12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490 |
- //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines a pattern matching instruction selector for PowerPC,
- // converting from a legalized dag to a PPC dag.
- //
- //===----------------------------------------------------------------------===//
- #include "MCTargetDesc/PPCMCTargetDesc.h"
- #include "MCTargetDesc/PPCPredicates.h"
- #include "PPC.h"
- #include "PPCISelLowering.h"
- #include "PPCMachineFunctionInfo.h"
- #include "PPCSubtarget.h"
- #include "PPCTargetMachine.h"
- #include "llvm/ADT/APInt.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/BranchProbabilityInfo.h"
- #include "llvm/CodeGen/FunctionLoweringInfo.h"
- #include "llvm/CodeGen/ISDOpcodes.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/CodeGen/SelectionDAGISel.h"
- #include "llvm/CodeGen/SelectionDAGNodes.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/ValueTypes.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/DebugLoc.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/GlobalValue.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/InstrTypes.h"
- #include "llvm/IR/IntrinsicsPowerPC.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/Casting.h"
- #include "llvm/Support/CodeGen.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Compiler.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/KnownBits.h"
- #include "llvm/Support/MachineValueType.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include <algorithm>
- #include <cassert>
- #include <cstdint>
- #include <iterator>
- #include <limits>
- #include <memory>
- #include <new>
- #include <tuple>
- #include <utility>
- using namespace llvm;
- #define DEBUG_TYPE "ppc-codegen"
- STATISTIC(NumSextSetcc,
- "Number of (sext(setcc)) nodes expanded into GPR sequence.");
- STATISTIC(NumZextSetcc,
- "Number of (zext(setcc)) nodes expanded into GPR sequence.");
- STATISTIC(SignExtensionsAdded,
- "Number of sign extensions for compare inputs added.");
- STATISTIC(ZeroExtensionsAdded,
- "Number of zero extensions for compare inputs added.");
- STATISTIC(NumLogicOpsOnComparison,
- "Number of logical ops on i1 values calculated in GPR.");
- STATISTIC(OmittedForNonExtendUses,
- "Number of compares not eliminated as they have non-extending uses.");
- STATISTIC(NumP9Setb,
- "Number of compares lowered to setb.");
- // FIXME: Remove this once the bug has been fixed!
- cl::opt<bool> ANDIGlueBug("expose-ppc-andi-glue-bug",
- cl::desc("expose the ANDI glue bug on PPC"), cl::Hidden);
- static cl::opt<bool>
- UseBitPermRewriter("ppc-use-bit-perm-rewriter", cl::init(true),
- cl::desc("use aggressive ppc isel for bit permutations"),
- cl::Hidden);
- static cl::opt<bool> BPermRewriterNoMasking(
- "ppc-bit-perm-rewriter-stress-rotates",
- cl::desc("stress rotate selection in aggressive ppc isel for "
- "bit permutations"),
- cl::Hidden);
- static cl::opt<bool> EnableBranchHint(
- "ppc-use-branch-hint", cl::init(true),
- cl::desc("Enable static hinting of branches on ppc"),
- cl::Hidden);
- static cl::opt<bool> EnableTLSOpt(
- "ppc-tls-opt", cl::init(true),
- cl::desc("Enable tls optimization peephole"),
- cl::Hidden);
- enum ICmpInGPRType { ICGPR_All, ICGPR_None, ICGPR_I32, ICGPR_I64,
- ICGPR_NonExtIn, ICGPR_Zext, ICGPR_Sext, ICGPR_ZextI32,
- ICGPR_SextI32, ICGPR_ZextI64, ICGPR_SextI64 };
- static cl::opt<ICmpInGPRType> CmpInGPR(
- "ppc-gpr-icmps", cl::Hidden, cl::init(ICGPR_All),
- cl::desc("Specify the types of comparisons to emit GPR-only code for."),
- cl::values(clEnumValN(ICGPR_None, "none", "Do not modify integer comparisons."),
- clEnumValN(ICGPR_All, "all", "All possible int comparisons in GPRs."),
- clEnumValN(ICGPR_I32, "i32", "Only i32 comparisons in GPRs."),
- clEnumValN(ICGPR_I64, "i64", "Only i64 comparisons in GPRs."),
- clEnumValN(ICGPR_NonExtIn, "nonextin",
- "Only comparisons where inputs don't need [sz]ext."),
- clEnumValN(ICGPR_Zext, "zext", "Only comparisons with zext result."),
- clEnumValN(ICGPR_ZextI32, "zexti32",
- "Only i32 comparisons with zext result."),
- clEnumValN(ICGPR_ZextI64, "zexti64",
- "Only i64 comparisons with zext result."),
- clEnumValN(ICGPR_Sext, "sext", "Only comparisons with sext result."),
- clEnumValN(ICGPR_SextI32, "sexti32",
- "Only i32 comparisons with sext result."),
- clEnumValN(ICGPR_SextI64, "sexti64",
- "Only i64 comparisons with sext result.")));
- namespace {
- //===--------------------------------------------------------------------===//
- /// PPCDAGToDAGISel - PPC specific code to select PPC machine
- /// instructions for SelectionDAG operations.
- ///
- class PPCDAGToDAGISel : public SelectionDAGISel {
- const PPCTargetMachine &TM;
- const PPCSubtarget *Subtarget = nullptr;
- const PPCTargetLowering *PPCLowering = nullptr;
- unsigned GlobalBaseReg = 0;
- public:
- explicit PPCDAGToDAGISel(PPCTargetMachine &tm, CodeGenOpt::Level OptLevel)
- : SelectionDAGISel(tm, OptLevel), TM(tm) {}
- bool runOnMachineFunction(MachineFunction &MF) override {
- // Make sure we re-emit a set of the global base reg if necessary
- GlobalBaseReg = 0;
- Subtarget = &MF.getSubtarget<PPCSubtarget>();
- PPCLowering = Subtarget->getTargetLowering();
- if (Subtarget->hasROPProtect()) {
- // Create a place on the stack for the ROP Protection Hash.
- // The ROP Protection Hash will always be 8 bytes and aligned to 8
- // bytes.
- MachineFrameInfo &MFI = MF.getFrameInfo();
- PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
- const int Result = MFI.CreateStackObject(8, Align(8), false);
- FI->setROPProtectionHashSaveIndex(Result);
- }
- SelectionDAGISel::runOnMachineFunction(MF);
- return true;
- }
- void PreprocessISelDAG() override;
- void PostprocessISelDAG() override;
- /// getI16Imm - Return a target constant with the specified value, of type
- /// i16.
- inline SDValue getI16Imm(unsigned Imm, const SDLoc &dl) {
- return CurDAG->getTargetConstant(Imm, dl, MVT::i16);
- }
- /// getI32Imm - Return a target constant with the specified value, of type
- /// i32.
- inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
- return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
- }
- /// getI64Imm - Return a target constant with the specified value, of type
- /// i64.
- inline SDValue getI64Imm(uint64_t Imm, const SDLoc &dl) {
- return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
- }
- /// getSmallIPtrImm - Return a target constant of pointer type.
- inline SDValue getSmallIPtrImm(unsigned Imm, const SDLoc &dl) {
- return CurDAG->getTargetConstant(
- Imm, dl, PPCLowering->getPointerTy(CurDAG->getDataLayout()));
- }
- /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
- /// rotate and mask opcode and mask operation.
- static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
- unsigned &SH, unsigned &MB, unsigned &ME);
- /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
- /// base register. Return the virtual register that holds this value.
- SDNode *getGlobalBaseReg();
- void selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset = 0);
- // Select - Convert the specified operand from a target-independent to a
- // target-specific node if it hasn't already been changed.
- void Select(SDNode *N) override;
- bool tryBitfieldInsert(SDNode *N);
- bool tryBitPermutation(SDNode *N);
- bool tryIntCompareInGPR(SDNode *N);
- // tryTLSXFormLoad - Convert an ISD::LOAD fed by a PPCISD::ADD_TLS into
- // an X-Form load instruction with the offset being a relocation coming from
- // the PPCISD::ADD_TLS.
- bool tryTLSXFormLoad(LoadSDNode *N);
- // tryTLSXFormStore - Convert an ISD::STORE fed by a PPCISD::ADD_TLS into
- // an X-Form store instruction with the offset being a relocation coming from
- // the PPCISD::ADD_TLS.
- bool tryTLSXFormStore(StoreSDNode *N);
- /// SelectCC - Select a comparison of the specified values with the
- /// specified condition code, returning the CR# of the expression.
- SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- const SDLoc &dl, SDValue Chain = SDValue());
- /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
- /// immediate field. Note that the operand at this point is already the
- /// result of a prior SelectAddressRegImm call.
- bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
- if (N.getOpcode() == ISD::TargetConstant ||
- N.getOpcode() == ISD::TargetGlobalAddress) {
- Out = N;
- return true;
- }
- return false;
- }
- /// SelectDSForm - Returns true if address N can be represented by the
- /// addressing mode of DSForm instructions (a base register, plus a signed
- /// 16-bit displacement that is a multiple of 4.
- bool SelectDSForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
- Align(4)) == PPC::AM_DSForm;
- }
- /// SelectDQForm - Returns true if address N can be represented by the
- /// addressing mode of DQForm instructions (a base register, plus a signed
- /// 16-bit displacement that is a multiple of 16.
