12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187 |
- //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass promotes "by reference" arguments to be "by value" arguments. In
- // practice, this means looking for internal functions that have pointer
- // arguments. If it can prove, through the use of alias analysis, that an
- // argument is *only* loaded, then it can pass the value into the function
- // instead of the address of the value. This can cause recursive simplification
- // of code and lead to the elimination of allocas (especially in C++ template
- // code like the STL).
- //
- // This pass also handles aggregate arguments that are passed into a function,
- // scalarizing them if the elements of the aggregate are only loaded. Note that
- // by default it refuses to scalarize aggregates which would require passing in
- // more than three operands to the function, because passing thousands of
- // operands for a large array or structure is unprofitable! This limit can be
- // configured or disabled, however.
- //
- // Note that this transformation could also be done for arguments that are only
- // stored to (returning the value instead), but does not currently. This case
- // would be best handled when and if LLVM begins supporting multiple return
- // values from functions.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/IPO/ArgumentPromotion.h"
- #include "llvm/ADT/DepthFirstIterator.h"
- #include "llvm/ADT/None.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/ScopeExit.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/CGSCCPassManager.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/CallGraphSCCPass.h"
- #include "llvm/Analysis/LazyCallGraph.h"
- #include "llvm/Analysis/Loads.h"
- #include "llvm/Analysis/MemoryLocation.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/IR/Argument.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/CFG.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/Instruction.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/NoFolder.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Use.h"
- #include "llvm/IR/User.h"
- #include "llvm/IR/Value.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/FormatVariadic.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/IPO.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <functional>
- #include <iterator>
- #include <map>
- #include <set>
- #include <utility>
- #include <vector>
- using namespace llvm;
- #define DEBUG_TYPE "argpromotion"
- STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
- STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
- STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
- STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
- /// A vector used to hold the indices of a single GEP instruction
- using IndicesVector = std::vector<uint64_t>;
- /// DoPromotion - This method actually performs the promotion of the specified
- /// arguments, and returns the new function. At this point, we know that it's
- /// safe to do so.
- static Function *
- doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
- SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
- Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
- ReplaceCallSite) {
- // Start by computing a new prototype for the function, which is the same as
- // the old function, but has modified arguments.
- FunctionType *FTy = F->getFunctionType();
- std::vector<Type *> Params;
- using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
- // ScalarizedElements - If we are promoting a pointer that has elements
- // accessed out of it, keep track of which elements are accessed so that we
- // can add one argument for each.
- //
- // Arguments that are directly loaded will have a zero element value here, to
- // handle cases where there are both a direct load and GEP accesses.
- std::map<Argument *, ScalarizeTable> ScalarizedElements;
- // OriginalLoads - Keep track of a representative load instruction from the
- // original function so that we can tell the alias analysis implementation
- // what the new GEP/Load instructions we are inserting look like.
- // We need to keep the original loads for each argument and the elements
- // of the argument that are accessed.
- std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
- // Attribute - Keep track of the parameter attributes for the arguments
- // that we are *not* promoting. For the ones that we do promote, the parameter
- // attributes are lost
- SmallVector<AttributeSet, 8> ArgAttrVec;
- AttributeList PAL = F->getAttributes();
- // First, determine the new argument list
- unsigned ArgNo = 0;
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
- ++I, ++ArgNo) {
- if (ByValArgsToTransform.count(&*I)) {
- // Simple byval argument? Just add all the struct element types.
- Type *AgTy = I->getParamByValType();
- StructType *STy = cast<StructType>(AgTy);
- llvm::append_range(Params, STy->elements());
- ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
- AttributeSet());
- ++NumByValArgsPromoted;
- } else if (!ArgsToPromote.count(&*I)) {
- // Unchanged argument
- Params.push_back(I->getType());
- ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo));
- } else if (I->use_empty()) {
- // Dead argument (which are always marked as promotable)
- ++NumArgumentsDead;
- } else {
- // Okay, this is being promoted. This means that the only uses are loads
- // or GEPs which are only used by loads
- // In this table, we will track which indices are loaded from the argument
- // (where direct loads are tracked as no indices).
- ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
- for (User *U : make_early_inc_range(I->users())) {
- Instruction *UI = cast<Instruction>(U);
- Type *SrcTy;
- if (LoadInst *L = dyn_cast<LoadInst>(UI))
- SrcTy = L->getType();
- else
- SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
- // Skip dead GEPs and remove them.
- if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
- UI->eraseFromParent();
- continue;
- }
- IndicesVector Indices;
- Indices.reserve(UI->getNumOperands() - 1);
- // Since loads will only have a single operand, and GEPs only a single
- // non-index operand, this will record direct loads without any indices,
- // and gep+loads with the GEP indices.
