12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054 |
- //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- /// \file
- /// This file implements interprocedural passes which walk the
- /// call-graph deducing and/or propagating function attributes.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/IPO/FunctionAttrs.h"
- #include "llvm/ADT/ArrayRef.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/SCCIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/Analysis/CGSCCPassManager.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/CallGraphSCCPass.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/Analysis/LazyCallGraph.h"
- #include "llvm/Analysis/MemoryBuiltins.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/Constant.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/InstIterator.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/IPO.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <cassert>
- #include <iterator>
- #include <map>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "function-attrs"
- STATISTIC(NumReadNone, "Number of functions marked readnone");
- STATISTIC(NumReadOnly, "Number of functions marked readonly");
- STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
- STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
- STATISTIC(NumReturned, "Number of arguments marked returned");
- STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
- STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
- STATISTIC(NumWriteOnlyArg, "Number of arguments marked writeonly");
- STATISTIC(NumNoAlias, "Number of function returns marked noalias");
- STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
- STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
- STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
- STATISTIC(NumNoFree, "Number of functions marked as nofree");
- STATISTIC(NumWillReturn, "Number of functions marked as willreturn");
- STATISTIC(NumNoSync, "Number of functions marked as nosync");
- STATISTIC(NumThinLinkNoRecurse,
- "Number of functions marked as norecurse during thinlink");
- STATISTIC(NumThinLinkNoUnwind,
- "Number of functions marked as nounwind during thinlink");
- static cl::opt<bool> EnableNonnullArgPropagation(
- "enable-nonnull-arg-prop", cl::init(true), cl::Hidden,
- cl::desc("Try to propagate nonnull argument attributes from callsites to "
- "caller functions."));
- static cl::opt<bool> DisableNoUnwindInference(
- "disable-nounwind-inference", cl::Hidden,
- cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
- static cl::opt<bool> DisableNoFreeInference(
- "disable-nofree-inference", cl::Hidden,
- cl::desc("Stop inferring nofree attribute during function-attrs pass"));
- static cl::opt<bool> DisableThinLTOPropagation(
- "disable-thinlto-funcattrs", cl::init(true), cl::Hidden,
- cl::desc("Don't propagate function-attrs in thinLTO"));
- namespace {
- using SCCNodeSet = SmallSetVector<Function *, 8>;
- } // end anonymous namespace
- /// Returns the memory access attribute for function F using AAR for AA results,
- /// where SCCNodes is the current SCC.
- ///
- /// If ThisBody is true, this function may examine the function body and will
- /// return a result pertaining to this copy of the function. If it is false, the
- /// result will be based only on AA results for the function declaration; it
- /// will be assumed that some other (perhaps less optimized) version of the
- /// function may be selected at link time.
- static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
- AAResults &AAR,
- const SCCNodeSet &SCCNodes) {
- FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
- if (MRB == FMRB_DoesNotAccessMemory)
- // Already perfect!
- return MAK_ReadNone;
- if (!ThisBody) {
- if (AliasAnalysis::onlyReadsMemory(MRB))
- return MAK_ReadOnly;
- if (AliasAnalysis::onlyWritesMemory(MRB))
- return MAK_WriteOnly;
- // Conservatively assume it reads and writes to memory.
- return MAK_MayWrite;
- }
- // Scan the function body for instructions that may read or write memory.
- bool ReadsMemory = false;
- bool WritesMemory = false;
- for (Instruction &I : instructions(F)) {
- // Some instructions can be ignored even if they read or write memory.
- // Detect these now, skipping to the next instruction if one is found.
- if (auto *Call = dyn_cast<CallBase>(&I)) {
- // Ignore calls to functions in the same SCC, as long as the call sites
- // don't have operand bundles. Calls with operand bundles are allowed to
- // have memory effects not described by the memory effects of the call
- // target.
- if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
- SCCNodes.count(Call->getCalledFunction()))
- continue;
- FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
- ModRefInfo MRI = createModRefInfo(MRB);
- // If the call doesn't access memory, we're done.
- if (isNoModRef(MRI))
- continue;
- // A pseudo probe call shouldn't change any function attribute since it
- // doesn't translate to a real instruction. It comes with a memory access
- // tag to prevent itself being removed by optimizations and not block
- // other instructions being optimized.
- if (isa<PseudoProbeInst>(I))
- continue;
- if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
- // The call could access any memory. If that includes writes, note it.
- if (isModSet(MRI))
- WritesMemory = true;
- // If it reads, note it.
- if (isRefSet(MRI))
- ReadsMemory = true;
- continue;
- }
- // Check whether all pointer arguments point to local memory, and
- // ignore calls that only access local memory.
- for (const Use &U : Call->args()) {
- const Value *Arg = U;
- if (!Arg->getType()->isPtrOrPtrVectorTy())
- continue;
- MemoryLocation Loc =
- MemoryLocation::getBeforeOrAfter(Arg, I.getAAMetadata());
- // Skip accesses to local or constant memory as they don't impact the
- // externally visible mod/ref behavior.
- if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- if (isModSet(MRI))
- // Writes non-local memory.
- WritesMemory = true;
- if (isRefSet(MRI))
- // Ok, it reads non-local memory.
- ReadsMemory = true;
- }
- continue;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- // Ignore non-volatile loads from local memory. (Atomic is okay here.)
- if (!LI->isVolatile()) {
- MemoryLocation Loc = MemoryLocation::get(LI);
- if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- }
- } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
- // Ignore non-volatile stores to local memory. (Atomic is okay here.)
- if (!SI->isVolatile()) {
- MemoryLocation Loc = MemoryLocation::get(SI);
- if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- }
- } else if (VAArgInst *VI = dyn_cast<VAArgInst>(&I)) {
- // Ignore vaargs on local memory.
- MemoryLocation Loc = MemoryLocation::get(VI);
- if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- }
- // Any remaining instructions need to be taken seriously! Check if they
- // read or write memory.
- //
- // Writes memory, remember that.
- WritesMemory |= I.mayWriteToMemory();
- // If this instruction may read memory, remember that.
- ReadsMemory |= I.mayReadFromMemory();
- }
- if (WritesMemory) {
- if (!ReadsMemory)
- return MAK_WriteOnly;
- else
- return MAK_MayWrite;
- }
- return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
- }
- MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
- AAResults &AAR) {
- return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
- }
- /// Deduce readonly/readnone attributes for the SCC.
- template <typename AARGetterT>
- static void addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter,
- SmallSet<Function *, 8> &Changed) {
- // Check if any of the functions in the SCC read or write memory. If they
- // write memory then they can't be marked readnone or readonly.
- bool ReadsMemory = false;
- bool WritesMemory = false;
- for (Function *F : SCCNodes) {
- // Call the callable parameter to look up AA results for this function.
- AAResults &AAR = AARGetter(*F);
- // Non-exact function definitions may not be selected at link time, and an
- // alternative version that writes to memory may be selected. See the
- // comment on GlobalValue::isDefinitionExact for more details.
- switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
- AAR, SCCNodes)) {
- case MAK_MayWrite:
- return;
- case MAK_ReadOnly:
- ReadsMemory = true;
- break;
- case MAK_WriteOnly:
- WritesMemory = true;
- break;
- case MAK_ReadNone:
- // Nothing to do!
- break;
- }
- }
- // If the SCC contains both functions that read and functions that write, then
- // we cannot add readonly attributes.
- if (ReadsMemory && WritesMemory)
- return;
- // Success! Functions in this SCC do not access memory, or only read memory.
- // Give them the appropriate attribute.
- for (Function *F : SCCNodes) {
- if (F->doesNotAccessMemory())
- // Already perfect!
- continue;
- if (F->onlyReadsMemory() && ReadsMemory)
- // No change.