- bool SelectDQForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
- Align(16)) == PPC::AM_DQForm;
- }
- /// SelectDForm - Returns true if address N can be represented by
- /// the addressing mode of DForm instructions (a base register, plus a
- /// signed 16-bit immediate.
- bool SelectDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
- None) == PPC::AM_DForm;
- }
- /// SelectPCRelForm - Returns true if address N can be represented by
- /// PC-Relative addressing mode.
- bool SelectPCRelForm(SDNode *Parent, SDValue N, SDValue &Disp,
- SDValue &Base) {
- return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
- None) == PPC::AM_PCRel;
- }
- /// SelectPDForm - Returns true if address N can be represented by Prefixed
- /// DForm addressing mode (a base register, plus a signed 34-bit immediate.
- bool SelectPDForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
- None) == PPC::AM_PrefixDForm;
- }
- /// SelectXForm - Returns true if address N can be represented by the
- /// addressing mode of XForm instructions (an indexed [r+r] operation).
- bool SelectXForm(SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectOptimalAddrMode(Parent, N, Disp, Base, *CurDAG,
- None) == PPC::AM_XForm;
- }
- /// SelectForceXForm - Given the specified address, force it to be
- /// represented as an indexed [r+r] operation (an XForm instruction).
- bool SelectForceXForm(SDNode *Parent, SDValue N, SDValue &Disp,
- SDValue &Base) {
- return PPCLowering->SelectForceXFormMode(N, Disp, Base, *CurDAG) ==
- PPC::AM_XForm;
- }
- /// SelectAddrIdx - Given the specified address, check to see if it can be
- /// represented as an indexed [r+r] operation.
- /// This is for xform instructions whose associated displacement form is D.
- /// The last parameter \p 0 means associated D form has no requirment for 16
- /// bit signed displacement.
- /// Returns false if it can be represented by [r+imm], which are preferred.
- bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
- return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG, None);
- }
- /// SelectAddrIdx4 - Given the specified address, check to see if it can be
- /// represented as an indexed [r+r] operation.
- /// This is for xform instructions whose associated displacement form is DS.
- /// The last parameter \p 4 means associated DS form 16 bit signed
- /// displacement must be a multiple of 4.
- /// Returns false if it can be represented by [r+imm], which are preferred.
- bool SelectAddrIdxX4(SDValue N, SDValue &Base, SDValue &Index) {
- return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
- Align(4));
- }
- /// SelectAddrIdx16 - Given the specified address, check to see if it can be
- /// represented as an indexed [r+r] operation.
- /// This is for xform instructions whose associated displacement form is DQ.
- /// The last parameter \p 16 means associated DQ form 16 bit signed
- /// displacement must be a multiple of 16.
- /// Returns false if it can be represented by [r+imm], which are preferred.
- bool SelectAddrIdxX16(SDValue N, SDValue &Base, SDValue &Index) {
- return PPCLowering->SelectAddressRegReg(N, Base, Index, *CurDAG,
- Align(16));
- }
- /// SelectAddrIdxOnly - Given the specified address, force it to be
- /// represented as an indexed [r+r] operation.
- bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
- return PPCLowering->SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
- }
- /// SelectAddrImm - Returns true if the address N can be represented by
- /// a base register plus a signed 16-bit displacement [r+imm].
- /// The last parameter \p 0 means D form has no requirment for 16 bit signed
- /// displacement.
- bool SelectAddrImm(SDValue N, SDValue &Disp,
- SDValue &Base) {
- return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, None);
- }
- /// SelectAddrImmX4 - Returns true if the address N can be represented by
- /// a base register plus a signed 16-bit displacement that is a multiple of
- /// 4 (last parameter). Suitable for use by STD and friends.
- bool SelectAddrImmX4(SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG, Align(4));
- }
- /// SelectAddrImmX16 - Returns true if the address N can be represented by
- /// a base register plus a signed 16-bit displacement that is a multiple of
- /// 16(last parameter). Suitable for use by STXV and friends.
- bool SelectAddrImmX16(SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectAddressRegImm(N, Disp, Base, *CurDAG,
- Align(16));
- }
- /// SelectAddrImmX34 - Returns true if the address N can be represented by
- /// a base register plus a signed 34-bit displacement. Suitable for use by
- /// PSTXVP and friends.
- bool SelectAddrImmX34(SDValue N, SDValue &Disp, SDValue &Base) {
- return PPCLowering->SelectAddressRegImm34(N, Disp, Base, *CurDAG);
- }
- // Select an address into a single register.
- bool SelectAddr(SDValue N, SDValue &Base) {
- Base = N;
- return true;
- }
- bool SelectAddrPCRel(SDValue N, SDValue &Base) {
- return PPCLowering->SelectAddressPCRel(N, Base);
- }
- /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
- /// inline asm expressions. It is always correct to compute the value into
- /// a register. The case of adding a (possibly relocatable) constant to a
- /// register can be improved, but it is wrong to substitute Reg+Reg for
- /// Reg in an asm, because the load or store opcode would have to change.
- bool SelectInlineAsmMemoryOperand(const SDValue &Op,
- unsigned ConstraintID,
- std::vector<SDValue> &OutOps) override {
- switch(ConstraintID) {
- default:
- errs() << "ConstraintID: " << ConstraintID << "\n";
- llvm_unreachable("Unexpected asm memory constraint");
- case InlineAsm::Constraint_es:
- case InlineAsm::Constraint_m:
- case InlineAsm::Constraint_o:
- case InlineAsm::Constraint_Q:
- case InlineAsm::Constraint_Z:
- case InlineAsm::Constraint_Zy:
- // We need to make sure that this one operand does not end up in r0
- // (because we might end up lowering this as 0(%op)).
- const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
- const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF, /*Kind=*/1);
- SDLoc dl(Op);
- SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i32);
- SDValue NewOp =
- SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
- dl, Op.getValueType(),
- Op, RC), 0);
- OutOps.push_back(NewOp);
- return false;
- }
- return true;
- }
- StringRef getPassName() const override {
- return "PowerPC DAG->DAG Pattern Instruction Selection";
- }
- // Include the pieces autogenerated from the target description.
- #include "PPCGenDAGISel.inc"
- private:
- bool trySETCC(SDNode *N);
- bool tryFoldSWTestBRCC(SDNode *N);
- bool tryAsSingleRLDICL(SDNode *N);
- bool tryAsSingleRLDICR(SDNode *N);
- bool tryAsSingleRLWINM(SDNode *N);
- bool tryAsSingleRLWINM8(SDNode *N);
- bool tryAsSingleRLWIMI(SDNode *N);
- bool tryAsPairOfRLDICL(SDNode *N);
- bool tryAsSingleRLDIMI(SDNode *N);
- void PeepholePPC64();
- void PeepholePPC64ZExt();
- void PeepholeCROps();
- SDValue combineToCMPB(SDNode *N);
- void foldBoolExts(SDValue &Res, SDNode *&N);
- bool AllUsersSelectZero(SDNode *N);
- void SwapAllSelectUsers(SDNode *N);
- bool isOffsetMultipleOf(SDNode *N, unsigned Val) const;
- void transferMemOperands(SDNode *N, SDNode *Result);
- };
- } // end anonymous namespace
- /// getGlobalBaseReg - Output the instructions required to put the
- /// base address to use for accessing globals into a register.
- ///
- SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
- if (!GlobalBaseReg) {
- const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
- // Insert the set of GlobalBaseReg into the first MBB of the function
- MachineBasicBlock &FirstMBB = MF->front();
- MachineBasicBlock::iterator MBBI = FirstMBB.begin();
- const Module *M = MF->getFunction().getParent();
- DebugLoc dl;
- if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) == MVT::i32) {
- if (Subtarget->isTargetELF()) {
- GlobalBaseReg = PPC::R30;
- if (!Subtarget->isSecurePlt() &&
- M->getPICLevel() == PICLevel::SmallPIC) {
- BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MoveGOTtoLR));
- BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
- MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
- } else {
- BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
- BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
- Register TempReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
- BuildMI(FirstMBB, MBBI, dl,
- TII.get(PPC::UpdateGBR), GlobalBaseReg)
- .addReg(TempReg, RegState::Define).addReg(GlobalBaseReg);
- MF->getInfo<PPCFunctionInfo>()->setUsesPICBase(true);
- }
- } else {
- GlobalBaseReg =
- RegInfo->createVirtualRegister(&PPC::GPRC_and_GPRC_NOR0RegClass);
- BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
- BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
- }
- } else {
- // We must ensure that this sequence is dominated by the prologue.
- // FIXME: This is a bit of a big hammer since we don't get the benefits
- // of shrink-wrapping whenever we emit this instruction. Considering
- // this is used in any function where we emit a jump table, this may be
- // a significant limitation. We should consider inserting this in the
- // block where it is used and then commoning this sequence up if it
- // appears in multiple places.
- // Note: on ISA 3.0 cores, we can use lnia (addpcis) instead of
- // MovePCtoLR8.
- MF->getInfo<PPCFunctionInfo>()->setShrinkWrapDisabled(true);
- GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
- BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
- BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
- }
- }
- return CurDAG->getRegister(GlobalBaseReg,
- PPCLowering->getPointerTy(CurDAG->getDataLayout()))
- .getNode();
- }
- // Check if a SDValue has the toc-data attribute.