- for (const Use &I : llvm::drop_begin(UI->operands()))
- Indices.push_back(cast<ConstantInt>(I)->getSExtValue());
- // GEPs with a single 0 index can be merged with direct loads
- if (Indices.size() == 1 && Indices.front() == 0)
- Indices.clear();
- ArgIndices.insert(std::make_pair(SrcTy, Indices));
- LoadInst *OrigLoad;
- if (LoadInst *L = dyn_cast<LoadInst>(UI))
- OrigLoad = L;
- else
- // Take any load, we will use it only to update Alias Analysis
- OrigLoad = cast<LoadInst>(UI->user_back());
- OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
- }
- // Add a parameter to the function for each element passed in.
- for (const auto &ArgIndex : ArgIndices) {
- // not allowed to dereference ->begin() if size() is 0
- Params.push_back(GetElementPtrInst::getIndexedType(
- I->getType()->getPointerElementType(), ArgIndex.second));
- ArgAttrVec.push_back(AttributeSet());
- assert(Params.back());
- }
- if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
- ++NumArgumentsPromoted;
- else
- ++NumAggregatesPromoted;
- }
- }
- Type *RetTy = FTy->getReturnType();
- // Construct the new function type using the new arguments.
- FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
- // Create the new function body and insert it into the module.
- Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
- F->getName());
- NF->copyAttributesFrom(F);
- NF->copyMetadata(F, 0);
- // The new function will have the !dbg metadata copied from the original
- // function. The original function may not be deleted, and dbg metadata need
- // to be unique so we need to drop it.
- F->setSubprogram(nullptr);
- LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
- << "From: " << *F);
- // Recompute the parameter attributes list based on the new arguments for
- // the function.
- NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
- PAL.getRetAttrs(), ArgAttrVec));
- ArgAttrVec.clear();
- F->getParent()->getFunctionList().insert(F->getIterator(), NF);
- NF->takeName(F);
- // Loop over all of the callers of the function, transforming the call sites
- // to pass in the loaded pointers.
- //
- SmallVector<Value *, 16> Args;
- const DataLayout &DL = F->getParent()->getDataLayout();
- while (!F->use_empty()) {
- CallBase &CB = cast<CallBase>(*F->user_back());
- assert(CB.getCalledFunction() == F);
- const AttributeList &CallPAL = CB.getAttributes();
- IRBuilder<NoFolder> IRB(&CB);
- // Loop over the operands, inserting GEP and loads in the caller as
- // appropriate.
- auto AI = CB.arg_begin();
- ArgNo = 0;
- for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
- ++I, ++AI, ++ArgNo)
- if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
- Args.push_back(*AI); // Unmodified argument
- ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
- } else if (ByValArgsToTransform.count(&*I)) {
- // Emit a GEP and load for each element of the struct.
- Type *AgTy = I->getParamByValType();
- StructType *STy = cast<StructType>(AgTy);
- Value *Idxs[2] = {
- ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
- const StructLayout *SL = DL.getStructLayout(STy);
- Align StructAlign = *I->getParamAlign();
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
- auto *Idx =
- IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
- // TODO: Tell AA about the new values?
- Align Alignment =
- commonAlignment(StructAlign, SL->getElementOffset(i));
- Args.push_back(IRB.CreateAlignedLoad(
- STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
- ArgAttrVec.push_back(AttributeSet());
- }
- } else if (!I->use_empty()) {
- // Non-dead argument: insert GEPs and loads as appropriate.
- ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
- // Store the Value* version of the indices in here, but declare it now
- // for reuse.
- std::vector<Value *> Ops;
- for (const auto &ArgIndex : ArgIndices) {
- Value *V = *AI;
- LoadInst *OrigLoad =
- OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
- if (!ArgIndex.second.empty()) {
- Ops.reserve(ArgIndex.second.size());
- Type *ElTy = V->getType();
- for (auto II : ArgIndex.second) {
- // Use i32 to index structs, and i64 for others (pointers/arrays).
- // This satisfies GEP constraints.
- Type *IdxTy =
- (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
- : Type::getInt64Ty(F->getContext()));
- Ops.push_back(ConstantInt::get(IdxTy, II));
- // Keep track of the type we're currently indexing.
- if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
- ElTy = ElPTy->getPointerElementType();
- else
- ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
- }
- // And create a GEP to extract those indices.
- V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
- Ops.clear();
- }
- // Since we're replacing a load make sure we take the alignment
- // of the previous load.
