ^ B
- if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
- m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
- return BinaryOperator::CreateXor(A, B);
- // (A & ~B) ^ (~A & B) -> A ^ B
- // (~B & A) ^ (~A & B) -> A ^ B
- // (~A & B) ^ (A & ~B) -> A ^ B
- // (B & ~A) ^ (A & ~B) -> A ^ B
- if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
- m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
- return BinaryOperator::CreateXor(A, B);
- // For the remaining cases we need to get rid of one of the operands.
- if (!Op0->hasOneUse() && !Op1->hasOneUse())
- return nullptr;
- // (A | B) ^ ~(A & B) -> ~(A ^ B)
- // (A | B) ^ ~(B & A) -> ~(A ^ B)
- // (A & B) ^ ~(A | B) -> ~(A ^ B)
- // (A & B) ^ ~(B | A) -> ~(A ^ B)
- // Complexity sorting ensures the not will be on the right side.
- if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
- match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
- (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
- return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
- return nullptr;
- }
- Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
- BinaryOperator &I) {
- assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
- I.getOperand(1) == RHS && "Should be 'xor' with these operands");
- if (predicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
- if (LHS->getOperand(0) == RHS->getOperand(1) &&
- LHS->getOperand(1) == RHS->getOperand(0))
- LHS->swapOperands();
- if (LHS->getOperand(0) == RHS->getOperand(0) &&
- LHS->getOperand(1) == RHS->getOperand(1)) {
- // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
- Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
- unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
- bool IsSigned = LHS->isSigned() || RHS->isSigned();
- return getNewICmpValue(Code, IsSigned, Op0, Op1, Builder);
- }
- }
- // TODO: This can be generalized to compares of non-signbits using
- // decomposeBitTestICmp(). It could be enhanced more by using (something like)
- // foldLogOpOfMaskedICmps().
- ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
- Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
- Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
- if ((LHS->hasOneUse() || RHS->hasOneUse()) &&
- LHS0->getType() == RHS0->getType() &&
- LHS0->getType()->isIntOrIntVectorTy()) {
- // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
- // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
- if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
- PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes())) ||
- (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
- PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero()))) {
- Value *Zero = ConstantInt::getNullValue(LHS0->getType());
- return Builder.CreateICmpSLT(Builder.CreateXor(LHS0, RHS0), Zero);
- }
- // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
- // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
- if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_AllOnes()) &&
- PredR == CmpInst::ICMP_SLT && match(RHS1, m_Zero())) ||
- (PredL == CmpInst::ICMP_SLT && match(LHS1, m_Zero()) &&
- PredR == CmpInst::ICMP_SGT && match(RHS1, m_AllOnes()))) {
- Value *MinusOne = ConstantInt::getAllOnesValue(LHS0->getType());
- return Builder.CreateICmpSGT(Builder.CreateXor(LHS0, RHS0), MinusOne);
- }
- }
- // Instead of trying to imitate the folds for and/or, decompose this 'xor'
- // into those logic ops. That is, try to turn this into an and-of-icmps
- // because we have many folds for that pattern.
- //
- // This is based on a truth table definition of xor:
- // X ^ Y --> (X | Y) & !(X & Y)
- if (Value *OrICmp = SimplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
- // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
- // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
- if (Value *AndICmp = SimplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
- // TODO: Independently handle cases where the 'and' side is a constant.
- ICmpInst *X = nullptr, *Y = nullptr;
- if (OrICmp == LHS && AndICmp == RHS) {
- // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
- X = LHS;
- Y = RHS;
- }
- if (OrICmp == RHS && AndICmp == LHS) {
- // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
- X = RHS;
- Y = LHS;
- }
- if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
- // Invert the predicate of 'Y', thus inverting its output.
- Y->setPredicate(Y->getInversePredicate());
- // So, are there other uses of Y?
- if (!Y->hasOneUse()) {
- // We need to adapt other uses of Y though. Get a value that matches
- // the original value of Y before inversion. While this increases
- // immediate instruction count, we have just ensured that all the
- // users are freely-invertible, so that 'not' *will* get folded away.