- continue;
- if (F->onlyWritesMemory() && WritesMemory)
- continue;
- Changed.insert(F);
- // Clear out any existing attributes.
- AttributeMask AttrsToRemove;
- AttrsToRemove.addAttribute(Attribute::ReadOnly);
- AttrsToRemove.addAttribute(Attribute::ReadNone);
- AttrsToRemove.addAttribute(Attribute::WriteOnly);
- if (!WritesMemory && !ReadsMemory) {
- // Clear out any "access range attributes" if readnone was deduced.
- AttrsToRemove.addAttribute(Attribute::ArgMemOnly);
- AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly);
- AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
- }
- F->removeFnAttrs(AttrsToRemove);
- // Add in the new attribute.
- if (WritesMemory && !ReadsMemory)
- F->addFnAttr(Attribute::WriteOnly);
- else
- F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
- if (WritesMemory && !ReadsMemory)
- ++NumWriteOnly;
- else if (ReadsMemory)
- ++NumReadOnly;
- else
- ++NumReadNone;
- }
- }
- // Compute definitive function attributes for a function taking into account
- // prevailing definitions and linkage types
- static FunctionSummary *calculatePrevailingSummary(
- ValueInfo VI,
- DenseMap<ValueInfo, FunctionSummary *> &CachedPrevailingSummary,
- function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
- IsPrevailing) {
- if (CachedPrevailingSummary.count(VI))
- return CachedPrevailingSummary[VI];
- /// At this point, prevailing symbols have been resolved. The following leads
- /// to returning a conservative result:
- /// - Multiple instances with local linkage. Normally local linkage would be
- /// unique per module
- /// as the GUID includes the module path. We could have a guid alias if
- /// there wasn't any distinguishing path when each file was compiled, but
- /// that should be rare so we'll punt on those.
- /// These next 2 cases should not happen and will assert:
- /// - Multiple instances with external linkage. This should be caught in
- /// symbol resolution
- /// - Non-existent FunctionSummary for Aliasee. This presents a hole in our
- /// knowledge meaning we have to go conservative.
- /// Otherwise, we calculate attributes for a function as:
- /// 1. If we have a local linkage, take its attributes. If there's somehow
- /// multiple, bail and go conservative.
- /// 2. If we have an external/WeakODR/LinkOnceODR linkage check that it is
- /// prevailing, take its attributes.
- /// 3. If we have a Weak/LinkOnce linkage the copies can have semantic
- /// differences. However, if the prevailing copy is known it will be used
- /// so take its attributes. If the prevailing copy is in a native file
- /// all IR copies will be dead and propagation will go conservative.
- /// 4. AvailableExternally summaries without a prevailing copy are known to
- /// occur in a couple of circumstances:
- /// a. An internal function gets imported due to its caller getting
- /// imported, it becomes AvailableExternally but no prevailing
- /// definition exists. Because it has to get imported along with its
- /// caller the attributes will be captured by propagating on its
- /// caller.
- /// b. C++11 [temp.explicit]p10 can generate AvailableExternally
- /// definitions of explicitly instanced template declarations
- /// for inlining which are ultimately dropped from the TU. Since this
- /// is localized to the TU the attributes will have already made it to
- /// the callers.
- /// These are edge cases and already captured by their callers so we
- /// ignore these for now. If they become relevant to optimize in the
- /// future this can be revisited.
- /// 5. Otherwise, go conservative.
- CachedPrevailingSummary[VI] = nullptr;
- FunctionSummary *Local = nullptr;
- FunctionSummary *Prevailing = nullptr;
- for (const auto &GVS : VI.getSummaryList()) {
- if (!GVS->isLive())
- continue;
- FunctionSummary *FS = dyn_cast<FunctionSummary>(GVS->getBaseObject());
- // Virtual and Unknown (e.g. indirect) calls require going conservative
- if (!FS || FS->fflags().HasUnknownCall)
- return nullptr;
- const auto &Linkage = GVS->linkage();
- if (GlobalValue::isLocalLinkage(Linkage)) {
- if (Local) {
- LLVM_DEBUG(
- dbgs()
- << "ThinLTO FunctionAttrs: Multiple Local Linkage, bailing on "
- "function "
- << VI.name() << " from " << FS->modulePath() << ". Previous module "
- << Local->modulePath() << "\n");
- return nullptr;
- }
- Local = FS;
- } else if (GlobalValue::isExternalLinkage(Linkage)) {
- assert(IsPrevailing(VI.getGUID(), GVS.get()));
- Prevailing = FS;
- break;
- } else if (GlobalValue::isWeakODRLinkage(Linkage) ||
- GlobalValue::isLinkOnceODRLinkage(Linkage) ||
- GlobalValue::isWeakAnyLinkage(Linkage) ||
- GlobalValue::isLinkOnceAnyLinkage(Linkage)) {
- if (IsPrevailing(VI.getGUID(), GVS.get())) {
- Prevailing = FS;
- break;
- }
- } else if (GlobalValue::isAvailableExternallyLinkage(Linkage)) {
- // TODO: Handle these cases if they become meaningful
- continue;
- }
- }
- if (Local) {
- assert(!Prevailing);
- CachedPrevailingSummary[VI] = Local;
- } else if (Prevailing) {
- assert(!Local);
- CachedPrevailingSummary[VI] = Prevailing;
- }
- return CachedPrevailingSummary[VI];
- }
- bool llvm::thinLTOPropagateFunctionAttrs(
- ModuleSummaryIndex &Index,
- function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
- IsPrevailing) {
- // TODO: implement addNoAliasAttrs once
- // there's more information about the return type in the summary
- if (DisableThinLTOPropagation)
- return false;
- DenseMap<ValueInfo, FunctionSummary *> CachedPrevailingSummary;
- bool Changed = false;
- auto PropagateAttributes = [&](std::vector<ValueInfo> &SCCNodes) {
- // Assume we can propagate unless we discover otherwise
- FunctionSummary::FFlags InferredFlags;
- InferredFlags.NoRecurse = (SCCNodes.size() == 1);
- InferredFlags.NoUnwind = true;
- for (auto &V : SCCNodes) {
- FunctionSummary *CallerSummary =
- calculatePrevailingSummary(V, CachedPrevailingSummary, IsPrevailing);
- // Function summaries can fail to contain information such as declarations
- if (!CallerSummary)
- return;
- if (CallerSummary->fflags().MayThrow)
- InferredFlags.NoUnwind = false;
- for (const auto &Callee : CallerSummary->calls()) {
- FunctionSummary *CalleeSummary = calculatePrevailingSummary(
- Callee.first, CachedPrevailingSummary, IsPrevailing);
- if (!CalleeSummary)
- return;
- if (!CalleeSummary->fflags().NoRecurse)
- InferredFlags.NoRecurse = false;
- if (!CalleeSummary->fflags().NoUnwind)
- InferredFlags.NoUnwind = false;
- if (!InferredFlags.NoUnwind && !InferredFlags.NoRecurse)
- break;
- }
- }
- if (InferredFlags.NoUnwind || InferredFlags.NoRecurse) {
- Changed = true;
- for (auto &V : SCCNodes) {
- if (InferredFlags.NoRecurse) {
- LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoRecurse to "
- << V.name() << "\n");
- ++NumThinLinkNoRecurse;
- }
- if (InferredFlags.NoUnwind) {
- LLVM_DEBUG(dbgs() << "ThinLTO FunctionAttrs: Propagated NoUnwind to "
- << V.name() << "\n");
- ++NumThinLinkNoUnwind;
- }
- for (auto &S : V.getSummaryList()) {
- if (auto *FS = dyn_cast<FunctionSummary>(S.get())) {
- if (InferredFlags.NoRecurse)
- FS->setNoRecurse();
- if (InferredFlags.NoUnwind)
- FS->setNoUnwind();
- }
- }
- }
- }
- };
- // Call propagation functions on each SCC in the Index
- for (scc_iterator<ModuleSummaryIndex *> I = scc_begin(&Index); !I.isAtEnd();
- ++I) {
- std::vector<ValueInfo> Nodes(*I);
- PropagateAttributes(Nodes);
- }
- return Changed;
- }
- namespace {
- /// For a given pointer Argument, this retains a list of Arguments of functions
- /// in the same SCC that the pointer data flows into. We use this to build an
- /// SCC of the arguments.