- LoadInst *newLoad =
- IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
- newLoad->setAlignment(OrigLoad->getAlign());
- // Transfer the AA info too.
- newLoad->setAAMetadata(OrigLoad->getAAMetadata());
- Args.push_back(newLoad);
- ArgAttrVec.push_back(AttributeSet());
- }
- }
- // Push any varargs arguments on the list.
- for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
- Args.push_back(*AI);
- ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
- }
- SmallVector<OperandBundleDef, 1> OpBundles;
- CB.getOperandBundlesAsDefs(OpBundles);
- CallBase *NewCS = nullptr;
- if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
- NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
- Args, OpBundles, "", &CB);
- } else {
- auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
- NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
- NewCS = NewCall;
- }
- NewCS->setCallingConv(CB.getCallingConv());
- NewCS->setAttributes(AttributeList::get(F->getContext(),
- CallPAL.getFnAttrs(),
- CallPAL.getRetAttrs(), ArgAttrVec));
- NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
- Args.clear();
- ArgAttrVec.clear();
- // Update the callgraph to know that the callsite has been transformed.
- if (ReplaceCallSite)
- (*ReplaceCallSite)(CB, *NewCS);
- if (!CB.use_empty()) {
- CB.replaceAllUsesWith(NewCS);
- NewCS->takeName(&CB);
- }
- // Finally, remove the old call from the program, reducing the use-count of
- // F.
- CB.eraseFromParent();
- }
- // Since we have now created the new function, splice the body of the old
- // function right into the new function, leaving the old rotting hulk of the
- // function empty.
- NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
- // Loop over the argument list, transferring uses of the old arguments over to
- // the new arguments, also transferring over the names as well.
- Function::arg_iterator I2 = NF->arg_begin();
- for (Argument &Arg : F->args()) {
- if (!ArgsToPromote.count(&Arg) && !ByValArgsToTransform.count(&Arg)) {
- // If this is an unmodified argument, move the name and users over to the
- // new version.
- Arg.replaceAllUsesWith(&*I2);
- I2->takeName(&Arg);
- ++I2;
- continue;
- }
- if (ByValArgsToTransform.count(&Arg)) {
- // In the callee, we create an alloca, and store each of the new incoming
- // arguments into the alloca.
- Instruction *InsertPt = &NF->begin()->front();
- // Just add all the struct element types.
- Type *AgTy = Arg.getParamByValType();
- Align StructAlign = *Arg.getParamAlign();
- Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
- StructAlign, "", InsertPt);
- StructType *STy = cast<StructType>(AgTy);
- Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
- nullptr};
- const StructLayout *SL = DL.getStructLayout(STy);
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
- Value *Idx = GetElementPtrInst::Create(
- AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
- InsertPt);
- I2->setName(Arg.getName() + "." + Twine(i));
- Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
- new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
- }
- // Anything that used the arg should now use the alloca.
- Arg.replaceAllUsesWith(TheAlloca);
- TheAlloca->takeName(&Arg);
- continue;
- }
- // There potentially are metadata uses for things like llvm.dbg.value.
- // Replace them with undef, after handling the other regular uses.
- auto RauwUndefMetadata = make_scope_exit(
- [&]() { Arg.replaceAllUsesWith(UndefValue::get(Arg.getType())); });
- if (Arg.use_empty())
- continue;
- // Otherwise, if we promoted this argument, then all users are load
- // instructions (or GEPs with only load users), and all loads should be
- // using the new argument that we added.
- ScalarizeTable &ArgIndices = ScalarizedElements[&Arg];
- while (!Arg.use_empty()) {
- if (LoadInst *LI = dyn_cast<LoadInst>(Arg.user_back())) {
- assert(ArgIndices.begin()->second.empty() &&
- "Load element should sort to front!");
- I2->setName(Arg.getName() + ".val");
- LI->replaceAllUsesWith(&*I2);
- LI->eraseFromParent();
- LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << Arg.getName()
- << "' in function '" << F->getName() << "'\n");
- } else {
- GetElementPtrInst *GEP = cast<GetElementPtrInst>(Arg.user_back());
- assert(!GEP->use_empty() &&
- "GEPs without uses should be cleaned up already");
- IndicesVector Operands;
- Operands.reserve(GEP->getNumIndices());
- for (const Use &Idx : GEP->indices())
- Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
- // GEPs with a single 0 index can be merged with direct loads
- if (Operands.size() == 1 && Operands.front() == 0)
- Operands.clear();
- Function::arg_iterator TheArg = I2;
- for (ScalarizeTable::iterator It = ArgIndices.begin();
- It->second != Operands; ++It, ++TheArg) {
- assert(It != ArgIndices.end() && "GEP not handled??");
- }
- TheArg->setName(formatv("{0}.{1:$[.]}.val", Arg.getName(),
- make_range(Operands.begin(), Operands.end())));
- LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
- << "' of function '" << NF->getName() << "'\n");
- // All of the uses must be load instructions. Replace them all with
- // the argument specified by ArgNo.