- static bool hasTocDataAttr(SDValue Val, unsigned PointerSize) {
- GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Val);
- if (!GA)
- return false;
- const GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(GA->getGlobal());
- if (!GV)
- return false;
- if (!GV->hasAttribute("toc-data"))
- return false;
- // TODO: These asserts should be updated as more support for the toc data
- // transformation is added (struct support, etc.).
- assert(
- PointerSize >= GV->getAlign().valueOrOne().value() &&
- "GlobalVariables with an alignment requirement stricter than TOC entry "
- "size not supported by the toc data transformation.");
- Type *GVType = GV->getValueType();
- assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
- "supported by the toc data transformation.");
- if (GVType->isVectorTy())
- report_fatal_error("A GlobalVariable of Vector type is not currently "
- "supported by the toc data transformation.");
- if (GVType->isArrayTy())
- report_fatal_error("A GlobalVariable of Array type is not currently "
- "supported by the toc data transformation.");
- if (GVType->isStructTy())
- report_fatal_error("A GlobalVariable of Struct type is not currently "
- "supported by the toc data transformation.");
- assert(GVType->getPrimitiveSizeInBits() <= PointerSize * 8 &&
- "A GlobalVariable with size larger than a TOC entry is not currently "
- "supported by the toc data transformation.");
- if (GV->hasLocalLinkage() || GV->hasPrivateLinkage())
- report_fatal_error("A GlobalVariable with private or local linkage is not "
- "currently supported by the toc data transformation.");
- assert(!GV->hasCommonLinkage() &&
- "Tentative definitions cannot have the mapping class XMC_TD.");
- return true;
- }
- /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
- /// operand. If so Imm will receive the 32-bit value.
- static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
- if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
- Imm = cast<ConstantSDNode>(N)->getZExtValue();
- return true;
- }
- return false;
- }
- /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
- /// operand. If so Imm will receive the 64-bit value.
- static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
- if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
- Imm = cast<ConstantSDNode>(N)->getZExtValue();
- return true;
- }
- return false;
- }
- // isInt32Immediate - This method tests to see if a constant operand.
- // If so Imm will receive the 32 bit value.
- static bool isInt32Immediate(SDValue N, unsigned &Imm) {
- return isInt32Immediate(N.getNode(), Imm);
- }
- /// isInt64Immediate - This method tests to see if the value is a 64-bit
- /// constant operand. If so Imm will receive the 64-bit value.
- static bool isInt64Immediate(SDValue N, uint64_t &Imm) {
- return isInt64Immediate(N.getNode(), Imm);
- }
- static unsigned getBranchHint(unsigned PCC,
- const FunctionLoweringInfo &FuncInfo,
- const SDValue &DestMBB) {
- assert(isa<BasicBlockSDNode>(DestMBB));
- if (!FuncInfo.BPI) return PPC::BR_NO_HINT;
- const BasicBlock *BB = FuncInfo.MBB->getBasicBlock();
- const Instruction *BBTerm = BB->getTerminator();
- if (BBTerm->getNumSuccessors() != 2) return PPC::BR_NO_HINT;
- const BasicBlock *TBB = BBTerm->getSuccessor(0);
- const BasicBlock *FBB = BBTerm->getSuccessor(1);
- auto TProb = FuncInfo.BPI->getEdgeProbability(BB, TBB);
- auto FProb = FuncInfo.BPI->getEdgeProbability(BB, FBB);
- // We only want to handle cases which are easy to predict at static time, e.g.
- // C++ throw statement, that is very likely not taken, or calling never
- // returned function, e.g. stdlib exit(). So we set Threshold to filter
- // unwanted cases.
- //
- // Below is LLVM branch weight table, we only want to handle case 1, 2
- //
- // Case Taken:Nontaken Example
- // 1. Unreachable 1048575:1 C++ throw, stdlib exit(),
- // 2. Invoke-terminating 1:1048575
- // 3. Coldblock 4:64 __builtin_expect
- // 4. Loop Branch 124:4 For loop
- // 5. PH/ZH/FPH 20:12
- const uint32_t Threshold = 10000;
- if (std::max(TProb, FProb) / Threshold < std::min(TProb, FProb))
- return PPC::BR_NO_HINT;
- LLVM_DEBUG(dbgs() << "Use branch hint for '" << FuncInfo.Fn->getName()
- << "::" << BB->getName() << "'\n"
- << " -> " << TBB->getName() << ": " << TProb << "\n"
- << " -> " << FBB->getName() << ": " << FProb << "\n");
- const BasicBlockSDNode *BBDN = cast<BasicBlockSDNode>(DestMBB);
- // If Dest BasicBlock is False-BasicBlock (FBB), swap branch probabilities,
- // because we want 'TProb' stands for 'branch probability' to Dest BasicBlock
- if (BBDN->getBasicBlock()->getBasicBlock() != TBB)
- std::swap(TProb, FProb);
- return (TProb > FProb) ? PPC::BR_TAKEN_HINT : PPC::BR_NONTAKEN_HINT;
- }
- // isOpcWithIntImmediate - This method tests to see if the node is a specific
- // opcode and that it has a immediate integer right operand.
- // If so Imm will receive the 32 bit value.
- static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
- return N->getOpcode() == Opc
- && isInt32Immediate(N->getOperand(1).getNode(), Imm);
- }
- void PPCDAGToDAGISel::selectFrameIndex(SDNode *SN, SDNode *N, unsigned Offset) {
- SDLoc dl(SN);
- int FI = cast<FrameIndexSDNode>(N)->getIndex();
- SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
- unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
- if (SN->hasOneUse())
- CurDAG->SelectNodeTo(SN, Opc, N->getValueType(0), TFI,
- getSmallIPtrImm(Offset, dl));
- else
- ReplaceNode(SN, CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
- getSmallIPtrImm(Offset, dl)));
- }
- bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
- bool isShiftMask, unsigned &SH,
- unsigned &MB, unsigned &ME) {
- // Don't even go down this path for i64, since different logic will be
- // necessary for rldicl/rldicr/rldimi.
- if (N->getValueType(0) != MVT::i32)
- return false;
- unsigned Shift = 32;
- unsigned Indeterminant = ~0; // bit mask marking indeterminant results
- unsigned Opcode = N->getOpcode();
- if (N->getNumOperands() != 2 ||
- !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
- return false;
- if (Opcode == ISD::SHL) {
- // apply shift left to mask if it comes first
- if (isShiftMask) Mask = Mask << Shift;
- // determine which bits are made indeterminant by shift
- Indeterminant = ~(0xFFFFFFFFu << Shift);
- } else if (Opcode == ISD::SRL) {
- // apply shift right to mask if it comes first
- if (isShiftMask) Mask = Mask >> Shift;
- // determine which bits are made indeterminant by shift
- Indeterminant = ~(0xFFFFFFFFu >> Shift);
- // adjust for the left rotate
- Shift = 32 - Shift;
- } else if (Opcode == ISD::ROTL) {
- Indeterminant = 0;
- } else {
- return false;
- }
- // if the mask doesn't intersect any Indeterminant bits
- if (Mask && !(Mask & Indeterminant)) {
- SH = Shift & 31;
- // make sure the mask is still a mask (wrap arounds may not be)
- return isRunOfOnes(Mask, MB, ME);
- }
- return false;
- }
- bool PPCDAGToDAGISel::tryTLSXFormStore(StoreSDNode *ST) {
- SDValue Base = ST->getBasePtr();
- if (Base.getOpcode() != PPCISD::ADD_TLS)
- return false;
- SDValue Offset = ST->getOffset();
- if (!Offset.isUndef())
- return false;
- if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
- return false;
- SDLoc dl(ST);
- EVT MemVT = ST->getMemoryVT();
- EVT RegVT = ST->getValue().getValueType();
- unsigned Opcode;
- switch (MemVT.getSimpleVT().SimpleTy) {
- default:
- return false;
- case MVT::i8: {
- Opcode = (RegVT == MVT::i32) ? PPC::STBXTLS_32 : PPC::STBXTLS;
- break;
- }
- case MVT::i16: {
- Opcode = (RegVT == MVT::i32) ? PPC::STHXTLS_32 : PPC::STHXTLS;
- break;
- }
- case MVT::i32: {
- Opcode = (RegVT == MVT::i32) ? PPC::STWXTLS_32 : PPC::STWXTLS;
- break;
- }
- case MVT::i64: {
- Opcode = PPC::STDXTLS;
- break;
- }
- }
- SDValue Chain = ST->getChain();
- SDVTList VTs = ST->getVTList();
- SDValue Ops[] = {ST->getValue(), Base.getOperand(0), Base.getOperand(1),
- Chain};
- SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
- transferMemOperands(ST, MN);
- ReplaceNode(ST, MN);
- return true;
- }
- bool PPCDAGToDAGISel::tryTLSXFormLoad(LoadSDNode *LD) {
- SDValue Base = LD->getBasePtr();
- if (Base.getOpcode() != PPCISD::ADD_TLS)
- return false;
- SDValue Offset = LD->getOffset();
- if (!Offset.isUndef())
- return false;
- if (Base.getOperand(1).getOpcode() == PPCISD::TLS_LOCAL_EXEC_MAT_ADDR)
- return false;
- SDLoc dl(LD);
- EVT MemVT = LD->getMemoryVT();
- EVT RegVT = LD->getValueType(0);
- unsigned Opcode;
- switch (MemVT.getSimpleVT().SimpleTy) {
- default:
- return false;
- case MVT::i8: {
- Opcode = (RegVT == MVT::i32) ? PPC::LBZXTLS_32 : PPC::LBZXTLS;
- break;
- }
- case MVT::i16: {
- Opcode = (RegVT == MVT::i32) ? PPC::LHZXTLS_32 : PPC::LHZXTLS;
- break;
- }
- case MVT::i32: {
- Opcode = (RegVT == MVT::i32) ? PPC::LWZXTLS_32 : PPC::LWZXTLS;
- break;
- }
- case MVT::i64: {
- Opcode = PPC::LDXTLS;
- break;
- }
- }
- SDValue Chain = LD->getChain();
- SDVTList VTs = LD->getVTList();
- SDValue Ops[] = {Base.getOperand(0), Base.getOperand(1), Chain};
- SDNode *MN = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
- transferMemOperands(LD, MN);
- ReplaceNode(LD, MN);
- return true;
- }
- /// Turn an or of two masked values into the rotate left word immediate then
- /// mask insert (rlwimi) instruction.