- struct ArgumentGraphNode {
- Argument *Definition;
- SmallVector<ArgumentGraphNode *, 4> Uses;
- };
- class ArgumentGraph {
- // We store pointers to ArgumentGraphNode objects, so it's important that
- // that they not move around upon insert.
- using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
- ArgumentMapTy ArgumentMap;
- // There is no root node for the argument graph, in fact:
- // void f(int *x, int *y) { if (...) f(x, y); }
- // is an example where the graph is disconnected. The SCCIterator requires a
- // single entry point, so we maintain a fake ("synthetic") root node that
- // uses every node. Because the graph is directed and nothing points into
- // the root, it will not participate in any SCCs (except for its own).
- ArgumentGraphNode SyntheticRoot;
- public:
- ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
- using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
- iterator begin() { return SyntheticRoot.Uses.begin(); }
- iterator end() { return SyntheticRoot.Uses.end(); }
- ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
- ArgumentGraphNode *operator[](Argument *A) {
- ArgumentGraphNode &Node = ArgumentMap[A];
- Node.Definition = A;
- SyntheticRoot.Uses.push_back(&Node);
- return &Node;
- }
- };
- /// This tracker checks whether callees are in the SCC, and if so it does not
- /// consider that a capture, instead adding it to the "Uses" list and
- /// continuing with the analysis.
- struct ArgumentUsesTracker : public CaptureTracker {
- ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
- void tooManyUses() override { Captured = true; }
- bool captured(const Use *U) override {
- CallBase *CB = dyn_cast<CallBase>(U->getUser());
- if (!CB) {
- Captured = true;
- return true;
- }
- Function *F = CB->getCalledFunction();
- if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
- Captured = true;
- return true;
- }
- assert(!CB->isCallee(U) && "callee operand reported captured?");
- const unsigned UseIndex = CB->getDataOperandNo(U);
- if (UseIndex >= CB->arg_size()) {
- // Data operand, but not a argument operand -- must be a bundle operand
- assert(CB->hasOperandBundles() && "Must be!");
- // CaptureTracking told us that we're being captured by an operand bundle
- // use. In this case it does not matter if the callee is within our SCC
- // or not -- we've been captured in some unknown way, and we have to be
- // conservative.
- Captured = true;
- return true;
- }
- if (UseIndex >= F->arg_size()) {
- assert(F->isVarArg() && "More params than args in non-varargs call");
- Captured = true;
- return true;
- }
- Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
- return false;
- }
- // True only if certainly captured (used outside our SCC).
- bool Captured = false;
- // Uses within our SCC.
- SmallVector<Argument *, 4> Uses;
- const SCCNodeSet &SCCNodes;
- };
- } // end anonymous namespace
- namespace llvm {
- template <> struct GraphTraits<ArgumentGraphNode *> {
- using NodeRef = ArgumentGraphNode *;
- using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
- static NodeRef getEntryNode(NodeRef A) { return A; }
- static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
- static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
- };
- template <>
- struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
- static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
- static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
- return AG->begin();
- }
- static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
- };
- } // end namespace llvm
- /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
- static Attribute::AttrKind
- determinePointerAccessAttrs(Argument *A,
- const SmallPtrSet<Argument *, 8> &SCCNodes) {
- SmallVector<Use *, 32> Worklist;
- SmallPtrSet<Use *, 32> Visited;
- // inalloca arguments are always clobbered by the call.
- if (A->hasInAllocaAttr() || A->hasPreallocatedAttr())
- return Attribute::None;
- bool IsRead = false;
- bool IsWrite = false;
- for (Use &U : A->uses()) {
- Visited.insert(&U);
- Worklist.push_back(&U);
- }
- while (!Worklist.empty()) {
- if (IsWrite && IsRead)
- // No point in searching further..
- return Attribute::None;
- Use *U = Worklist.pop_back_val();
- Instruction *I = cast<Instruction>(U->getUser());
- switch (I->getOpcode()) {
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::PHI:
- case Instruction::Select:
- case Instruction::AddrSpaceCast:
- // The original value is not read/written via this if the new value isn't.
- for (Use &UU : I->uses())
- if (Visited.insert(&UU).second)
- Worklist.push_back(&UU);
- break;
- case Instruction::Call:
- case Instruction::Invoke: {
- CallBase &CB = cast<CallBase>(*I);
- if (CB.isCallee(U)) {
- IsRead = true;
- // Note that indirect calls do not capture, see comment in
- // CaptureTracking for context
- continue;
- }
- // Given we've explictily handled the callee operand above, what's left
- // must be a data operand (e.g. argument or operand bundle)
- const unsigned UseIndex = CB.getDataOperandNo(U);
- if (!CB.doesNotCapture(UseIndex)) {
- if (!CB.onlyReadsMemory())
- // If the callee can save a copy into other memory, then simply
- // scanning uses of the call is insufficient. We have no way
- // of tracking copies of the pointer through memory to see
- // if a reloaded copy is written to, thus we must give up.
- return Attribute::None;
- // Push users for processing once we finish this one
- if (!I->getType()->isVoidTy())
- for (Use &UU : I->uses())
- if (Visited.insert(&UU).second)
- Worklist.push_back(&UU);
- }
-
- if (CB.doesNotAccessMemory())
- continue;
- if (Function *F = CB.getCalledFunction())
- if (CB.isArgOperand(U) && UseIndex < F->arg_size() &&
- SCCNodes.count(F->getArg(UseIndex)))
- // This is an argument which is part of the speculative SCC. Note
- // that only operands corresponding to formal arguments of the callee
- // can participate in the speculation.
- break;
- // The accessors used on call site here do the right thing for calls and
- // invokes with operand bundles.
- if (CB.doesNotAccessMemory(UseIndex)) {
- /* nop */
- } else if (CB.onlyReadsMemory() || CB.onlyReadsMemory(UseIndex)) {
- IsRead = true;
- } else if (CB.hasFnAttr(Attribute::WriteOnly) ||
- CB.dataOperandHasImpliedAttr(UseIndex, Attribute::WriteOnly)) {
- IsWrite = true;
- } else {
- return Attribute::None;
- }
- break;
- }
- case Instruction::Load:
- // A volatile load has side effects beyond what readonly can be relied
- // upon.
- if (cast<LoadInst>(I)->isVolatile())
- return Attribute::None;
- IsRead = true;
- break;
- case Instruction::Store:
- if (cast<StoreInst>(I)->getValueOperand() == *U)
- // untrackable capture
- return Attribute::None;
- // A volatile store has side effects beyond what writeonly can be relied
- // upon.
- if (cast<StoreInst>(I)->isVolatile())
- return Attribute::None;
- IsWrite = true;
- break;
- case Instruction::ICmp:
- case Instruction::Ret:
- break;
- default:
- return Attribute::None;
- }
- }
- if (IsWrite && IsRead)
- return Attribute::None;
- else if (IsRead)
- return Attribute::ReadOnly;
- else if (IsWrite)
- return Attribute::WriteOnly;
- else
- return Attribute::ReadNone;
- }
- /// Deduce returned attributes for the SCC.
- static void addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- // Check each function in turn, determining if an argument is always returned.
- for (Function *F : SCCNodes) {
- // We can infer and propagate function attributes only when we know that the
- // definition we'll get at link time is *exactly* the definition we see now.