- BuilderTy::InsertPointGuard Guard(Builder);
- // Set insertion point to right after the Y.
- Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
- Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
- // Replace all uses of Y (excluding the one in NotY!) with NotY.
- Worklist.pushUsersToWorkList(*Y);
- Y->replaceUsesWithIf(NotY,
- [NotY](Use &U) { return U.getUser() != NotY; });
- }
- // All done.
- return Builder.CreateAnd(LHS, RHS);
- }
- }
- }
- return nullptr;
- }
- /// If we have a masked merge, in the canonical form of:
- /// (assuming that A only has one use.)
- /// | A | |B|
- /// ((x ^ y) & M) ^ y
- /// | D |
- /// * If M is inverted:
- /// | D |
- /// ((x ^ y) & ~M) ^ y
- /// We can canonicalize by swapping the final xor operand
- /// to eliminate the 'not' of the mask.
- /// ((x ^ y) & M) ^ x
- /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
- /// because that shortens the dependency chain and improves analysis:
- /// (x & M) | (y & ~M)
- static Instruction *visitMaskedMerge(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *B, *X, *D;
- Value *M;
- if (!match(&I, m_c_Xor(m_Value(B),
- m_OneUse(m_c_And(
- m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
- m_Value(D)),
- m_Value(M))))))
- return nullptr;
- Value *NotM;
- if (match(M, m_Not(m_Value(NotM)))) {
- // De-invert the mask and swap the value in B part.
- Value *NewA = Builder.CreateAnd(D, NotM);
- return BinaryOperator::CreateXor(NewA, X);
- }
- Constant *C;
- if (D->hasOneUse() && match(M, m_Constant(C))) {
- // Propagating undef is unsafe. Clamp undef elements to -1.
- Type *EltTy = C->getType()->getScalarType();
- C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
- // Unfold.
- Value *LHS = Builder.CreateAnd(X, C);
- Value *NotC = Builder.CreateNot(C);
- Value *RHS = Builder.CreateAnd(B, NotC);
- return BinaryOperator::CreateOr(LHS, RHS);
- }
- return nullptr;
- }
- // Transform
- // ~(x ^ y)
- // into:
- // (~x) ^ y
- // or into
- // x ^ (~y)
- static Instruction *sinkNotIntoXor(BinaryOperator &I,
- InstCombiner::BuilderTy &Builder) {
- Value *X, *Y;
- // FIXME: one-use check is not needed in general, but currently we are unable
- // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
- if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
- return nullptr;
- // We only want to do the transform if it is free to do.
- if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) {
- // Ok, good.
- } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) {
- std::swap(X, Y);
- } else
- return nullptr;
- Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
- return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
- }
- /// Canonicalize a shifty way to code absolute value to the more common pattern
- /// that uses negation and select.
- static Instruction *canonicalizeAbs(BinaryOperator &Xor,
- InstCombiner::BuilderTy &Builder) {
- assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
- // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
- // We're relying on the fact that we only do this transform when the shift has
- // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
- // instructions).
- Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
- if (Op0->hasNUses(2))
- std::swap(Op0, Op1);
- Type *Ty = Xor.getType();
- Value *A;
- const APInt *ShAmt;
- if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
- Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
- match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
- // Op1 = ashr i32 A, 31 ; smear the sign bit
- // xor (add A, Op1), Op1 ; add -1 and flip bits if negative
- // --> (A < 0) ? -A : A
- Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
- // Copy the nuw/nsw flags from the add to the negate.
- auto *Add = cast<BinaryOperator>(Op0);
- Value *Neg = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
- Add->hasNoSignedWrap());
- return SelectInst::Create(Cmp, Neg, A);
- }
- return nullptr;
- }
- // Transform
- // z = (~x) &/| y
- // into:
- // z = ~(x |/& (~y))
- // iff y is free to invert and all uses of z can be freely updated.