- bool PPCDAGToDAGISel::tryBitfieldInsert(SDNode *N) {
- SDValue Op0 = N->getOperand(0);
- SDValue Op1 = N->getOperand(1);
- SDLoc dl(N);
- KnownBits LKnown = CurDAG->computeKnownBits(Op0);
- KnownBits RKnown = CurDAG->computeKnownBits(Op1);
- unsigned TargetMask = LKnown.Zero.getZExtValue();
- unsigned InsertMask = RKnown.Zero.getZExtValue();
- if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
- unsigned Op0Opc = Op0.getOpcode();
- unsigned Op1Opc = Op1.getOpcode();
- unsigned Value, SH = 0;
- TargetMask = ~TargetMask;
- InsertMask = ~InsertMask;
- // If the LHS has a foldable shift and the RHS does not, then swap it to the
- // RHS so that we can fold the shift into the insert.
- if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
- if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
- Op0.getOperand(0).getOpcode() == ISD::SRL) {
- if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
- Op1.getOperand(0).getOpcode() != ISD::SRL) {
- std::swap(Op0, Op1);
- std::swap(Op0Opc, Op1Opc);
- std::swap(TargetMask, InsertMask);
- }
- }
- } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
- if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
- Op1.getOperand(0).getOpcode() != ISD::SRL) {
- std::swap(Op0, Op1);
- std::swap(Op0Opc, Op1Opc);
- std::swap(TargetMask, InsertMask);
- }
- }
- unsigned MB, ME;
- if (isRunOfOnes(InsertMask, MB, ME)) {
- if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
- isInt32Immediate(Op1.getOperand(1), Value)) {
- Op1 = Op1.getOperand(0);
- SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
- }
- if (Op1Opc == ISD::AND) {
- // The AND mask might not be a constant, and we need to make sure that
- // if we're going to fold the masking with the insert, all bits not
- // know to be zero in the mask are known to be one.
- KnownBits MKnown = CurDAG->computeKnownBits(Op1.getOperand(1));
- bool CanFoldMask = InsertMask == MKnown.One.getZExtValue();
- unsigned SHOpc = Op1.getOperand(0).getOpcode();
- if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) && CanFoldMask &&
- isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
- // Note that Value must be in range here (less than 32) because
- // otherwise there would not be any bits set in InsertMask.
- Op1 = Op1.getOperand(0).getOperand(0);
- SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
- }
- }
- SH &= 31;
- SDValue Ops[] = { Op0, Op1, getI32Imm(SH, dl), getI32Imm(MB, dl),
- getI32Imm(ME, dl) };
- ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
- return true;
- }
- }
- return false;
- }
- static unsigned allUsesTruncate(SelectionDAG *CurDAG, SDNode *N) {
- unsigned MaxTruncation = 0;
- // Cannot use range-based for loop here as we need the actual use (i.e. we
- // need the operand number corresponding to the use). A range-based for
- // will unbox the use and provide an SDNode*.
- for (SDNode::use_iterator Use = N->use_begin(), UseEnd = N->use_end();
- Use != UseEnd; ++Use) {
- unsigned Opc =
- Use->isMachineOpcode() ? Use->getMachineOpcode() : Use->getOpcode();
- switch (Opc) {
- default: return 0;
- case ISD::TRUNCATE:
- if (Use->isMachineOpcode())
- return 0;
- MaxTruncation =
- std::max(MaxTruncation, (unsigned)Use->getValueType(0).getSizeInBits());
- continue;
- case ISD::STORE: {
- if (Use->isMachineOpcode())
- return 0;
- StoreSDNode *STN = cast<StoreSDNode>(*Use);
- unsigned MemVTSize = STN->getMemoryVT().getSizeInBits();
- if (MemVTSize == 64 || Use.getOperandNo() != 0)
- return 0;
- MaxTruncation = std::max(MaxTruncation, MemVTSize);
- continue;
- }
- case PPC::STW8:
- case PPC::STWX8:
- case PPC::STWU8:
- case PPC::STWUX8:
- if (Use.getOperandNo() != 0)
- return 0;
- MaxTruncation = std::max(MaxTruncation, 32u);
- continue;
- case PPC::STH8:
- case PPC::STHX8:
- case PPC::STHU8:
- case PPC::STHUX8:
- if (Use.getOperandNo() != 0)
- return 0;
- MaxTruncation = std::max(MaxTruncation, 16u);
- continue;
- case PPC::STB8:
- case PPC::STBX8:
- case PPC::STBU8:
- case PPC::STBUX8:
- if (Use.getOperandNo() != 0)
- return 0;
- MaxTruncation = std::max(MaxTruncation, 8u);
- continue;
- }
- }
- return MaxTruncation;
- }
- // For any 32 < Num < 64, check if the Imm contains at least Num consecutive
- // zeros and return the number of bits by the left of these consecutive zeros.
- static int findContiguousZerosAtLeast(uint64_t Imm, unsigned Num) {
- unsigned HiTZ = countTrailingZeros<uint32_t>(Hi_32(Imm));
- unsigned LoLZ = countLeadingZeros<uint32_t>(Lo_32(Imm));
- if ((HiTZ + LoLZ) >= Num)
- return (32 + HiTZ);
- return 0;
- }
- // Direct materialization of 64-bit constants by enumerated patterns.
- static SDNode *selectI64ImmDirect(SelectionDAG *CurDAG, const SDLoc &dl,
- uint64_t Imm, unsigned &InstCnt) {
- unsigned TZ = countTrailingZeros<uint64_t>(Imm);
- unsigned LZ = countLeadingZeros<uint64_t>(Imm);
- unsigned TO = countTrailingOnes<uint64_t>(Imm);
- unsigned LO = countLeadingOnes<uint64_t>(Imm);
- unsigned Hi32 = Hi_32(Imm);
- unsigned Lo32 = Lo_32(Imm);
- SDNode *Result = nullptr;
- unsigned Shift = 0;
- auto getI32Imm = [CurDAG, dl](unsigned Imm) {
- return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
- };
- // Following patterns use 1 instructions to materialize the Imm.
- InstCnt = 1;
- // 1-1) Patterns : {zeros}{15-bit valve}
- // {ones}{15-bit valve}
- if (isInt<16>(Imm)) {
- SDValue SDImm = CurDAG->getTargetConstant(Imm, dl, MVT::i64);
- return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
- }
- // 1-2) Patterns : {zeros}{15-bit valve}{16 zeros}
- // {ones}{15-bit valve}{16 zeros}
- if (TZ > 15 && (LZ > 32 || LO > 32))
- return CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
- getI32Imm((Imm >> 16) & 0xffff));
- // Following patterns use 2 instructions to materialize the Imm.
- InstCnt = 2;
- assert(LZ < 64 && "Unexpected leading zeros here.");
- // Count of ones follwing the leading zeros.
- unsigned FO = countLeadingOnes<uint64_t>(Imm << LZ);
- // 2-1) Patterns : {zeros}{31-bit value}
- // {ones}{31-bit value}
- if (isInt<32>(Imm)) {
- uint64_t ImmHi16 = (Imm >> 16) & 0xffff;
- unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
- Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
- return CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(Imm & 0xffff));
- }
- // 2-2) Patterns : {zeros}{ones}{15-bit value}{zeros}
- // {zeros}{15-bit value}{zeros}
- // {zeros}{ones}{15-bit value}
- // {ones}{15-bit value}{zeros}
- // We can take advantage of LI's sign-extension semantics to generate leading
- // ones, and then use RLDIC to mask off the ones in both sides after rotation.
- if ((LZ + FO + TZ) > 48) {
- Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
- getI32Imm((Imm >> TZ) & 0xffff));
- return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(TZ), getI32Imm(LZ));
- }
- // 2-3) Pattern : {zeros}{15-bit value}{ones}
- // Shift right the Imm by (48 - LZ) bits to construct a negtive 16 bits value,
- // therefore we can take advantage of LI's sign-extension semantics, and then
- // mask them off after rotation.