- while (!GEP->use_empty()) {
- LoadInst *L = cast<LoadInst>(GEP->user_back());
- L->replaceAllUsesWith(&*TheArg);
- L->eraseFromParent();
- }
- GEP->eraseFromParent();
- }
- }
- // Increment I2 past all of the arguments added for this promoted pointer.
- std::advance(I2, ArgIndices.size());
- }
- return NF;
- }
- /// Return true if we can prove that all callees pass in a valid pointer for the
- /// specified function argument.
- static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
- Function *Callee = Arg->getParent();
- const DataLayout &DL = Callee->getParent()->getDataLayout();
- unsigned ArgNo = Arg->getArgNo();
- // Look at all call sites of the function. At this point we know we only have
- // direct callees.
- for (User *U : Callee->users()) {
- CallBase &CB = cast<CallBase>(*U);
- if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
- return false;
- }
- return true;
- }
- /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
- /// that is greater than or equal to the size of prefix, and each of the
- /// elements in Prefix is the same as the corresponding elements in Longer.
- ///
- /// This means it also returns true when Prefix and Longer are equal!
- static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
- if (Prefix.size() > Longer.size())
- return false;
- return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
- }
- /// Checks if Indices, or a prefix of Indices, is in Set.
- static bool prefixIn(const IndicesVector &Indices,
- std::set<IndicesVector> &Set) {
- std::set<IndicesVector>::iterator Low;
- Low = Set.upper_bound(Indices);
- if (Low != Set.begin())
- Low--;
- // Low is now the last element smaller than or equal to Indices. This means
- // it points to a prefix of Indices (possibly Indices itself), if such
- // prefix exists.
- //
- // This load is safe if any prefix of its operands is safe to load.
- return Low != Set.end() && isPrefix(*Low, Indices);
- }
- /// Mark the given indices (ToMark) as safe in the given set of indices
- /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
- /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
- /// already. Furthermore, any indices that Indices is itself a prefix of, are
- /// removed from Safe (since they are implicitely safe because of Indices now).
- static void markIndicesSafe(const IndicesVector &ToMark,
- std::set<IndicesVector> &Safe) {
- std::set<IndicesVector>::iterator Low;
- Low = Safe.upper_bound(ToMark);
- // Guard against the case where Safe is empty
- if (Low != Safe.begin())
- Low--;
- // Low is now the last element smaller than or equal to Indices. This
- // means it points to a prefix of Indices (possibly Indices itself), if
- // such prefix exists.
- if (Low != Safe.end()) {
- if (isPrefix(*Low, ToMark))
- // If there is already a prefix of these indices (or exactly these
- // indices) marked a safe, don't bother adding these indices
- return;
- // Increment Low, so we can use it as a "insert before" hint
- ++Low;
- }
- // Insert
- Low = Safe.insert(Low, ToMark);
- ++Low;
- // If there we're a prefix of longer index list(s), remove those
- std::set<IndicesVector>::iterator End = Safe.end();
- while (Low != End && isPrefix(ToMark, *Low)) {
- std::set<IndicesVector>::iterator Remove = Low;
- ++Low;
- Safe.erase(Remove);
- }
- }
- /// isSafeToPromoteArgument - As you might guess from the name of this method,
- /// it checks to see if it is both safe and useful to promote the argument.
- /// This method limits promotion of aggregates to only promote up to three
- /// elements of the aggregate in order to avoid exploding the number of
- /// arguments passed in.
- static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
- unsigned MaxElements) {
- using GEPIndicesSet = std::set<IndicesVector>;
- // Quick exit for unused arguments
- if (Arg->use_empty())
- return true;
- // We can only promote this argument if all of the uses are loads, or are GEP
- // instructions (with constant indices) that are subsequently loaded.
- //
- // Promoting the argument causes it to be loaded in the caller
- // unconditionally. This is only safe if we can prove that either the load
- // would have happened in the callee anyway (ie, there is a load in the entry
- // block) or the pointer passed in at every call site is guaranteed to be
- // valid.
- // In the former case, invalid loads can happen, but would have happened
- // anyway, in the latter case, invalid loads won't happen. This prevents us
- // from introducing an invalid load that wouldn't have happened in the
- // original code.
- //
- // This set will contain all sets of indices that are loaded in the entry
- // block, and thus are safe to unconditionally load in the caller.