- // For more details, see GlobalValue::mayBeDerefined.
- if (!F->hasExactDefinition())
- continue;
- if (F->getReturnType()->isVoidTy())
- continue;
- // There is nothing to do if an argument is already marked as 'returned'.
- if (llvm::any_of(F->args(),
- [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
- continue;
- auto FindRetArg = [&]() -> Value * {
- Value *RetArg = nullptr;
- for (BasicBlock &BB : *F)
- if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
- // Note that stripPointerCasts should look through functions with
- // returned arguments.
- Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
- if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
- return nullptr;
- if (!RetArg)
- RetArg = RetVal;
- else if (RetArg != RetVal)
- return nullptr;
- }
- return RetArg;
- };
- if (Value *RetArg = FindRetArg()) {
- auto *A = cast<Argument>(RetArg);
- A->addAttr(Attribute::Returned);
- ++NumReturned;
- Changed.insert(F);
- }
- }
- }
- /// If a callsite has arguments that are also arguments to the parent function,
- /// try to propagate attributes from the callsite's arguments to the parent's
- /// arguments. This may be important because inlining can cause information loss
- /// when attribute knowledge disappears with the inlined call.
- static bool addArgumentAttrsFromCallsites(Function &F) {
- if (!EnableNonnullArgPropagation)
- return false;
- bool Changed = false;
- // For an argument attribute to transfer from a callsite to the parent, the
- // call must be guaranteed to execute every time the parent is called.
- // Conservatively, just check for calls in the entry block that are guaranteed
- // to execute.
- // TODO: This could be enhanced by testing if the callsite post-dominates the
- // entry block or by doing simple forward walks or backward walks to the
- // callsite.
- BasicBlock &Entry = F.getEntryBlock();
- for (Instruction &I : Entry) {
- if (auto *CB = dyn_cast<CallBase>(&I)) {
- if (auto *CalledFunc = CB->getCalledFunction()) {
- for (auto &CSArg : CalledFunc->args()) {
- if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false))
- continue;
- // If the non-null callsite argument operand is an argument to 'F'
- // (the caller) and the call is guaranteed to execute, then the value
- // must be non-null throughout 'F'.
- auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo()));
- if (FArg && !FArg->hasNonNullAttr()) {
- FArg->addAttr(Attribute::NonNull);
- Changed = true;
- }
- }
- }
- }
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- break;
- }
- return Changed;
- }
- static bool addAccessAttr(Argument *A, Attribute::AttrKind R) {
- assert((R == Attribute::ReadOnly || R == Attribute::ReadNone ||
- R == Attribute::WriteOnly)
- && "Must be an access attribute.");
- assert(A && "Argument must not be null.");
- // If the argument already has the attribute, nothing needs to be done.
- if (A->hasAttribute(R))
- return false;
- // Otherwise, remove potentially conflicting attribute, add the new one,
- // and update statistics.
- A->removeAttr(Attribute::WriteOnly);
- A->removeAttr(Attribute::ReadOnly);
- A->removeAttr(Attribute::ReadNone);
- A->addAttr(R);
- if (R == Attribute::ReadOnly)
- ++NumReadOnlyArg;
- else if (R == Attribute::WriteOnly)
- ++NumWriteOnlyArg;
- else
- ++NumReadNoneArg;
- return true;
- }
- /// Deduce nocapture attributes for the SCC.
- static void addArgumentAttrs(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- ArgumentGraph AG;
- // Check each function in turn, determining which pointer arguments are not
- // captured.
- for (Function *F : SCCNodes) {
- // We can infer and propagate function attributes only when we know that the
- // definition we'll get at link time is *exactly* the definition we see now.
- // For more details, see GlobalValue::mayBeDerefined.
- if (!F->hasExactDefinition())
- continue;
- if (addArgumentAttrsFromCallsites(*F))
- Changed.insert(F);
- // Functions that are readonly (or readnone) and nounwind and don't return
- // a value can't capture arguments. Don't analyze them.
- if (F->onlyReadsMemory() && F->doesNotThrow() &&
- F->getReturnType()->isVoidTy()) {
- for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
- ++A) {
- if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
- A->addAttr(Attribute::NoCapture);
- ++NumNoCapture;
- Changed.insert(F);
- }
- }
- continue;
- }
- for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
- ++A) {
- if (!A->getType()->isPointerTy())
- continue;
- bool HasNonLocalUses = false;
- if (!A->hasNoCaptureAttr()) {
- ArgumentUsesTracker Tracker(SCCNodes);
- PointerMayBeCaptured(&*A, &Tracker);
- if (!Tracker.Captured) {
- if (Tracker.Uses.empty()) {
- // If it's trivially not captured, mark it nocapture now.
- A->addAttr(Attribute::NoCapture);
- ++NumNoCapture;
- Changed.insert(F);
- } else {
- // If it's not trivially captured and not trivially not captured,
- // then it must be calling into another function in our SCC. Save
- // its particulars for Argument-SCC analysis later.
- ArgumentGraphNode *Node = AG[&*A];
- for (Argument *Use : Tracker.Uses) {
- Node->Uses.push_back(AG[Use]);
- if (Use != &*A)
- HasNonLocalUses = true;
- }
- }
- }
- // Otherwise, it's captured. Don't bother doing SCC analysis on it.
- }
- if (!HasNonLocalUses && !A->onlyReadsMemory()) {
- // Can we determine that it's readonly/readnone/writeonly without doing
- // an SCC? Note that we don't allow any calls at all here, or else our
- // result will be dependent on the iteration order through the
- // functions in the SCC.
- SmallPtrSet<Argument *, 8> Self;
- Self.insert(&*A);
- Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self);
- if (R != Attribute::None)
- if (addAccessAttr(A, R))
- Changed.insert(F);
- }
- }
- }
- // The graph we've collected is partial because we stopped scanning for
- // argument uses once we solved the argument trivially. These partial nodes
- // show up as ArgumentGraphNode objects with an empty Uses list, and for
- // these nodes the final decision about whether they capture has already been
- // made. If the definition doesn't have a 'nocapture' attribute by now, it
- // captures.
- for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
- const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
- if (ArgumentSCC.size() == 1) {
- if (!ArgumentSCC[0]->Definition)
- continue; // synthetic root node
- // eg. "void f(int* x) { if (...) f(x); }"
- if (ArgumentSCC[0]->Uses.size() == 1 &&
- ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
- Argument *A = ArgumentSCC[0]->Definition;
- A->addAttr(Attribute::NoCapture);
- ++NumNoCapture;
- Changed.insert(A->getParent());
- // Infer the access attributes given the new nocapture one
- SmallPtrSet<Argument *, 8> Self;
- Self.insert(&*A);
- Attribute::AttrKind R = determinePointerAccessAttrs(&*A, Self);
- if (R != Attribute::None)
- addAccessAttr(A, R);
- }
- continue;
- }
- bool SCCCaptured = false;
- for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
- I != E && !SCCCaptured; ++I) {
- ArgumentGraphNode *Node = *I;
- if (Node->Uses.empty()) {
- if (!Node->Definition->hasNoCaptureAttr())
- SCCCaptured = true;
- }
- }
- if (SCCCaptured)
- continue;
- SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
- // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
- // quickly looking up whether a given Argument is in this ArgumentSCC.
- for (ArgumentGraphNode *I : ArgumentSCC) {
- ArgumentSCCNodes.insert(I->Definition);
- }
- for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
- I != E && !SCCCaptured; ++I) {
- ArgumentGraphNode *N = *I;
- for (ArgumentGraphNode *Use : N->Uses) {
- Argument *A = Use->Definition;
- if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
- continue;
- SCCCaptured = true;
- break;
- }
- }
- if (SCCCaptured)
- continue;
- for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
- Argument *A = ArgumentSCC[i]->Definition;
- A->addAttr(Attribute::NoCapture);
- ++NumNoCapture;
- Changed.insert(A->getParent());
- }
- // We also want to compute readonly/readnone/writeonly. With a small number
- // of false negatives, we can assume that any pointer which is captured
- // isn't going to be provably readonly or readnone, since by definition
- // we can't analyze all uses of a captured pointer.