- bool InstCombinerImpl::sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I) {
- Instruction::BinaryOps NewOpc;
- switch (I.getOpcode()) {
- case Instruction::And:
- NewOpc = Instruction::Or;
- break;
- case Instruction::Or:
- NewOpc = Instruction::And;
- break;
- default:
- return false;
- };
- Value *X, *Y;
- if (!match(&I, m_c_BinOp(m_Not(m_Value(X)), m_Value(Y))))
- return false;
- // Will we be able to fold the `not` into Y eventually?
- if (!InstCombiner::isFreeToInvert(Y, Y->hasOneUse()))
- return false;
- // And can our users be adapted?
- if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
- return false;
- Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
- Value *NewBinOp =
- BinaryOperator::Create(NewOpc, X, NotY, I.getName() + ".not");
- Builder.Insert(NewBinOp);
- replaceInstUsesWith(I, NewBinOp);
- // We can not just create an outer `not`, it will most likely be immediately
- // folded back, reconstructing our initial pattern, and causing an
- // infinite combine loop, so immediately manually fold it away.
- freelyInvertAllUsersOf(NewBinOp);
- return true;
- }
- Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
- Value *NotOp;
- if (!match(&I, m_Not(m_Value(NotOp))))
- return nullptr;
- // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
- // We must eliminate the and/or (one-use) for these transforms to not increase
- // the instruction count.
- //
- // ~(~X & Y) --> (X | ~Y)
- // ~(Y & ~X) --> (X | ~Y)
- //
- // Note: The logical matches do not check for the commuted patterns because
- // those are handled via SimplifySelectsFeedingBinaryOp().
- Type *Ty = I.getType();
- Value *X, *Y;
- if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
- Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
- return BinaryOperator::CreateOr(X, NotY);
- }
- if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
- Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
- return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
- }
- // ~(~X | Y) --> (X & ~Y)
- // ~(Y | ~X) --> (X & ~Y)
- if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
- Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
- return BinaryOperator::CreateAnd(X, NotY);
- }
- if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
- Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
- return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
- }
- // Is this a 'not' (~) fed by a binary operator?
- BinaryOperator *NotVal;
- if (match(NotOp, m_BinOp(NotVal))) {
- if (NotVal->getOpcode() == Instruction::And ||
- NotVal->getOpcode() == Instruction::Or) {
- // Apply DeMorgan's Law when inverts are free:
- // ~(X & Y) --> (~X | ~Y)
- // ~(X | Y) --> (~X & ~Y)
- if (isFreeToInvert(NotVal->getOperand(0),
- NotVal->getOperand(0)->hasOneUse()) &&
- isFreeToInvert(NotVal->getOperand(1),
- NotVal->getOperand(1)->hasOneUse())) {
- Value *NotX = Builder.CreateNot(NotVal->getOperand(0), "notlhs");
- Value *NotY = Builder.CreateNot(NotVal->getOperand(1), "notrhs");
- if (NotVal->getOpcode() == Instruction::And)
- return BinaryOperator::CreateOr(NotX, NotY);
- return BinaryOperator::CreateAnd(NotX, NotY);
- }
- }
- // ~((-X) | Y) --> (X - 1) & (~Y)
- if (match(NotVal,
- m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
- Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
- Value *NotY = Builder.CreateNot(Y);
- return BinaryOperator::CreateAnd(DecX, NotY);
- }
- // ~(~X >>s Y) --> (X >>s Y)
- if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
- return BinaryOperator::CreateAShr(X, Y);
- // If we are inverting a right-shifted constant, we may be able to eliminate
- // the 'not' by inverting the constant and using the opposite shift type.
- // Canonicalization rules ensure that only a negative constant uses 'ashr',
- // but we must check that in case that transform has not fired yet.
- // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
- Constant *C;
- if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
- match(C, m_Negative())) {
- // We matched a negative constant, so propagating undef is unsafe.
- // Clamp undef elements to -1.
- Type *EltTy = Ty->getScalarType();
- C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
- return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
- }
- // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
- if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
- match(C, m_NonNegative())) {
- // We matched a non-negative constant, so propagating undef is unsafe.