- GEPIndicesSet SafeToUnconditionallyLoad;
- // This set contains all the sets of indices that we are planning to promote.
- // This makes it possible to limit the number of arguments added.
- GEPIndicesSet ToPromote;
- // If the pointer is always valid, any load with first index 0 is valid.
- if (ByValTy)
- SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
- // Whenever a new underlying type for the operand is found, make sure it's
- // consistent with the GEPs and loads we've already seen and, if necessary,
- // use it to see if all incoming pointers are valid (which implies the 0-index
- // is safe).
- Type *BaseTy = ByValTy;
- auto UpdateBaseTy = [&](Type *NewBaseTy) {
- if (BaseTy)
- return BaseTy == NewBaseTy;
- BaseTy = NewBaseTy;
- if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
- assert(SafeToUnconditionallyLoad.empty());
- SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
- }
- return true;
- };
- // First, iterate functions that are guaranteed to execution on function
- // entry and mark loads of (geps of) arguments as safe.
- BasicBlock &EntryBlock = Arg->getParent()->front();
- // Declare this here so we can reuse it
- IndicesVector Indices;
- for (Instruction &I : EntryBlock) {
- if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- Value *V = LI->getPointerOperand();
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
- V = GEP->getPointerOperand();
- if (V == Arg) {
- // This load actually loads (part of) Arg? Check the indices then.
- Indices.reserve(GEP->getNumIndices());
- for (Use &Idx : GEP->indices())
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
- Indices.push_back(CI->getSExtValue());
- else
- // We found a non-constant GEP index for this argument? Bail out
- // right away, can't promote this argument at all.
- return false;
- if (!UpdateBaseTy(GEP->getSourceElementType()))
- return false;
- // Indices checked out, mark them as safe
- markIndicesSafe(Indices, SafeToUnconditionallyLoad);
- Indices.clear();
- }
- } else if (V == Arg) {
- // Direct loads are equivalent to a GEP with a single 0 index.
- markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
- if (BaseTy && LI->getType() != BaseTy)
- return false;
- BaseTy = LI->getType();
- }
- }
- if (!isGuaranteedToTransferExecutionToSuccessor(&I))
- break;
- }
- // Now, iterate all uses of the argument to see if there are any uses that are
- // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
- SmallVector<LoadInst *, 16> Loads;
- IndicesVector Operands;
- for (Use &U : Arg->uses()) {
- User *UR = U.getUser();
- Operands.clear();
- if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
- // Don't hack volatile/atomic loads
- if (!LI->isSimple())
- return false;
- Loads.push_back(LI);
- // Direct loads are equivalent to a GEP with a zero index and then a load.
- Operands.push_back(0);
- if (!UpdateBaseTy(LI->getType()))
- return false;
- } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
- if (GEP->use_empty()) {
- // Dead GEP's cause trouble later. Just remove them if we run into
- // them.
- continue;
- }
- if (!UpdateBaseTy(GEP->getSourceElementType()))
- return false;
- // Ensure that all of the indices are constants.
- for (Use &Idx : GEP->indices())
- if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
- Operands.push_back(C->getSExtValue());
- else
- return false; // Not a constant operand GEP!
- // Ensure that the only users of the GEP are load instructions.
- for (User *GEPU : GEP->users())
- if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
- // Don't hack volatile/atomic loads
- if (!LI->isSimple())
- return false;
- Loads.push_back(LI);
- } else {
- // Other uses than load?
- return false;
- }
- } else {
- return false; // Not a load or a GEP.
- }
- // Now, see if it is safe to promote this load / loads of this GEP. Loading
- // is safe if Operands, or a prefix of Operands, is marked as safe.
- if (!prefixIn(Operands, SafeToUnconditionallyLoad))
- return false;
- // See if we are already promoting a load with these indices. If not, check
- // to make sure that we aren't promoting too many elements. If so, nothing
- // to do.
- if (ToPromote.find(Operands) == ToPromote.end()) {
- if (MaxElements > 0 && ToPromote.size() == MaxElements) {
- LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
- << Arg->getName()
- << "' because it would require adding more "
- << "than " << MaxElements
- << " arguments to the function.\n");
- // We limit aggregate promotion to only promoting up to a fixed number
- // of elements of the aggregate.
- return false;
- }
- ToPromote.insert(std::move(Operands));
- }
- }
- if (Loads.empty())
- return true; // No users, this is a dead argument.
- // Okay, now we know that the argument is only used by load instructions and
- // it is safe to unconditionally perform all of them. Use alias analysis to
- // check to see if the pointer is guaranteed to not be modified from entry of
- // the function to each of the load instructions.