- //
- // +--LZ--||-15-bit-||--TO--+ +-------------|--16-bit--+
- // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
- // +------------------------+ +------------------------+
- // 63 0 63 0
- // Imm (Imm >> (48 - LZ) & 0xffff)
- // +----sext-----|--16-bit--+ +clear-|-----------------+
- // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
- // +------------------------+ +------------------------+
- // 63 0 63 0
- // LI8: sext many leading zeros RLDICL: rotate left (48 - LZ), clear left LZ
- if ((LZ + TO) > 48) {
- // Since the immediates with (LZ > 32) have been handled by previous
- // patterns, here we have (LZ <= 32) to make sure we will not shift right
- // the Imm by a negative value.
- assert(LZ <= 32 && "Unexpected shift value.");
- Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
- getI32Imm((Imm >> (48 - LZ) & 0xffff)));
- return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(48 - LZ), getI32Imm(LZ));
- }
- // 2-4) Patterns : {zeros}{ones}{15-bit value}{ones}
- // {ones}{15-bit value}{ones}
- // We can take advantage of LI's sign-extension semantics to generate leading
- // ones, and then use RLDICL to mask off the ones in left sides (if required)
- // after rotation.
- //
- // +-LZ-FO||-15-bit-||--TO--+ +-------------|--16-bit--+
- // |00011110bbbbbbbbb1111111| -> |000000000011110bbbbbbbbb|
- // +------------------------+ +------------------------+
- // 63 0 63 0
- // Imm (Imm >> TO) & 0xffff
- // +----sext-----|--16-bit--+ +LZ|---------------------+
- // |111111111111110bbbbbbbbb| -> |00011110bbbbbbbbb1111111|
- // +------------------------+ +------------------------+
- // 63 0 63 0
- // LI8: sext many leading zeros RLDICL: rotate left TO, clear left LZ
- if ((LZ + FO + TO) > 48) {
- Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
- getI32Imm((Imm >> TO) & 0xffff));
- return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(TO), getI32Imm(LZ));
- }
- // 2-5) Pattern : {32 zeros}{****}{0}{15-bit value}
- // If Hi32 is zero and the Lo16(in Lo32) can be presented as a positive 16 bit
- // value, we can use LI for Lo16 without generating leading ones then add the
- // Hi16(in Lo32).
- if (LZ == 32 && ((Lo32 & 0x8000) == 0)) {
- Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
- getI32Imm(Lo32 & 0xffff));
- return CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(Lo32 >> 16));
- }
- // 2-6) Patterns : {******}{49 zeros}{******}
- // {******}{49 ones}{******}
- // If the Imm contains 49 consecutive zeros/ones, it means that a total of 15
- // bits remain on both sides. Rotate right the Imm to construct an int<16>
- // value, use LI for int<16> value and then use RLDICL without mask to rotate
- // it back.
- //
- // 1) findContiguousZerosAtLeast(Imm, 49)
- // +------|--zeros-|------+ +---ones--||---15 bit--+
- // |bbbbbb0000000000aaaaaa| -> |0000000000aaaaaabbbbbb|
- // +----------------------+ +----------------------+
- // 63 0 63 0
- //
- // 2) findContiguousZerosAtLeast(~Imm, 49)
- // +------|--ones--|------+ +---ones--||---15 bit--+
- // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
- // +----------------------+ +----------------------+
- // 63 0 63 0
- if ((Shift = findContiguousZerosAtLeast(Imm, 49)) ||
- (Shift = findContiguousZerosAtLeast(~Imm, 49))) {
- uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
- Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64,
- getI32Imm(RotImm & 0xffff));
- return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(Shift), getI32Imm(0));
- }
- // Following patterns use 3 instructions to materialize the Imm.
- InstCnt = 3;
- // 3-1) Patterns : {zeros}{ones}{31-bit value}{zeros}
- // {zeros}{31-bit value}{zeros}
- // {zeros}{ones}{31-bit value}
- // {ones}{31-bit value}{zeros}
- // We can take advantage of LIS's sign-extension semantics to generate leading
- // ones, add the remaining bits with ORI, and then use RLDIC to mask off the
- // ones in both sides after rotation.
- if ((LZ + FO + TZ) > 32) {
- uint64_t ImmHi16 = (Imm >> (TZ + 16)) & 0xffff;
- unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
- Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
- Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm((Imm >> TZ) & 0xffff));
- return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(TZ), getI32Imm(LZ));
- }
- // 3-2) Pattern : {zeros}{31-bit value}{ones}
- // Shift right the Imm by (32 - LZ) bits to construct a negtive 32 bits value,
- // therefore we can take advantage of LIS's sign-extension semantics, add
- // the remaining bits with ORI, and then mask them off after rotation.
- // This is similar to Pattern 2-3, please refer to the diagram there.
- if ((LZ + TO) > 32) {
- // Since the immediates with (LZ > 32) have been handled by previous
- // patterns, here we have (LZ <= 32) to make sure we will not shift right
- // the Imm by a negative value.
- assert(LZ <= 32 && "Unexpected shift value.");
- Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
- getI32Imm((Imm >> (48 - LZ)) & 0xffff));
- Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm((Imm >> (32 - LZ)) & 0xffff));
- return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(32 - LZ), getI32Imm(LZ));
- }
- // 3-3) Patterns : {zeros}{ones}{31-bit value}{ones}
- // {ones}{31-bit value}{ones}
- // We can take advantage of LIS's sign-extension semantics to generate leading
- // ones, add the remaining bits with ORI, and then use RLDICL to mask off the
- // ones in left sides (if required) after rotation.
- // This is similar to Pattern 2-4, please refer to the diagram there.
- if ((LZ + FO + TO) > 32) {
- Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64,
- getI32Imm((Imm >> (TO + 16)) & 0xffff));
- Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm((Imm >> TO) & 0xffff));
- return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(TO), getI32Imm(LZ));
- }
- // 3-4) Patterns : High word == Low word
- if (Hi32 == Lo32) {
- // Handle the first 32 bits.
- uint64_t ImmHi16 = (Lo32 >> 16) & 0xffff;
- unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
- Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
- Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(Lo32 & 0xffff));
- // Use rldimi to insert the Low word into High word.
- SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
- getI32Imm(0)};
- return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
- }
- // 3-5) Patterns : {******}{33 zeros}{******}
- // {******}{33 ones}{******}
- // If the Imm contains 33 consecutive zeros/ones, it means that a total of 31
- // bits remain on both sides. Rotate right the Imm to construct an int<32>
- // value, use LIS + ORI for int<32> value and then use RLDICL without mask to
- // rotate it back.
- // This is similar to Pattern 2-6, please refer to the diagram there.
- if ((Shift = findContiguousZerosAtLeast(Imm, 33)) ||
- (Shift = findContiguousZerosAtLeast(~Imm, 33))) {
- uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
- uint64_t ImmHi16 = (RotImm >> 16) & 0xffff;
- unsigned Opcode = ImmHi16 ? PPC::LIS8 : PPC::LI8;
- Result = CurDAG->getMachineNode(Opcode, dl, MVT::i64, getI32Imm(ImmHi16));
- Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(RotImm & 0xffff));
- return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(Shift), getI32Imm(0));
- }
- InstCnt = 0;
- return nullptr;
- }
- // Try to select instructions to generate a 64 bit immediate using prefix as
- // well as non prefix instructions. The function will return the SDNode
- // to materialize that constant or it will return nullptr if it does not
- // find one. The variable InstCnt is set to the number of instructions that
- // were selected.
- static SDNode *selectI64ImmDirectPrefix(SelectionDAG *CurDAG, const SDLoc &dl,
- uint64_t Imm, unsigned &InstCnt) {
- unsigned TZ = countTrailingZeros<uint64_t>(Imm);
- unsigned LZ = countLeadingZeros<uint64_t>(Imm);
- unsigned TO = countTrailingOnes<uint64_t>(Imm);
- unsigned FO = countLeadingOnes<uint64_t>(LZ == 64 ? 0 : (Imm << LZ));
- unsigned Hi32 = Hi_32(Imm);
- unsigned Lo32 = Lo_32(Imm);
- auto getI32Imm = [CurDAG, dl](unsigned Imm) {
- return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
- };
- auto getI64Imm = [CurDAG, dl](uint64_t Imm) {
- return CurDAG->getTargetConstant(Imm, dl, MVT::i64);
- };
- // Following patterns use 1 instruction to materialize Imm.
- InstCnt = 1;
- // The pli instruction can materialize up to 34 bits directly.
- // If a constant fits within 34-bits, emit the pli instruction here directly.
- if (isInt<34>(Imm))
- return CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
- CurDAG->getTargetConstant(Imm, dl, MVT::i64));
- // Require at least two instructions.
- InstCnt = 2;
- SDNode *Result = nullptr;
- // Patterns : {zeros}{ones}{33-bit value}{zeros}
- // {zeros}{33-bit value}{zeros}
- // {zeros}{ones}{33-bit value}
- // {ones}{33-bit value}{zeros}
- // We can take advantage of PLI's sign-extension semantics to generate leading
- // ones, and then use RLDIC to mask off the ones on both sides after rotation.