- // Clamp undef elements to 0.
- Type *EltTy = Ty->getScalarType();
- C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
- return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
- }
- // ~(X + C) --> ~C - X
- if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C))))
- return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
- // ~(X - Y) --> ~X + Y
- // FIXME: is it really beneficial to sink the `not` here?
- if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
- if (isa<Constant>(X) || NotVal->hasOneUse())
- return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
- // ~(~X + Y) --> X - Y
- if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
- return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
- NotVal);
- }
- // not (cmp A, B) = !cmp A, B
- CmpInst::Predicate Pred;
- if (match(NotOp, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
- cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
- return replaceInstUsesWith(I, NotOp);
- }
- // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
- // ~min(~X, ~Y) --> max(X, Y)
- // ~max(~X, Y) --> min(X, ~Y)
- auto *II = dyn_cast<IntrinsicInst>(NotOp);
- if (II && II->hasOneUse()) {
- if (match(NotOp, m_MaxOrMin(m_Value(X), m_Value(Y))) &&
- isFreeToInvert(X, X->hasOneUse()) &&
- isFreeToInvert(Y, Y->hasOneUse())) {
- Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
- Value *NotX = Builder.CreateNot(X);
- Value *NotY = Builder.CreateNot(Y);
- Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, NotX, NotY);
- return replaceInstUsesWith(I, InvMaxMin);
- }
- if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
- Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
- Value *NotY = Builder.CreateNot(Y);
- Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
- return replaceInstUsesWith(I, InvMaxMin);
- }
- }
- // TODO: Remove folds if we canonicalize to intrinsics (see above).
- // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
- //
- // %notx = xor i32 %x, -1
- // %cmp1 = icmp sgt i32 %notx, %y
- // %smax = select i1 %cmp1, i32 %notx, i32 %y
- // %res = xor i32 %smax, -1
- // =>
- // %noty = xor i32 %y, -1
- // %cmp2 = icmp slt %x, %noty
- // %res = select i1 %cmp2, i32 %x, i32 %noty
- //
- // Same is applicable for smin/umax/umin.
- if (NotOp->hasOneUse()) {
- Value *LHS, *RHS;
- SelectPatternFlavor SPF = matchSelectPattern(NotOp, LHS, RHS).Flavor;
- if (SelectPatternResult::isMinOrMax(SPF)) {
- // It's possible we get here before the not has been simplified, so make
- // sure the input to the not isn't freely invertible.
- if (match(LHS, m_Not(m_Value(X))) && !isFreeToInvert(X, X->hasOneUse())) {
- Value *NotY = Builder.CreateNot(RHS);
- return SelectInst::Create(
- Builder.CreateICmp(getInverseMinMaxPred(SPF), X, NotY), X, NotY);
- }
- // It's possible we get here before the not has been simplified, so make
- // sure the input to the not isn't freely invertible.
- if (match(RHS, m_Not(m_Value(Y))) && !isFreeToInvert(Y, Y->hasOneUse())) {
- Value *NotX = Builder.CreateNot(LHS);
- return SelectInst::Create(
- Builder.CreateICmp(getInverseMinMaxPred(SPF), NotX, Y), NotX, Y);
- }
- // If both sides are freely invertible, then we can get rid of the xor
- // completely.
- if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
- isFreeToInvert(RHS, !RHS->hasNUsesOrMore(3))) {
- Value *NotLHS = Builder.CreateNot(LHS);
- Value *NotRHS = Builder.CreateNot(RHS);
- return SelectInst::Create(
- Builder.CreateICmp(getInverseMinMaxPred(SPF), NotLHS, NotRHS),
- NotLHS, NotRHS);
- }
- }
- // Pull 'not' into operands of select if both operands are one-use compares
- // or one is one-use compare and the other one is a constant.
- // Inverting the predicates eliminates the 'not' operation.