- // Because there could be several/many load instructions, remember which
- // blocks we know to be transparent to the load.
- df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
- for (LoadInst *Load : Loads) {
- // Check to see if the load is invalidated from the start of the block to
- // the load itself.
- BasicBlock *BB = Load->getParent();
- MemoryLocation Loc = MemoryLocation::get(Load);
- if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
- return false; // Pointer is invalidated!
- // Now check every path from the entry block to the load for transparency.
- // To do this, we perform a depth first search on the inverse CFG from the
- // loading block.
- for (BasicBlock *P : predecessors(BB)) {
- for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
- if (AAR.canBasicBlockModify(*TranspBB, Loc))
- return false;
- }
- }
- // If the path from the entry of the function to each load is free of
- // instructions that potentially invalidate the load, we can make the
- // transformation!
- return true;
- }
- bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
- // There is no size information, so be conservative.
- if (!type->isSized())
- return false;
- // If the alloc size is not equal to the storage size, then there are padding
- // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
- if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
- return false;
- // FIXME: This isn't the right way to check for padding in vectors with
- // non-byte-size elements.
- if (VectorType *seqTy = dyn_cast<VectorType>(type))
- return isDenselyPacked(seqTy->getElementType(), DL);
- // For array types, check for padding within members.
- if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
- return isDenselyPacked(seqTy->getElementType(), DL);
- if (!isa<StructType>(type))
- return true;
- // Check for padding within and between elements of a struct.
- StructType *StructTy = cast<StructType>(type);
- const StructLayout *Layout = DL.getStructLayout(StructTy);
- uint64_t StartPos = 0;
- for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
- Type *ElTy = StructTy->getElementType(i);
- if (!isDenselyPacked(ElTy, DL))
- return false;
- if (StartPos != Layout->getElementOffsetInBits(i))
- return false;
- StartPos += DL.getTypeAllocSizeInBits(ElTy);
- }
- return true;
- }
- /// Checks if the padding bytes of an argument could be accessed.
- static bool canPaddingBeAccessed(Argument *arg) {
- assert(arg->hasByValAttr());
- // Track all the pointers to the argument to make sure they are not captured.
- SmallPtrSet<Value *, 16> PtrValues;
- PtrValues.insert(arg);
- // Track all of the stores.
- SmallVector<StoreInst *, 16> Stores;
- // Scan through the uses recursively to make sure the pointer is always used
- // sanely.
- SmallVector<Value *, 16> WorkList(arg->users());
- while (!WorkList.empty()) {
- Value *V = WorkList.pop_back_val();
- if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
- if (PtrValues.insert(V).second)
- llvm::append_range(WorkList, V->users());
- } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
- Stores.push_back(Store);
- } else if (!isa<LoadInst>(V)) {
- return true;
- }
- }
- // Check to make sure the pointers aren't captured
- for (StoreInst *Store : Stores)
- if (PtrValues.count(Store->getValueOperand()))
- return true;
- return false;
- }
- /// Check if callers and the callee \p F agree how promoted arguments would be
- /// passed. The ones that they do not agree on are eliminated from the sets but
- /// the return value has to be observed as well.
- static bool areFunctionArgsABICompatible(
- const Function &F, const TargetTransformInfo &TTI,
- SmallPtrSetImpl<Argument *> &ArgsToPromote,
- SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
- // TODO: Check individual arguments so we can promote a subset?
- SmallVector<Type *, 32> Types;
- for (Argument *Arg : ArgsToPromote)
- Types.push_back(Arg->getType()->getPointerElementType());
- for (Argument *Arg : ByValArgsToTransform)
- Types.push_back(Arg->getParamByValType());
- for (const Use &U : F.uses()) {
- CallBase *CB = dyn_cast<CallBase>(U.getUser());
- if (!CB)
- return false;
- const Function *Caller = CB->getCaller();
- const Function *Callee = CB->getCalledFunction();
- if (!TTI.areTypesABICompatible(Caller, Callee, Types))
- return false;
- }
- return true;
- }
- /// PromoteArguments - This method checks the specified function to see if there
- /// are any promotable arguments and if it is safe to promote the function (for
- /// example, all callers are direct). If safe to promote some arguments, it
- /// calls the DoPromotion method.
- static Function *
- promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
- unsigned MaxElements,
- Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
- ReplaceCallSite,
- const TargetTransformInfo &TTI) {
- // Don't perform argument promotion for naked functions; otherwise we can end
- // up removing parameters that are seemingly 'not used' as they are referred
- // to in the assembly.