- if ((LZ + FO + TZ) > 30) {
- APInt SignedInt34 = APInt(34, (Imm >> TZ) & 0x3ffffffff);
- APInt Extended = SignedInt34.sext(64);
- Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
- getI64Imm(*Extended.getRawData()));
- return CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(TZ), getI32Imm(LZ));
- }
- // Pattern : {zeros}{33-bit value}{ones}
- // Shift right the Imm by (30 - LZ) bits to construct a negative 34 bit value,
- // therefore we can take advantage of PLI's sign-extension semantics, and then
- // mask them off after rotation.
- //
- // +--LZ--||-33-bit-||--TO--+ +-------------|--34-bit--+
- // |00000001bbbbbbbbb1111111| -> |00000000000001bbbbbbbbb1|
- // +------------------------+ +------------------------+
- // 63 0 63 0
- //
- // +----sext-----|--34-bit--+ +clear-|-----------------+
- // |11111111111111bbbbbbbbb1| -> |00000001bbbbbbbbb1111111|
- // +------------------------+ +------------------------+
- // 63 0 63 0
- if ((LZ + TO) > 30) {
- APInt SignedInt34 = APInt(34, (Imm >> (30 - LZ)) & 0x3ffffffff);
- APInt Extended = SignedInt34.sext(64);
- Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
- getI64Imm(*Extended.getRawData()));
- return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(30 - LZ), getI32Imm(LZ));
- }
- // Patterns : {zeros}{ones}{33-bit value}{ones}
- // {ones}{33-bit value}{ones}
- // Similar to LI we can take advantage of PLI's sign-extension semantics to
- // generate leading ones, and then use RLDICL to mask off the ones in left
- // sides (if required) after rotation.
- if ((LZ + FO + TO) > 30) {
- APInt SignedInt34 = APInt(34, (Imm >> TO) & 0x3ffffffff);
- APInt Extended = SignedInt34.sext(64);
- Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64,
- getI64Imm(*Extended.getRawData()));
- return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(TO), getI32Imm(LZ));
- }
- // Patterns : {******}{31 zeros}{******}
- // : {******}{31 ones}{******}
- // If Imm contains 31 consecutive zeros/ones then the remaining bit count
- // is 33. Rotate right the Imm to construct a int<33> value, we can use PLI
- // for the int<33> value and then use RLDICL without a mask to rotate it back.
- //
- // +------|--ones--|------+ +---ones--||---33 bit--+
- // |bbbbbb1111111111aaaaaa| -> |1111111111aaaaaabbbbbb|
- // +----------------------+ +----------------------+
- // 63 0 63 0
- for (unsigned Shift = 0; Shift < 63; ++Shift) {
- uint64_t RotImm = APInt(64, Imm).rotr(Shift).getZExtValue();
- if (isInt<34>(RotImm)) {
- Result =
- CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(RotImm));
- return CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- SDValue(Result, 0), getI32Imm(Shift),
- getI32Imm(0));
- }
- }
- // Patterns : High word == Low word
- // This is basically a splat of a 32 bit immediate.
- if (Hi32 == Lo32) {
- Result = CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
- SDValue Ops[] = {SDValue(Result, 0), SDValue(Result, 0), getI32Imm(32),
- getI32Imm(0)};
- return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
- }
- InstCnt = 3;
- // Catch-all
- // This pattern can form any 64 bit immediate in 3 instructions.
- SDNode *ResultHi =
- CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Hi32));
- SDNode *ResultLo =
- CurDAG->getMachineNode(PPC::PLI8, dl, MVT::i64, getI64Imm(Lo32));
- SDValue Ops[] = {SDValue(ResultLo, 0), SDValue(ResultHi, 0), getI32Imm(32),
- getI32Imm(0)};
- return CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops);
- }
- static SDNode *selectI64Imm(SelectionDAG *CurDAG, const SDLoc &dl, uint64_t Imm,
- unsigned *InstCnt = nullptr) {
- unsigned InstCntDirect = 0;
- // No more than 3 instructions is used if we can select the i64 immediate
- // directly.
- SDNode *Result = selectI64ImmDirect(CurDAG, dl, Imm, InstCntDirect);
- const PPCSubtarget &Subtarget =
- CurDAG->getMachineFunction().getSubtarget<PPCSubtarget>();
- // If we have prefixed instructions and there is a chance we can
- // materialize the constant with fewer prefixed instructions than
- // non-prefixed, try that.
- if (Subtarget.hasPrefixInstrs() && InstCntDirect != 1) {
- unsigned InstCntDirectP = 0;
- SDNode *ResultP = selectI64ImmDirectPrefix(CurDAG, dl, Imm, InstCntDirectP);
- // Use the prefix case in either of two cases:
- // 1) We have no result from the non-prefix case to use.
- // 2) The non-prefix case uses more instructions than the prefix case.
- // If the prefix and non-prefix cases use the same number of instructions
- // we will prefer the non-prefix case.
- if (ResultP && (!Result || InstCntDirectP < InstCntDirect)) {
- if (InstCnt)
- *InstCnt = InstCntDirectP;
- return ResultP;
- }
- }
- if (Result) {
- if (InstCnt)
- *InstCnt = InstCntDirect;
- return Result;
- }
- auto getI32Imm = [CurDAG, dl](unsigned Imm) {
- return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
- };
- // Handle the upper 32 bit value.
- Result =
- selectI64ImmDirect(CurDAG, dl, Imm & 0xffffffff00000000, InstCntDirect);
- // Add in the last bits as required.
- if (uint32_t Hi16 = (Lo_32(Imm) >> 16) & 0xffff) {
- Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
- SDValue(Result, 0), getI32Imm(Hi16));
- ++InstCntDirect;
- }
- if (uint32_t Lo16 = Lo_32(Imm) & 0xffff) {
- Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64, SDValue(Result, 0),
- getI32Imm(Lo16));
- ++InstCntDirect;
- }
- if (InstCnt)
- *InstCnt = InstCntDirect;
- return Result;
- }
- // Select a 64-bit constant.
- static SDNode *selectI64Imm(SelectionDAG *CurDAG, SDNode *N) {
- SDLoc dl(N);
- // Get 64 bit value.
- int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
- if (unsigned MinSize = allUsesTruncate(CurDAG, N)) {
- uint64_t SextImm = SignExtend64(Imm, MinSize);
- SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
- if (isInt<16>(SextImm))
- return CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, SDImm);
- }
- return selectI64Imm(CurDAG, dl, Imm);
- }
- namespace {
- class BitPermutationSelector {
- struct ValueBit {
- SDValue V;
- // The bit number in the value, using a convention where bit 0 is the
- // lowest-order bit.
- unsigned Idx;
- // ConstZero means a bit we need to mask off.
- // Variable is a bit comes from an input variable.
- // VariableKnownToBeZero is also a bit comes from an input variable,
- // but it is known to be already zero. So we do not need to mask them.
- enum Kind {
- ConstZero,
- Variable,
- VariableKnownToBeZero
- } K;
- ValueBit(SDValue V, unsigned I, Kind K = Variable)
- : V(V), Idx(I), K(K) {}
- ValueBit(Kind K = Variable) : Idx(UINT32_MAX), K(K) {}
- bool isZero() const {
- return K == ConstZero || K == VariableKnownToBeZero;
- }
- bool hasValue() const {
- return K == Variable || K == VariableKnownToBeZero;
- }
- SDValue getValue() const {
- assert(hasValue() && "Cannot get the value of a constant bit");
- return V;
- }
- unsigned getValueBitIndex() const {
- assert(hasValue() && "Cannot get the value bit index of a constant bit");
- return Idx;
- }
- };
- // A bit group has the same underlying value and the same rotate factor.
- struct BitGroup {
- SDValue V;
- unsigned RLAmt;
- unsigned StartIdx, EndIdx;
- // This rotation amount assumes that the lower 32 bits of the quantity are
- // replicated in the high 32 bits by the rotation operator (which is done
- // by rlwinm and friends in 64-bit mode).
- bool Repl32;
- // Did converting to Repl32 == true change the rotation factor? If it did,
- // it decreased it by 32.
- bool Repl32CR;
- // Was this group coalesced after setting Repl32 to true?
- bool Repl32Coalesced;
- BitGroup(SDValue V, unsigned R, unsigned S, unsigned E)
- : V(V), RLAmt(R), StartIdx(S), EndIdx(E), Repl32(false), Repl32CR(false),
- Repl32Coalesced(false) {
- LLVM_DEBUG(dbgs() << "\tbit group for " << V.getNode() << " RLAmt = " << R
- << " [" << S << ", " << E << "]\n");
- }
- };
- // Information on each (Value, RLAmt) pair (like the number of groups
- // associated with each) used to choose the lowering method.
- struct ValueRotInfo {
- SDValue V;
- unsigned RLAmt = std::numeric_limits<unsigned>::max();
- unsigned NumGroups = 0;
- unsigned FirstGroupStartIdx = std::numeric_limits<unsigned>::max();
- bool Repl32 = false;
- ValueRotInfo() = default;
- // For sorting (in reverse order) by NumGroups, and then by
- // FirstGroupStartIdx.
- bool operator < (const ValueRotInfo &Other) const {
- // We need to sort so that the non-Repl32 come first because, when we're
- // doing masking, the Repl32 bit groups might be subsumed into the 64-bit
- // masking operation.