- //
- // The false negatives happen when the pointer is captured by a function
- // that promises readonly/readnone behaviour on the pointer, then the
- // pointer's lifetime ends before anything that writes to arbitrary memory.
- // Also, a readonly/readnone pointer may be returned, but returning a
- // pointer is capturing it.
- auto meetAccessAttr = [](Attribute::AttrKind A, Attribute::AttrKind B) {
- if (A == B)
- return A;
- if (A == Attribute::ReadNone)
- return B;
- if (B == Attribute::ReadNone)
- return A;
- return Attribute::None;
- };
- Attribute::AttrKind AccessAttr = Attribute::ReadNone;
- for (unsigned i = 0, e = ArgumentSCC.size();
- i != e && AccessAttr != Attribute::None; ++i) {
- Argument *A = ArgumentSCC[i]->Definition;
- Attribute::AttrKind K = determinePointerAccessAttrs(A, ArgumentSCCNodes);
- AccessAttr = meetAccessAttr(AccessAttr, K);
- }
- if (AccessAttr != Attribute::None) {
- for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
- Argument *A = ArgumentSCC[i]->Definition;
- if (addAccessAttr(A, AccessAttr))
- Changed.insert(A->getParent());
- }
- }
- }
- }
- /// Tests whether a function is "malloc-like".
- ///
- /// A function is "malloc-like" if it returns either null or a pointer that
- /// doesn't alias any other pointer visible to the caller.
- static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
- SmallSetVector<Value *, 8> FlowsToReturn;
- for (BasicBlock &BB : *F)
- if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
- FlowsToReturn.insert(Ret->getReturnValue());
- for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
- Value *RetVal = FlowsToReturn[i];
- if (Constant *C = dyn_cast<Constant>(RetVal)) {
- if (!C->isNullValue() && !isa<UndefValue>(C))
- return false;
- continue;
- }
- if (isa<Argument>(RetVal))
- return false;
- if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
- switch (RVI->getOpcode()) {
- // Extend the analysis by looking upwards.
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::AddrSpaceCast:
- FlowsToReturn.insert(RVI->getOperand(0));
- continue;
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(RVI);
- FlowsToReturn.insert(SI->getTrueValue());
- FlowsToReturn.insert(SI->getFalseValue());
- continue;
- }
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(RVI);
- for (Value *IncValue : PN->incoming_values())
- FlowsToReturn.insert(IncValue);
- continue;
- }
- // Check whether the pointer came from an allocation.
- case Instruction::Alloca:
- break;
- case Instruction::Call:
- case Instruction::Invoke: {
- CallBase &CB = cast<CallBase>(*RVI);
- if (CB.hasRetAttr(Attribute::NoAlias))
- break;
- if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction()))
- break;
- LLVM_FALLTHROUGH;
- }
- default:
- return false; // Did not come from an allocation.
- }
- if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
- return false;
- }
- return true;
- }
- /// Deduce noalias attributes for the SCC.
- static void addNoAliasAttrs(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- // Check each function in turn, determining which functions return noalias
- // pointers.
- for (Function *F : SCCNodes) {
- // Already noalias.
- if (F->returnDoesNotAlias())
- continue;
- // We can infer and propagate function attributes only when we know that the
- // definition we'll get at link time is *exactly* the definition we see now.
- // For more details, see GlobalValue::mayBeDerefined.
- if (!F->hasExactDefinition())
- return;
- // We annotate noalias return values, which are only applicable to
- // pointer types.
- if (!F->getReturnType()->isPointerTy())
- continue;
- if (!isFunctionMallocLike(F, SCCNodes))
- return;
- }
- for (Function *F : SCCNodes) {
- if (F->returnDoesNotAlias() ||
- !F->getReturnType()->isPointerTy())
- continue;
- F->setReturnDoesNotAlias();
- ++NumNoAlias;
- Changed.insert(F);
- }
- }
- /// Tests whether this function is known to not return null.
- ///
- /// Requires that the function returns a pointer.
- ///
- /// Returns true if it believes the function will not return a null, and sets
- /// \p Speculative based on whether the returned conclusion is a speculative
- /// conclusion due to SCC calls.
- static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
- bool &Speculative) {
- assert(F->getReturnType()->isPointerTy() &&
- "nonnull only meaningful on pointer types");
- Speculative = false;
- SmallSetVector<Value *, 8> FlowsToReturn;
- for (BasicBlock &BB : *F)
- if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
- FlowsToReturn.insert(Ret->getReturnValue());
- auto &DL = F->getParent()->getDataLayout();
- for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
- Value *RetVal = FlowsToReturn[i];
- // If this value is locally known to be non-null, we're good
- if (isKnownNonZero(RetVal, DL))
- continue;
- // Otherwise, we need to look upwards since we can't make any local
- // conclusions.
- Instruction *RVI = dyn_cast<Instruction>(RetVal);
- if (!RVI)
- return false;
- switch (RVI->getOpcode()) {
- // Extend the analysis by looking upwards.
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- case Instruction::AddrSpaceCast:
- FlowsToReturn.insert(RVI->getOperand(0));
- continue;
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(RVI);
- FlowsToReturn.insert(SI->getTrueValue());
- FlowsToReturn.insert(SI->getFalseValue());
- continue;
- }
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(RVI);
- for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- FlowsToReturn.insert(PN->getIncomingValue(i));
- continue;
- }
- case Instruction::Call:
- case Instruction::Invoke: {
- CallBase &CB = cast<CallBase>(*RVI);
- Function *Callee = CB.getCalledFunction();
- // A call to a node within the SCC is assumed to return null until
- // proven otherwise
- if (Callee && SCCNodes.count(Callee)) {
- Speculative = true;
- continue;
- }
- return false;
- }
- default:
- return false; // Unknown source, may be null
- };
- llvm_unreachable("should have either continued or returned");
- }
- return true;
- }
- /// Deduce nonnull attributes for the SCC.
- static void addNonNullAttrs(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- // Speculative that all functions in the SCC return only nonnull
- // pointers. We may refute this as we analyze functions.
- bool SCCReturnsNonNull = true;
- // Check each function in turn, determining which functions return nonnull
- // pointers.
- for (Function *F : SCCNodes) {
- // Already nonnull.
- if (F->getAttributes().hasRetAttr(Attribute::NonNull))
- continue;
- // We can infer and propagate function attributes only when we know that the
- // definition we'll get at link time is *exactly* the definition we see now.
- // For more details, see GlobalValue::mayBeDerefined.
- if (!F->hasExactDefinition())
- return;
- // We annotate nonnull return values, which are only applicable to
- // pointer types.
- if (!F->getReturnType()->isPointerTy())
- continue;
- bool Speculative = false;
- if (isReturnNonNull(F, SCCNodes, Speculative)) {
- if (!Speculative) {
- // Mark the function eagerly since we may discover a function
- // which prevents us from speculating about the entire SCC
- LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
- << " as nonnull\n");
- F->addRetAttr(Attribute::NonNull);
- ++NumNonNullReturn;
- Changed.insert(F);
- }
- continue;
- }
- // At least one function returns something which could be null, can't
- // speculate any more.