- // Example:
- // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
- // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
- // not (select ?, (cmp TPred, ?, ?), true -->
- // select ?, (cmp InvTPred, ?, ?), false
- if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
- Value *TV = Sel->getTrueValue();
- Value *FV = Sel->getFalseValue();
- auto *CmpT = dyn_cast<CmpInst>(TV);
- auto *CmpF = dyn_cast<CmpInst>(FV);
- bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
- bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
- if (InvertibleT && InvertibleF) {
- if (CmpT)
- CmpT->setPredicate(CmpT->getInversePredicate());
- else
- Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
- if (CmpF)
- CmpF->setPredicate(CmpF->getInversePredicate());
- else
- Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
- return replaceInstUsesWith(I, Sel);
- }
- }
- }
- if (Instruction *NewXor = sinkNotIntoXor(I, Builder))
- return NewXor;
- return nullptr;
- }
- // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
- // here. We should standardize that construct where it is needed or choose some
- // other way to ensure that commutated variants of patterns are not missed.
- Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
- if (Value *V = SimplifyXorInst(I.getOperand(0), I.getOperand(1),
- SQ.getWithInstruction(&I)))
- return replaceInstUsesWith(I, V);
- if (SimplifyAssociativeOrCommutative(I))
- return &I;
- if (Instruction *X = foldVectorBinop(I))
- return X;
- if (Instruction *Phi = foldBinopWithPhiOperands(I))
- return Phi;
- if (Instruction *NewXor = foldXorToXor(I, Builder))
- return NewXor;
- // (A&B)^(A&C) -> A&(B^C) etc
- if (Value *V = SimplifyUsingDistributiveLaws(I))
- return replaceInstUsesWith(I, V);
- // See if we can simplify any instructions used by the instruction whose sole
- // purpose is to compute bits we don't care about.
- if (SimplifyDemandedInstructionBits(I))
- return &I;
- if (Value *V = SimplifyBSwap(I, Builder))
- return replaceInstUsesWith(I, V);
- if (Instruction *R = foldNot(I))
- return R;
- // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
- // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
- // calls in there are unnecessary as SimplifyDemandedInstructionBits should
- // have already taken care of those cases.
- Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
- Value *M;
- if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
- m_c_And(m_Deferred(M), m_Value()))))
- return BinaryOperator::CreateOr(Op0, Op1);
- if (Instruction *Xor = visitMaskedMerge(I, Builder))
- return Xor;
- Value *X, *Y;
- Constant *C1;
- if (match(Op1, m_Constant(C1))) {
- // Use DeMorgan and reassociation to eliminate a 'not' op.
- Constant *C2;
- if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
- // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
- Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
- return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
- }
- if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
- // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
- Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
- return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
- }
- // Convert xor ([trunc] (ashr X, BW-1)), C =>
- // select(X >s -1, C, ~C)
- // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
- // constant depending on whether this input is less than 0.
- const APInt *CA;
- if (match(Op0, m_OneUse(m_TruncOrSelf(
- m_AShr(m_Value(X), m_APIntAllowUndef(CA))))) &&
- *CA == X->getType()->getScalarSizeInBits() - 1 &&
- !match(C1, m_AllOnes())) {
- assert(!C1->isZeroValue() && "Unexpected xor with 0");
- Value *ICmp =
- Builder.CreateICmpSGT(X, Constant::getAllOnesValue(X->getType()));
- return SelectInst::Create(ICmp, Op1, Builder.CreateNot(Op1));
- }
- }
- Type *Ty = I.getType();
- {
- const APInt *RHSC;
- if (match(Op1, m_APInt(RHSC))) {
- Value *X;
- const APInt *C;
- // (C - X) ^ signmaskC --> (C + signmaskC) - X
- if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
- return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
- // (X + C) ^ signmaskC --> X + (C + signmaskC)
- if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
- return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
- // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
- if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
- MaskedValueIsZero(X, *C, 0, &I))
- return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
- // If RHSC is inverting the remaining bits of shifted X,
- // canonicalize to a 'not' before the shift to help SCEV and codegen:
- // (X << C) ^ RHSC --> ~X << C
- if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
- *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
- Value *NotX = Builder.CreateNot(X);
- return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
- }
- // (X >>u C) ^ RHSC --> ~X >>u C
- if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
- *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
- Value *NotX = Builder.CreateNot(X);
- return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
- }
- // TODO: We could handle 'ashr' here as well. That would be matching
- // a 'not' op and moving it before the shift. Doing that requires
- // preventing the inverse fold in canShiftBinOpWithConstantRHS().