- if (Repl32 < Other.Repl32)
- return true;
- else if (Repl32 > Other.Repl32)
- return false;
- else if (NumGroups > Other.NumGroups)
- return true;
- else if (NumGroups < Other.NumGroups)
- return false;
- else if (RLAmt == 0 && Other.RLAmt != 0)
- return true;
- else if (RLAmt != 0 && Other.RLAmt == 0)
- return false;
- else if (FirstGroupStartIdx < Other.FirstGroupStartIdx)
- return true;
- return false;
- }
- };
- using ValueBitsMemoizedValue = std::pair<bool, SmallVector<ValueBit, 64>>;
- using ValueBitsMemoizer =
- DenseMap<SDValue, std::unique_ptr<ValueBitsMemoizedValue>>;
- ValueBitsMemoizer Memoizer;
- // Return a pair of bool and a SmallVector pointer to a memoization entry.
- // The bool is true if something interesting was deduced, otherwise if we're
- // providing only a generic representation of V (or something else likewise
- // uninteresting for instruction selection) through the SmallVector.
- std::pair<bool, SmallVector<ValueBit, 64> *> getValueBits(SDValue V,
- unsigned NumBits) {
- auto &ValueEntry = Memoizer[V];
- if (ValueEntry)
- return std::make_pair(ValueEntry->first, &ValueEntry->second);
- ValueEntry.reset(new ValueBitsMemoizedValue());
- bool &Interesting = ValueEntry->first;
- SmallVector<ValueBit, 64> &Bits = ValueEntry->second;
- Bits.resize(NumBits);
- switch (V.getOpcode()) {
- default: break;
- case ISD::ROTL:
- if (isa<ConstantSDNode>(V.getOperand(1))) {
- unsigned RotAmt = V.getConstantOperandVal(1);
- const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
- for (unsigned i = 0; i < NumBits; ++i)
- Bits[i] = LHSBits[i < RotAmt ? i + (NumBits - RotAmt) : i - RotAmt];
- return std::make_pair(Interesting = true, &Bits);
- }
- break;
- case ISD::SHL:
- case PPCISD::SHL:
- if (isa<ConstantSDNode>(V.getOperand(1))) {
- unsigned ShiftAmt = V.getConstantOperandVal(1);
- const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
- for (unsigned i = ShiftAmt; i < NumBits; ++i)
- Bits[i] = LHSBits[i - ShiftAmt];
- for (unsigned i = 0; i < ShiftAmt; ++i)
- Bits[i] = ValueBit(ValueBit::ConstZero);
- return std::make_pair(Interesting = true, &Bits);
- }
- break;
- case ISD::SRL:
- case PPCISD::SRL:
- if (isa<ConstantSDNode>(V.getOperand(1))) {
- unsigned ShiftAmt = V.getConstantOperandVal(1);
- const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
- for (unsigned i = 0; i < NumBits - ShiftAmt; ++i)
- Bits[i] = LHSBits[i + ShiftAmt];
- for (unsigned i = NumBits - ShiftAmt; i < NumBits; ++i)
- Bits[i] = ValueBit(ValueBit::ConstZero);
- return std::make_pair(Interesting = true, &Bits);
- }
- break;
- case ISD::AND:
- if (isa<ConstantSDNode>(V.getOperand(1))) {
- uint64_t Mask = V.getConstantOperandVal(1);
- const SmallVector<ValueBit, 64> *LHSBits;
- // Mark this as interesting, only if the LHS was also interesting. This
- // prevents the overall procedure from matching a single immediate 'and'
- // (which is non-optimal because such an and might be folded with other
- // things if we don't select it here).
- std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0), NumBits);
- for (unsigned i = 0; i < NumBits; ++i)
- if (((Mask >> i) & 1) == 1)
- Bits[i] = (*LHSBits)[i];
- else {
- // AND instruction masks this bit. If the input is already zero,
- // we have nothing to do here. Otherwise, make the bit ConstZero.
- if ((*LHSBits)[i].isZero())
- Bits[i] = (*LHSBits)[i];
- else
- Bits[i] = ValueBit(ValueBit::ConstZero);
- }
- return std::make_pair(Interesting, &Bits);
- }
- break;
- case ISD::OR: {
- const auto &LHSBits = *getValueBits(V.getOperand(0), NumBits).second;
- const auto &RHSBits = *getValueBits(V.getOperand(1), NumBits).second;
- bool AllDisjoint = true;
- SDValue LastVal = SDValue();
- unsigned LastIdx = 0;
- for (unsigned i = 0; i < NumBits; ++i) {
- if (LHSBits[i].isZero() && RHSBits[i].isZero()) {
- // If both inputs are known to be zero and one is ConstZero and
- // another is VariableKnownToBeZero, we can select whichever
- // we like. To minimize the number of bit groups, we select
- // VariableKnownToBeZero if this bit is the next bit of the same
- // input variable from the previous bit. Otherwise, we select
- // ConstZero.
- if (LHSBits[i].hasValue() && LHSBits[i].getValue() == LastVal &&
- LHSBits[i].getValueBitIndex() == LastIdx + 1)
- Bits[i] = LHSBits[i];
- else if (RHSBits[i].hasValue() && RHSBits[i].getValue() == LastVal &&
- RHSBits[i].getValueBitIndex() == LastIdx + 1)
- Bits[i] = RHSBits[i];
- else
- Bits[i] = ValueBit(ValueBit::ConstZero);
- }
- else if (LHSBits[i].isZero())
- Bits[i] = RHSBits[i];
- else if (RHSBits[i].isZero())
- Bits[i] = LHSBits[i];
- else {
- AllDisjoint = false;
- break;
- }
- // We remember the value and bit index of this bit.
- if (Bits[i].hasValue()) {
- LastVal = Bits[i].getValue();
- LastIdx = Bits[i].getValueBitIndex();
- }
- else {
- if (LastVal) LastVal = SDValue();
- LastIdx = 0;
- }
- }
- if (!AllDisjoint)
- break;
- return std::make_pair(Interesting = true, &Bits);
- }
- case ISD::ZERO_EXTEND: {
- // We support only the case with zero extension from i32 to i64 so far.
- if (V.getValueType() != MVT::i64 ||
- V.getOperand(0).getValueType() != MVT::i32)
- break;
- const SmallVector<ValueBit, 64> *LHSBits;
- const unsigned NumOperandBits = 32;
- std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
- NumOperandBits);
- for (unsigned i = 0; i < NumOperandBits; ++i)
- Bits[i] = (*LHSBits)[i];
- for (unsigned i = NumOperandBits; i < NumBits; ++i)
- Bits[i] = ValueBit(ValueBit::ConstZero);
- return std::make_pair(Interesting, &Bits);
- }
- case ISD::TRUNCATE: {
- EVT FromType = V.getOperand(0).getValueType();
- EVT ToType = V.getValueType();
- // We support only the case with truncate from i64 to i32.
- if (FromType != MVT::i64 || ToType != MVT::i32)
- break;
- const unsigned NumAllBits = FromType.getSizeInBits();
- SmallVector<ValueBit, 64> *InBits;
- std::tie(Interesting, InBits) = getValueBits(V.getOperand(0),
- NumAllBits);
- const unsigned NumValidBits = ToType.getSizeInBits();
- // A 32-bit instruction cannot touch upper 32-bit part of 64-bit value.
- // So, we cannot include this truncate.
- bool UseUpper32bit = false;
- for (unsigned i = 0; i < NumValidBits; ++i)
- if ((*InBits)[i].hasValue() && (*InBits)[i].getValueBitIndex() >= 32) {
- UseUpper32bit = true;
- break;
- }
- if (UseUpper32bit)
- break;
- for (unsigned i = 0; i < NumValidBits; ++i)
- Bits[i] = (*InBits)[i];
- return std::make_pair(Interesting, &Bits);
- }
- case ISD::AssertZext: {
- // For AssertZext, we look through the operand and
- // mark the bits known to be zero.
- const SmallVector<ValueBit, 64> *LHSBits;
- std::tie(Interesting, LHSBits) = getValueBits(V.getOperand(0),
- NumBits);
- EVT FromType = cast<VTSDNode>(V.getOperand(1))->getVT();
- const unsigned NumValidBits = FromType.getSizeInBits();
- for (unsigned i = 0; i < NumValidBits; ++i)
- Bits[i] = (*LHSBits)[i];
- // These bits are known to be zero but the AssertZext may be from a value
- // that already has some constant zero bits (i.e. from a masking and).
- for (unsigned i = NumValidBits; i < NumBits; ++i)
- Bits[i] = (*LHSBits)[i].hasValue()
- ? ValueBit((*LHSBits)[i].getValue(),
- (*LHSBits)[i].getValueBitIndex(),
- ValueBit::VariableKnownToBeZero)
- : ValueBit(ValueBit::ConstZero);
- return std::make_pair(Interesting, &Bits);
- }
- case ISD::LOAD:
- LoadSDNode *LD = cast<LoadSDNode>(V);
- if (ISD::isZEXTLoad(V.getNode()) && V.getResNo() == 0) {
- EVT VT = LD->getMemoryVT();
- const unsigned NumValidBits = VT.getSizeInBits();
- for (unsigned i = 0; i < NumValidBits; ++i)
- Bits[i] = ValueBit(V, i);
- // These bits are known to be zero.