- SCCReturnsNonNull = false;
- }
- if (SCCReturnsNonNull) {
- for (Function *F : SCCNodes) {
- if (F->getAttributes().hasRetAttr(Attribute::NonNull) ||
- !F->getReturnType()->isPointerTy())
- continue;
- LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
- F->addRetAttr(Attribute::NonNull);
- ++NumNonNullReturn;
- Changed.insert(F);
- }
- }
- }
- namespace {
- /// Collects a set of attribute inference requests and performs them all in one
- /// go on a single SCC Node. Inference involves scanning function bodies
- /// looking for instructions that violate attribute assumptions.
- /// As soon as all the bodies are fine we are free to set the attribute.
- /// Customization of inference for individual attributes is performed by
- /// providing a handful of predicates for each attribute.
- class AttributeInferer {
- public:
- /// Describes a request for inference of a single attribute.
- struct InferenceDescriptor {
- /// Returns true if this function does not have to be handled.
- /// General intent for this predicate is to provide an optimization
- /// for functions that do not need this attribute inference at all
- /// (say, for functions that already have the attribute).
- std::function<bool(const Function &)> SkipFunction;
- /// Returns true if this instruction violates attribute assumptions.
- std::function<bool(Instruction &)> InstrBreaksAttribute;
- /// Sets the inferred attribute for this function.
- std::function<void(Function &)> SetAttribute;
- /// Attribute we derive.
- Attribute::AttrKind AKind;
- /// If true, only "exact" definitions can be used to infer this attribute.
- /// See GlobalValue::isDefinitionExact.
- bool RequiresExactDefinition;
- InferenceDescriptor(Attribute::AttrKind AK,
- std::function<bool(const Function &)> SkipFunc,
- std::function<bool(Instruction &)> InstrScan,
- std::function<void(Function &)> SetAttr,
- bool ReqExactDef)
- : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
- SetAttribute(SetAttr), AKind(AK),
- RequiresExactDefinition(ReqExactDef) {}
- };
- private:
- SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
- public:
- void registerAttrInference(InferenceDescriptor AttrInference) {
- InferenceDescriptors.push_back(AttrInference);
- }
- void run(const SCCNodeSet &SCCNodes, SmallSet<Function *, 8> &Changed);
- };
- /// Perform all the requested attribute inference actions according to the
- /// attribute predicates stored before.
- void AttributeInferer::run(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
- // Go through all the functions in SCC and check corresponding attribute
- // assumptions for each of them. Attributes that are invalid for this SCC
- // will be removed from InferInSCC.
- for (Function *F : SCCNodes) {
- // No attributes whose assumptions are still valid - done.
- if (InferInSCC.empty())
- return;
- // Check if our attributes ever need scanning/can be scanned.
- llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
- if (ID.SkipFunction(*F))
- return false;
- // Remove from further inference (invalidate) when visiting a function
- // that has no instructions to scan/has an unsuitable definition.
- return F->isDeclaration() ||
- (ID.RequiresExactDefinition && !F->hasExactDefinition());
- });
- // For each attribute still in InferInSCC that doesn't explicitly skip F,
- // set up the F instructions scan to verify assumptions of the attribute.
- SmallVector<InferenceDescriptor, 4> InferInThisFunc;
- llvm::copy_if(
- InferInSCC, std::back_inserter(InferInThisFunc),
- [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
- if (InferInThisFunc.empty())
- continue;
- // Start instruction scan.
- for (Instruction &I : instructions(*F)) {
- llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
- if (!ID.InstrBreaksAttribute(I))
- return false;
- // Remove attribute from further inference on any other functions
- // because attribute assumptions have just been violated.
- llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
- return D.AKind == ID.AKind;
- });
- // Remove attribute from the rest of current instruction scan.
- return true;
- });
- if (InferInThisFunc.empty())
- break;
- }
- }
- if (InferInSCC.empty())
- return;
- for (Function *F : SCCNodes)
- // At this point InferInSCC contains only functions that were either:
- // - explicitly skipped from scan/inference, or
- // - verified to have no instructions that break attribute assumptions.
- // Hence we just go and force the attribute for all non-skipped functions.
- for (auto &ID : InferInSCC) {
- if (ID.SkipFunction(*F))
- continue;
- Changed.insert(F);
- ID.SetAttribute(*F);
- }
- }
- struct SCCNodesResult {
- SCCNodeSet SCCNodes;
- bool HasUnknownCall;
- };
- } // end anonymous namespace
- /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
- static bool InstrBreaksNonConvergent(Instruction &I,
- const SCCNodeSet &SCCNodes) {
- const CallBase *CB = dyn_cast<CallBase>(&I);
- // Breaks non-convergent assumption if CS is a convergent call to a function
- // not in the SCC.
- return CB && CB->isConvergent() &&
- !SCCNodes.contains(CB->getCalledFunction());
- }
- /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
- static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
- if (!I.mayThrow())
- return false;
- if (const auto *CI = dyn_cast<CallInst>(&I)) {
- if (Function *Callee = CI->getCalledFunction()) {
- // I is a may-throw call to a function inside our SCC. This doesn't
- // invalidate our current working assumption that the SCC is no-throw; we
- // just have to scan that other function.
- if (SCCNodes.contains(Callee))
- return false;
- }
- }
- return true;
- }
- /// Helper for NoFree inference predicate InstrBreaksAttribute.
- static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
- CallBase *CB = dyn_cast<CallBase>(&I);
- if (!CB)
- return false;
- if (CB->hasFnAttr(Attribute::NoFree))
- return false;
- // Speculatively assume in SCC.
- if (Function *Callee = CB->getCalledFunction())
- if (SCCNodes.contains(Callee))
- return false;
- return true;
- }
- /// Attempt to remove convergent function attribute when possible.
- ///
- /// Returns true if any changes to function attributes were made.
- static void inferConvergent(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- AttributeInferer AI;
- // Request to remove the convergent attribute from all functions in the SCC
- // if every callsite within the SCC is not convergent (except for calls
- // to functions within the SCC).
- // Note: Removal of the attr from the callsites will happen in
- // InstCombineCalls separately.
- AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
- Attribute::Convergent,
- // Skip non-convergent functions.
- [](const Function &F) { return !F.isConvergent(); },
- // Instructions that break non-convergent assumption.
- [SCCNodes](Instruction &I) {
- return InstrBreaksNonConvergent(I, SCCNodes);
- },
- [](Function &F) {
- LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
- << "\n");
- F.setNotConvergent();
- },
- /* RequiresExactDefinition= */ false});
- // Perform all the requested attribute inference actions.
- AI.run(SCCNodes, Changed);
- }
- /// Infer attributes from all functions in the SCC by scanning every
- /// instruction for compliance to the attribute assumptions. Currently it
- /// does:
- /// - addition of NoUnwind attribute
- ///
- /// Returns true if any changes to function attributes were made.
- static void inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- AttributeInferer AI;
- if (!DisableNoUnwindInference)
- // Request to infer nounwind attribute for all the functions in the SCC if
- // every callsite within the SCC is not throwing (except for calls to
- // functions within the SCC). Note that nounwind attribute suffers from
- // derefinement - results may change depending on how functions are
- // optimized. Thus it can be inferred only from exact definitions.
- AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
- Attribute::NoUnwind,
- // Skip non-throwing functions.
- [](const Function &F) { return F.doesNotThrow(); },
- // Instructions that break non-throwing assumption.
- [&SCCNodes](Instruction &I) {
- return InstrBreaksNonThrowing(I, SCCNodes);
- },
- [](Function &F) {
- LLVM_DEBUG(dbgs()
- << "Adding nounwind attr to fn " << F.getName() << "\n");
- F.setDoesNotThrow();
- ++NumNoUnwind;
- },
- /* RequiresExactDefinition= */ true});
- if (!DisableNoFreeInference)
- // Request to infer nofree attribute for all the functions in the SCC if
- // every callsite within the SCC does not directly or indirectly free
- // memory (except for calls to functions within the SCC). Note that nofree
- // attribute suffers from derefinement - results may change depending on
- // how functions are optimized. Thus it can be inferred only from exact
- // definitions.
- AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
- Attribute::NoFree,
- // Skip functions known not to free memory.
- [](const Function &F) { return F.doesNotFreeMemory(); },
- // Instructions that break non-deallocating assumption.
- [&SCCNodes](Instruction &I) {
- return InstrBreaksNoFree(I, SCCNodes);
- },
- [](Function &F) {
- LLVM_DEBUG(dbgs()
- << "Adding nofree attr to fn " << F.getName() << "\n");
- F.setDoesNotFreeMemory();
- ++NumNoFree;
- },
- /* RequiresExactDefinition= */ true});
- // Perform all the requested attribute inference actions.
- AI.run(SCCNodes, Changed);
- }
- static void addNoRecurseAttrs(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- // Try and identify functions that do not recurse.
- // If the SCC contains multiple nodes we know for sure there is recursion.
- if (SCCNodes.size() != 1)
- return;
- Function *F = *SCCNodes.begin();
- if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
- return;
- // If all of the calls in F are identifiable and are to norecurse functions, F
- // is norecurse. This check also detects self-recursion as F is not currently
- // marked norecurse, so any called from F to F will not be marked norecurse.
- for (auto &BB : *F)
- for (auto &I : BB.instructionsWithoutDebug())
- if (auto *CB = dyn_cast<CallBase>(&I)) {
- Function *Callee = CB->getCalledFunction();
- if (!Callee || Callee == F || !Callee->doesNotRecurse())
- // Function calls a potentially recursive function.
- return;
- }
- // Every call was to a non-recursive function other than this function, and
- // we have no indirect recursion as the SCC size is one. This function cannot
- // recurse.
- F->setDoesNotRecurse();
- ++NumNoRecurse;
- Changed.insert(F);
- }
- static bool instructionDoesNotReturn(Instruction &I) {
- if (auto *CB = dyn_cast<CallBase>(&I))
- return CB->hasFnAttr(Attribute::NoReturn);
- return false;
- }
- // A basic block can only return if it terminates with a ReturnInst and does not
- // contain calls to noreturn functions.
- static bool basicBlockCanReturn(BasicBlock &BB) {
- if (!isa<ReturnInst>(BB.getTerminator()))
- return false;
- return none_of(BB, instructionDoesNotReturn);
- }
- // FIXME: this doesn't handle recursion.
- static bool canReturn(Function &F) {
- SmallVector<BasicBlock *, 16> Worklist;
- SmallPtrSet<BasicBlock *, 16> Visited;
- Visited.insert(&F.front());
- Worklist.push_back(&F.front());
- do {
- BasicBlock *BB = Worklist.pop_back_val();
- if (basicBlockCanReturn(*BB))
- return true;
- for (BasicBlock *Succ : successors(BB))
- if (Visited.insert(Succ).second)
- Worklist.push_back(Succ);
- } while (!Worklist.empty());
- return false;
- }
- // Set the noreturn function attribute if possible.
- static void addNoReturnAttrs(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- for (Function *F : SCCNodes) {
- if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) ||
- F->doesNotReturn())
- continue;
- if (!canReturn(*F)) {
- F->setDoesNotReturn();
- Changed.insert(F);
- }
- }
- }
- static bool functionWillReturn(const Function &F) {
- // We can infer and propagate function attributes only when we know that the
- // definition we'll get at link time is *exactly* the definition we see now.
- // For more details, see GlobalValue::mayBeDerefined.
- if (!F.hasExactDefinition())
- return false;
- // Must-progress function without side-effects must return.
- if (F.mustProgress() && F.onlyReadsMemory())
- return true;
- // Can only analyze functions with a definition.
- if (F.isDeclaration())
- return false;
- // Functions with loops require more sophisticated analysis, as the loop
- // may be infinite. For now, don't try to handle them.
- SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges;
- FindFunctionBackedges(F, Backedges);
- if (!Backedges.empty())
- return false;
- // If there are no loops, then the function is willreturn if all calls in
- // it are willreturn.
- return all_of(instructions(F), [](const Instruction &I) {
- return I.willReturn();
- });
- }
- // Set the willreturn function attribute if possible.
- static void addWillReturn(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- for (Function *F : SCCNodes) {
- if (!F || F->willReturn() || !functionWillReturn(*F))
- continue;
- F->setWillReturn();
- NumWillReturn++;
- Changed.insert(F);
- }
- }
- // Return true if this is an atomic which has an ordering stronger than
- // unordered. Note that this is different than the predicate we use in
- // Attributor. Here we chose to be conservative and consider monotonic
- // operations potentially synchronizing. We generally don't do much with
- // monotonic operations, so this is simply risk reduction.
- static bool isOrderedAtomic(Instruction *I) {
- if (!I->isAtomic())
- return false;
- if (auto *FI = dyn_cast<FenceInst>(I))
- // All legal orderings for fence are stronger than monotonic.
- return FI->getSyncScopeID() != SyncScope::SingleThread;
- else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I))
- return true;
- else if (auto *SI = dyn_cast<StoreInst>(I))
- return !SI->isUnordered();
- else if (auto *LI = dyn_cast<LoadInst>(I))
- return !LI->isUnordered();
- else {
- llvm_unreachable("unknown atomic instruction?");
- }
- }
- static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) {
- // Volatile may synchronize
- if (I.isVolatile())
- return true;
- // An ordered atomic may synchronize. (See comment about on monotonic.)
- if (isOrderedAtomic(&I))
- return true;
- auto *CB = dyn_cast<CallBase>(&I);
- if (!CB)
- // Non call site cases covered by the two checks above
- return false;
- if (CB->hasFnAttr(Attribute::NoSync))
- return false;
- // Non volatile memset/memcpy/memmoves are nosync
- // NOTE: Only intrinsics with volatile flags should be handled here. All
- // others should be marked in Intrinsics.td.
- if (auto *MI = dyn_cast<MemIntrinsic>(&I))
- if (!MI->isVolatile())
- return false;
- // Speculatively assume in SCC.
- if (Function *Callee = CB->getCalledFunction())
- if (SCCNodes.contains(Callee))
- return false;
- return true;
- }
- // Infer the nosync attribute.
- static void addNoSyncAttr(const SCCNodeSet &SCCNodes,
- SmallSet<Function *, 8> &Changed) {
- AttributeInferer AI;
- AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
- Attribute::NoSync,
- // Skip already marked functions.
- [](const Function &F) { return F.hasNoSync(); },
- // Instructions that break nosync assumption.
- [&SCCNodes](Instruction &I) {
- return InstrBreaksNoSync(I, SCCNodes);
- },
- [](Function &F) {
- LLVM_DEBUG(dbgs()
- << "Adding nosync attr to fn " << F.getName() << "\n");
- F.setNoSync();
- ++NumNoSync;
- },
- /* RequiresExactDefinition= */ true});
- AI.run(SCCNodes, Changed);
- }
- static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) {
- SCCNodesResult Res;
- Res.HasUnknownCall = false;
- for (Function *F : Functions) {
- if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked) ||
- F->isPresplitCoroutine()) {
- // Treat any function we're trying not to optimize as if it were an
- // indirect call and omit it from the node set used below.
- Res.HasUnknownCall = true;
- continue;
- }
- // Track whether any functions in this SCC have an unknown call edge.
- // Note: if this is ever a performance hit, we can common it with
- // subsequent routines which also do scans over the instructions of the
- // function.