- if(F->hasFnAttribute(Attribute::Naked))
- return nullptr;
- // Make sure that it is local to this module.
- if (!F->hasLocalLinkage())
- return nullptr;
- // Don't promote arguments for variadic functions. Adding, removing, or
- // changing non-pack parameters can change the classification of pack
- // parameters. Frontends encode that classification at the call site in the
- // IR, while in the callee the classification is determined dynamically based
- // on the number of registers consumed so far.
- if (F->isVarArg())
- return nullptr;
- // Don't transform functions that receive inallocas, as the transformation may
- // not be safe depending on calling convention.
- if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
- return nullptr;
- // First check: see if there are any pointer arguments! If not, quick exit.
- SmallVector<Argument *, 16> PointerArgs;
- for (Argument &I : F->args())
- if (I.getType()->isPointerTy())
- PointerArgs.push_back(&I);
- if (PointerArgs.empty())
- return nullptr;
- // Second check: make sure that all callers are direct callers. We can't
- // transform functions that have indirect callers. Also see if the function
- // is self-recursive and check that target features are compatible.
- bool isSelfRecursive = false;
- for (Use &U : F->uses()) {
- CallBase *CB = dyn_cast<CallBase>(U.getUser());
- // Must be a direct call.
- if (CB == nullptr || !CB->isCallee(&U))
- return nullptr;
- // Can't change signature of musttail callee
- if (CB->isMustTailCall())
- return nullptr;
- if (CB->getParent()->getParent() == F)
- isSelfRecursive = true;
- }
- // Can't change signature of musttail caller
- // FIXME: Support promoting whole chain of musttail functions
- for (BasicBlock &BB : *F)
- if (BB.getTerminatingMustTailCall())
- return nullptr;
- const DataLayout &DL = F->getParent()->getDataLayout();
- AAResults &AAR = AARGetter(*F);
- // Check to see which arguments are promotable. If an argument is promotable,
- // add it to ArgsToPromote.
- SmallPtrSet<Argument *, 8> ArgsToPromote;
- SmallPtrSet<Argument *, 8> ByValArgsToTransform;
- for (Argument *PtrArg : PointerArgs) {
- Type *AgTy = PtrArg->getType()->getPointerElementType();
- // Replace sret attribute with noalias. This reduces register pressure by
- // avoiding a register copy.
- if (PtrArg->hasStructRetAttr()) {
- unsigned ArgNo = PtrArg->getArgNo();
- F->removeParamAttr(ArgNo, Attribute::StructRet);
- F->addParamAttr(ArgNo, Attribute::NoAlias);
- for (Use &U : F->uses()) {
- CallBase &CB = cast<CallBase>(*U.getUser());
- CB.removeParamAttr(ArgNo, Attribute::StructRet);
- CB.addParamAttr(ArgNo, Attribute::NoAlias);
- }
- }
- // If this is a byval argument, and if the aggregate type is small, just
- // pass the elements, which is always safe, if the passed value is densely
- // packed or if we can prove the padding bytes are never accessed.
- //
- // Only handle arguments with specified alignment; if it's unspecified, the
- // actual alignment of the argument is target-specific.
- bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
- (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
- !canPaddingBeAccessed(PtrArg));
- if (isSafeToPromote) {
- if (StructType *STy = dyn_cast<StructType>(AgTy)) {
- if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
- LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
- << PtrArg->getName()
- << "' because it would require adding more"
- << " than " << MaxElements
- << " arguments to the function.\n");
- continue;
- }
- // If all the elements are single-value types, we can promote it.
- bool AllSimple = true;
- for (const auto *EltTy : STy->elements()) {
- if (!EltTy->isSingleValueType()) {
- AllSimple = false;
- break;
- }
- }
- // Safe to transform, don't even bother trying to "promote" it.
- // Passing the elements as a scalar will allow sroa to hack on
- // the new alloca we introduce.
- if (AllSimple) {
- ByValArgsToTransform.insert(PtrArg);
- continue;
- }
- }
- }
- // If the argument is a recursive type and we're in a recursive
- // function, we could end up infinitely peeling the function argument.
- if (isSelfRecursive) {
- if (StructType *STy = dyn_cast<StructType>(AgTy)) {
- bool RecursiveType =
- llvm::is_contained(STy->elements(), PtrArg->getType());
- if (RecursiveType)
- continue;
- }
- }
- // Otherwise, see if we can promote the pointer to its value.
- Type *ByValTy =
- PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
- if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
- ArgsToPromote.insert(PtrArg);
- }
- // No promotable pointer arguments.