- }
- }
- // FIXME: This should not be limited to scalar (pull into APInt match above).
- {
- Value *X;
- ConstantInt *C1, *C2, *C3;
- // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
- if (match(Op1, m_ConstantInt(C3)) &&
- match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
- m_ConstantInt(C2))) &&
- Op0->hasOneUse()) {
- // fold (C1 >> C2) ^ C3
- APInt FoldConst = C1->getValue().lshr(C2->getValue());
- FoldConst ^= C3->getValue();
- // Prepare the two operands.
- auto *Opnd0 = cast<Instruction>(Builder.CreateLShr(X, C2));
- Opnd0->takeName(cast<Instruction>(Op0));
- Opnd0->setDebugLoc(I.getDebugLoc());
- return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
- }
- }
- if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
- return FoldedLogic;
- // Y ^ (X | Y) --> X & ~Y
- // Y ^ (Y | X) --> X & ~Y
- if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
- return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
- // (X | Y) ^ Y --> X & ~Y
- // (Y | X) ^ Y --> X & ~Y
- if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
- return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
- // Y ^ (X & Y) --> ~X & Y
- // Y ^ (Y & X) --> ~X & Y
- if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
- return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
- // (X & Y) ^ Y --> ~X & Y
- // (Y & X) ^ Y --> ~X & Y
- // Canonical form is (X & C) ^ C; don't touch that.
- // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
- // be fixed to prefer that (otherwise we get infinite looping).
- if (!match(Op1, m_Constant()) &&
- match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
- return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
- Value *A, *B, *C;
- // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
- if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
- m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
- return BinaryOperator::CreateXor(
- Builder.CreateAnd(Builder.CreateNot(A), C), B);
- // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
- if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
- m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
- return BinaryOperator::CreateXor(
- Builder.CreateAnd(Builder.CreateNot(B), C), A);
- // (A & B) ^ (A ^ B) -> (A | B)
- if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
- match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateOr(A, B);
- // (A ^ B) ^ (A & B) -> (A | B)
- if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
- match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
- return BinaryOperator::CreateOr(A, B);
- // (A & ~B) ^ ~A -> ~(A & B)
- // (~B & A) ^ ~A -> ~(A & B)
- if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
- match(Op1, m_Not(m_Specific(A))))
- return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
- // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
- if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
- return BinaryOperator::CreateOr(A, B);
- // (~A | B) ^ A --> ~(A & B)
- if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
- return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
- // A ^ (~A | B) --> ~(A & B)
- if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
- return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
- // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
- // TODO: Loosen one-use restriction if common operand is a constant.
- Value *D;
- if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
- match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
- if (B == C || B == D)
- std::swap(A, B);
- if (A == C)
- std::swap(C, D);
- if (A == D) {
- Value *NotA = Builder.CreateNot(A);
- return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
- }
- }
- if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
- if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
- if (Value *V = foldXorOfICmps(LHS, RHS, I))
- return replaceInstUsesWith(I, V);
- if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
- return CastedXor;
- if (Instruction *Abs = canonicalizeAbs(I, Builder))
- return Abs;
- // Otherwise, if all else failed, try to hoist the xor-by-constant:
- // (X ^ C) ^ Y --> (X ^ Y) ^ C
- // Just like we do in other places, we completely avoid the fold
- // for constantexprs, at least to avoid endless combine loop.
- if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
- m_Unless(m_ConstantExpr())),
- m_ImmConstant(C1))),
- m_Value(Y))))
- return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
- return nullptr;
- }
|