- if (!Res.HasUnknownCall) {
- for (Instruction &I : instructions(*F)) {
- if (auto *CB = dyn_cast<CallBase>(&I)) {
- if (!CB->getCalledFunction()) {
- Res.HasUnknownCall = true;
- break;
- }
- }
- }
- }
- Res.SCCNodes.insert(F);
- }
- return Res;
- }
- template <typename AARGetterT>
- static SmallSet<Function *, 8>
- deriveAttrsInPostOrder(ArrayRef<Function *> Functions, AARGetterT &&AARGetter) {
- SCCNodesResult Nodes = createSCCNodeSet(Functions);
- // Bail if the SCC only contains optnone functions.
- if (Nodes.SCCNodes.empty())
- return {};
- SmallSet<Function *, 8> Changed;
- addArgumentReturnedAttrs(Nodes.SCCNodes, Changed);
- addReadAttrs(Nodes.SCCNodes, AARGetter, Changed);
- addArgumentAttrs(Nodes.SCCNodes, Changed);
- inferConvergent(Nodes.SCCNodes, Changed);
- addNoReturnAttrs(Nodes.SCCNodes, Changed);
- addWillReturn(Nodes.SCCNodes, Changed);
- // If we have no external nodes participating in the SCC, we can deduce some
- // more precise attributes as well.
- if (!Nodes.HasUnknownCall) {
- addNoAliasAttrs(Nodes.SCCNodes, Changed);
- addNonNullAttrs(Nodes.SCCNodes, Changed);
- inferAttrsFromFunctionBodies(Nodes.SCCNodes, Changed);
- addNoRecurseAttrs(Nodes.SCCNodes, Changed);
- }
- addNoSyncAttr(Nodes.SCCNodes, Changed);
- // Finally, infer the maximal set of attributes from the ones we've inferred
- // above. This is handling the cases where one attribute on a signature
- // implies another, but for implementation reasons the inference rule for
- // the later is missing (or simply less sophisticated).
- for (Function *F : Nodes.SCCNodes)
- if (F)
- if (inferAttributesFromOthers(*F))
- Changed.insert(F);
- return Changed;
- }
- PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &CG,
- CGSCCUpdateResult &) {
- FunctionAnalysisManager &FAM =
- AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
- // We pass a lambda into functions to wire them up to the analysis manager
- // for getting function analyses.
- auto AARGetter = [&](Function &F) -> AAResults & {
- return FAM.getResult<AAManager>(F);
- };
- SmallVector<Function *, 8> Functions;
- for (LazyCallGraph::Node &N : C) {
- Functions.push_back(&N.getFunction());
- }
- auto ChangedFunctions = deriveAttrsInPostOrder(Functions, AARGetter);
- if (ChangedFunctions.empty())
- return PreservedAnalyses::all();
- // Invalidate analyses for modified functions so that we don't have to
- // invalidate all analyses for all functions in this SCC.
- PreservedAnalyses FuncPA;
- // We haven't changed the CFG for modified functions.
- FuncPA.preserveSet<CFGAnalyses>();
- for (Function *Changed : ChangedFunctions) {
- FAM.invalidate(*Changed, FuncPA);
- // Also invalidate any direct callers of changed functions since analyses
- // may care about attributes of direct callees. For example, MemorySSA cares
- // about whether or not a call's callee modifies memory and queries that
- // through function attributes.
- for (auto *U : Changed->users()) {
- if (auto *Call = dyn_cast<CallBase>(U)) {
- if (Call->getCalledFunction() == Changed)
- FAM.invalidate(*Call->getFunction(), FuncPA);
- }
- }
- }
- PreservedAnalyses PA;
- // We have not added or removed functions.
- PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
- // We already invalidated all relevant function analyses above.
- PA.preserveSet<AllAnalysesOn<Function>>();
- return PA;
- }
- namespace {
- struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
- // Pass identification, replacement for typeid
- static char ID;
- PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
- initializePostOrderFunctionAttrsLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
- bool runOnSCC(CallGraphSCC &SCC) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<AssumptionCacheTracker>();
- getAAResultsAnalysisUsage(AU);
- CallGraphSCCPass::getAnalysisUsage(AU);
- }
- };
- } // end anonymous namespace
- char PostOrderFunctionAttrsLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs",
- "Deduce function attributes", false, false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
- INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs",
- "Deduce function attributes", false, false)
- Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
- return new PostOrderFunctionAttrsLegacyPass();
- }
- template <typename AARGetterT>
- static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
- SmallVector<Function *, 8> Functions;
- for (CallGraphNode *I : SCC) {
- Functions.push_back(I->getFunction());
- }
- return !deriveAttrsInPostOrder(Functions, AARGetter).empty();
- }
- bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
- if (skipSCC(SCC))
- return false;
- return runImpl(SCC, LegacyAARGetter(*this));
- }
- namespace {
- struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
- // Pass identification, replacement for typeid
- static char ID;
- ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
- initializeReversePostOrderFunctionAttrsLegacyPassPass(
- *PassRegistry::getPassRegistry());
- }
- bool runOnModule(Module &M) override;
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesCFG();
- AU.addRequired<CallGraphWrapperPass>();
- AU.addPreserved<CallGraphWrapperPass>();
- }
- };
- } // end anonymous namespace
- char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
- INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass,
- "rpo-function-attrs", "Deduce function attributes in RPO",
- false, false)
- INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
- INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass,
- "rpo-function-attrs", "Deduce function attributes in RPO",
- false, false)
- Pass *llvm::createReversePostOrderFunctionAttrsPass() {
- return new ReversePostOrderFunctionAttrsLegacyPass();
- }
- static bool addNoRecurseAttrsTopDown(Function &F) {
- // We check the preconditions for the function prior to calling this to avoid
- // the cost of building up a reversible post-order list. We assert them here
- // to make sure none of the invariants this relies on were violated.
- assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
- assert(!F.doesNotRecurse() &&
- "This function has already been deduced as norecurs!");
- assert(F.hasInternalLinkage() &&
- "Can only do top-down deduction for internal linkage functions!");
- // If F is internal and all of its uses are calls from a non-recursive
- // functions, then none of its calls could in fact recurse without going
- // through a function marked norecurse, and so we can mark this function too
- // as norecurse. Note that the uses must actually be calls -- otherwise
- // a pointer to this function could be returned from a norecurse function but
- // this function could be recursively (indirectly) called. Note that this
- // also detects if F is directly recursive as F is not yet marked as
- // a norecurse function.
- for (auto *U : F.users()) {
- auto *I = dyn_cast<Instruction>(U);
- if (!I)
- return false;
- CallBase *CB = dyn_cast<CallBase>(I);
- if (!CB || !CB->getParent()->getParent()->doesNotRecurse())
- return false;
- }
- F.setDoesNotRecurse();
- ++NumNoRecurse;
- return true;
- }
- static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
- // We only have a post-order SCC traversal (because SCCs are inherently
- // discovered in post-order), so we accumulate them in a vector and then walk
- // it in reverse. This is simpler than using the RPO iterator infrastructure
- // because we need to combine SCC detection and the PO walk of the call
- // graph. We can also cheat egregiously because we're primarily interested in
- // synthesizing norecurse and so we can only save the singular SCCs as SCCs
- // with multiple functions in them will clearly be recursive.
- SmallVector<Function *, 16> Worklist;
- for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
- if (I->size() != 1)
- continue;
- Function *F = I->front()->getFunction();
- if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
- F->hasInternalLinkage())
- Worklist.push_back(F);
- }
- bool Changed = false;
- for (auto *F : llvm::reverse(Worklist))
- Changed |= addNoRecurseAttrsTopDown(*F);
- return Changed;
- }
- bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
- if (skipModule(M))
- return false;
- auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
- return deduceFunctionAttributeInRPO(M, CG);
- }
- PreservedAnalyses
- ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
- auto &CG = AM.getResult<CallGraphAnalysis>(M);
- if (!deduceFunctionAttributeInRPO(M, CG))
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- PA.preserve<CallGraphAnalysis>();
- return PA;
- }
|