- if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
- return nullptr;
- if (!areFunctionArgsABICompatible(
- *F, TTI, ArgsToPromote, ByValArgsToTransform))
- return nullptr;
- return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
- }
- PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
- CGSCCAnalysisManager &AM,
- LazyCallGraph &CG,
- CGSCCUpdateResult &UR) {
- bool Changed = false, LocalChange;
- // Iterate until we stop promoting from this SCC.
- do {
- LocalChange = false;
- FunctionAnalysisManager &FAM =
- AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
- for (LazyCallGraph::Node &N : C) {
- Function &OldF = N.getFunction();
- // FIXME: This lambda must only be used with this function. We should
- // skip the lambda and just get the AA results directly.
- auto AARGetter = [&](Function &F) -> AAResults & {
- assert(&F == &OldF && "Called with an unexpected function!");
- return FAM.getResult<AAManager>(F);
- };
- const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
- Function *NewF =
- promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
- if (!NewF)
- continue;
- LocalChange = true;
- // Directly substitute the functions in the call graph. Note that this
- // requires the old function to be completely dead and completely
- // replaced by the new function. It does no call graph updates, it merely
- // swaps out the particular function mapped to a particular node in the
- // graph.
- C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
- FAM.clear(OldF, OldF.getName());
- OldF.eraseFromParent();
- PreservedAnalyses FuncPA;
- FuncPA.preserveSet<CFGAnalyses>();
- for (auto *U : NewF->users()) {
- auto *UserF = cast<CallBase>(U)->getFunction();
- FAM.invalidate(*UserF, FuncPA);
- }
- }
- Changed |= LocalChange;
- } while (LocalChange);
- if (!Changed)
- return PreservedAnalyses::all();
- PreservedAnalyses PA;
- // We've cleared out analyses for deleted functions.
- PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
- // We've manually invalidated analyses for functions we've modified.
- PA.preserveSet<AllAnalysesOn<Function>>();
- return PA;
- }
- namespace {
- /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
- struct ArgPromotion : public CallGraphSCCPass {
- // Pass identification, replacement for typeid
- static char ID;
- explicit ArgPromotion(unsigned MaxElements = 3)
- : CallGraphSCCPass(ID), MaxElements(MaxElements) {
- initializeArgPromotionPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- AU.addRequired<TargetTransformInfoWrapperPass>();
- getAAResultsAnalysisUsage(AU);
- CallGraphSCCPass::getAnalysisUsage(AU);
- }
- bool runOnSCC(CallGraphSCC &SCC) override;
- private:
- using llvm::Pass::doInitialization;
- bool doInitialization(CallGraph &CG) override;
- /// The maximum number of elements to expand, or 0 for unlimited.
- unsigned MaxElements;
- };
- } // end anonymous namespace
- char ArgPromotion::ID = 0;
- INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
- "Promote 'by reference' arguments to scalars", false,
- false)
- INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
- INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
- INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
- INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
- "Promote 'by reference' arguments to scalars", false, false)
- Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
- return new ArgPromotion(MaxElements);
- }
- bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
- if (skipSCC(SCC))
- return false;
- // Get the callgraph information that we need to update to reflect our
- // changes.
- CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
- LegacyAARGetter AARGetter(*this);
- bool Changed = false, LocalChange;
- // Iterate until we stop promoting from this SCC.
- do {
- LocalChange = false;
- // Attempt to promote arguments from all functions in this SCC.
- for (CallGraphNode *OldNode : SCC) {
- Function *OldF = OldNode->getFunction();
- if (!OldF)
- continue;
- auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
- Function *Caller = OldCS.getParent()->getParent();
- CallGraphNode *NewCalleeNode =
- CG.getOrInsertFunction(NewCS.getCalledFunction());
- CallGraphNode *CallerNode = CG[Caller];
- CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
- cast<CallBase>(NewCS), NewCalleeNode);
- };
- const TargetTransformInfo &TTI =
- getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
- if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
- {ReplaceCallSite}, TTI)) {
- LocalChange = true;
- // Update the call graph for the newly promoted function.
- CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
- NewNode->stealCalledFunctionsFrom(OldNode);
- if (OldNode->getNumReferences() == 0)
- delete CG.removeFunctionFromModule(OldNode);
- else
- OldF->setLinkage(Function::ExternalLinkage);
- // And updat ethe SCC we're iterating as well.
- SCC.ReplaceNode(OldNode, NewNode);
- }
- }
- // Remember that we changed something.
- Changed |= LocalChange;
- } while (LocalChange);
- return Changed;
- }
- bool ArgPromotion::doInitialization(CallGraph &CG) {
- return CallGraphSCCPass::doInitialization(CG);
- }
|