- for (unsigned i = NumValidBits; i < NumBits; ++i)
- Bits[i] = ValueBit(V, i, ValueBit::VariableKnownToBeZero);
- // Zero-extending load itself cannot be optimized. So, it is not
- // interesting by itself though it gives useful information.
- return std::make_pair(Interesting = false, &Bits);
- }
- break;
- }
- for (unsigned i = 0; i < NumBits; ++i)
- Bits[i] = ValueBit(V, i);
- return std::make_pair(Interesting = false, &Bits);
- }
- // For each value (except the constant ones), compute the left-rotate amount
- // to get it from its original to final position.
- void computeRotationAmounts() {
- NeedMask = false;
- RLAmt.resize(Bits.size());
- for (unsigned i = 0; i < Bits.size(); ++i)
- if (Bits[i].hasValue()) {
- unsigned VBI = Bits[i].getValueBitIndex();
- if (i >= VBI)
- RLAmt[i] = i - VBI;
- else
- RLAmt[i] = Bits.size() - (VBI - i);
- } else if (Bits[i].isZero()) {
- NeedMask = true;
- RLAmt[i] = UINT32_MAX;
- } else {
- llvm_unreachable("Unknown value bit type");
- }
- }
- // Collect groups of consecutive bits with the same underlying value and
- // rotation factor. If we're doing late masking, we ignore zeros, otherwise
- // they break up groups.
- void collectBitGroups(bool LateMask) {
- BitGroups.clear();
- unsigned LastRLAmt = RLAmt[0];
- SDValue LastValue = Bits[0].hasValue() ? Bits[0].getValue() : SDValue();
- unsigned LastGroupStartIdx = 0;
- bool IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
- for (unsigned i = 1; i < Bits.size(); ++i) {
- unsigned ThisRLAmt = RLAmt[i];
- SDValue ThisValue = Bits[i].hasValue() ? Bits[i].getValue() : SDValue();
- if (LateMask && !ThisValue) {
- ThisValue = LastValue;
- ThisRLAmt = LastRLAmt;
- // If we're doing late masking, then the first bit group always starts
- // at zero (even if the first bits were zero).
- if (BitGroups.empty())
- LastGroupStartIdx = 0;
- }
- // If this bit is known to be zero and the current group is a bit group
- // of zeros, we do not need to terminate the current bit group even the
- // Value or RLAmt does not match here. Instead, we terminate this group
- // when the first non-zero bit appears later.
- if (IsGroupOfZeros && Bits[i].isZero())
- continue;
- // If this bit has the same underlying value and the same rotate factor as
- // the last one, then they're part of the same group.
- if (ThisRLAmt == LastRLAmt && ThisValue == LastValue)
- // We cannot continue the current group if this bits is not known to
- // be zero in a bit group of zeros.
- if (!(IsGroupOfZeros && ThisValue && !Bits[i].isZero()))
- continue;
- if (LastValue.getNode())
- BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
- i-1));
- LastRLAmt = ThisRLAmt;
- LastValue = ThisValue;
- LastGroupStartIdx = i;
- IsGroupOfZeros = !Bits[LastGroupStartIdx].hasValue();
- }
- if (LastValue.getNode())
- BitGroups.push_back(BitGroup(LastValue, LastRLAmt, LastGroupStartIdx,
- Bits.size()-1));
- if (BitGroups.empty())
- return;
- // We might be able to combine the first and last groups.
- if (BitGroups.size() > 1) {
- // If the first and last groups are the same, then remove the first group
- // in favor of the last group, making the ending index of the last group
- // equal to the ending index of the to-be-removed first group.
- if (BitGroups[0].StartIdx == 0 &&
- BitGroups[BitGroups.size()-1].EndIdx == Bits.size()-1 &&
- BitGroups[0].V == BitGroups[BitGroups.size()-1].V &&
- BitGroups[0].RLAmt == BitGroups[BitGroups.size()-1].RLAmt) {
- LLVM_DEBUG(dbgs() << "\tcombining final bit group with initial one\n");
- BitGroups[BitGroups.size()-1].EndIdx = BitGroups[0].EndIdx;
- BitGroups.erase(BitGroups.begin());
- }
- }
- }
- // Take all (SDValue, RLAmt) pairs and sort them by the number of groups
- // associated with each. If the number of groups are same, we prefer a group
- // which does not require rotate, i.e. RLAmt is 0, to avoid the first rotate
- // instruction. If there is a degeneracy, pick the one that occurs
- // first (in the final value).
- void collectValueRotInfo() {
- ValueRots.clear();
- for (auto &BG : BitGroups) {
- unsigned RLAmtKey = BG.RLAmt + (BG.Repl32 ? 64 : 0);
- ValueRotInfo &VRI = ValueRots[std::make_pair(BG.V, RLAmtKey)];
- VRI.V = BG.V;
- VRI.RLAmt = BG.RLAmt;
- VRI.Repl32 = BG.Repl32;
- VRI.NumGroups += 1;
- VRI.FirstGroupStartIdx = std::min(VRI.FirstGroupStartIdx, BG.StartIdx);
- }
- // Now that we've collected the various ValueRotInfo instances, we need to
- // sort them.
- ValueRotsVec.clear();
- for (auto &I : ValueRots) {
- ValueRotsVec.push_back(I.second);
- }
- llvm::sort(ValueRotsVec);
- }
- // In 64-bit mode, rlwinm and friends have a rotation operator that
- // replicates the low-order 32 bits into the high-order 32-bits. The mask
- // indices of these instructions can only be in the lower 32 bits, so they
- // can only represent some 64-bit bit groups. However, when they can be used,
- // the 32-bit replication can be used to represent, as a single bit group,
- // otherwise separate bit groups. We'll convert to replicated-32-bit bit
- // groups when possible. Returns true if any of the bit groups were
- // converted.
- void assignRepl32BitGroups() {
- // If we have bits like this:
- //
- // Indices: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
- // V bits: ... 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
- // Groups: | RLAmt = 8 | RLAmt = 40 |
- //
- // But, making use of a 32-bit operation that replicates the low-order 32
- // bits into the high-order 32 bits, this can be one bit group with a RLAmt
- // of 8.
- auto IsAllLow32 = [this](BitGroup & BG) {
- if (BG.StartIdx <= BG.EndIdx) {
- for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i) {
- if (!Bits[i].hasValue())
- continue;
- if (Bits[i].getValueBitIndex() >= 32)
- return false;
- }
- } else {
- for (unsigned i = BG.StartIdx; i < Bits.size(); ++i) {
- if (!Bits[i].hasValue())
- continue;
- if (Bits[i].getValueBitIndex() >= 32)
- return false;
- }
- for (unsigned i = 0; i <= BG.EndIdx; ++i) {
- if (!Bits[i].hasValue())
- continue;
- if (Bits[i].getValueBitIndex() >= 32)
- return false;
- }
- }
- return true;
- };
- for (auto &BG : BitGroups) {
- // If this bit group has RLAmt of 0 and will not be merged with
- // another bit group, we don't benefit from Repl32. We don't mark
- // such group to give more freedom for later instruction selection.
- if (BG.RLAmt == 0) {
- auto PotentiallyMerged = [this](BitGroup & BG) {
- for (auto &BG2 : BitGroups)
- if (&BG != &BG2 && BG.V == BG2.V &&
- (BG2.RLAmt == 0 || BG2.RLAmt == 32))
- return true;
- return false;
- };
- if (!PotentiallyMerged(BG))
- continue;
- }
- if (BG.StartIdx < 32 && BG.EndIdx < 32) {
- if (IsAllLow32(BG)) {
- if (BG.RLAmt >= 32) {
- BG.RLAmt -= 32;
- BG.Repl32CR = true;
- }
- BG.Repl32 = true;
- LLVM_DEBUG(dbgs() << "\t32-bit replicated bit group for "
- << BG.V.getNode() << " RLAmt = " << BG.RLAmt << " ["
- << BG.StartIdx << ", " << BG.EndIdx << "]\n");
- }
- }
- }
- // Now walk through the bit groups, consolidating where possible.
- for (auto I = BitGroups.begin(); I != BitGroups.end();) {
- // We might want to remove this bit group by merging it with the previous
- // group (which might be the ending group).
- auto IP = (I == BitGroups.begin()) ?
- std::prev(BitGroups.end()) : std::prev(I);
- if (I->Repl32 && IP->Repl32 && I->V == IP->V && I->RLAmt == IP->RLAmt &&
- I->StartIdx == (IP->EndIdx + 1) % 64 && I != IP) {
- LLVM_DEBUG(dbgs() << "\tcombining 32-bit replicated bit group for "
- << I->V.getNode() << " RLAmt = " << I->RLAmt << " ["
- << I->StartIdx << ", " << I->EndIdx
- << "] with group with range [" << IP->StartIdx << ", "
- << IP->EndIdx << "]\n");
- IP->EndIdx = I->EndIdx;
- IP->Repl32CR = IP->Repl32CR || I->Repl32CR;
- IP->Repl32Coalesced = true;
- I = BitGroups.erase(I);
- continue;
- } else {
- // There is a special case worth handling: If there is a single group
- // covering the entire upper 32 bits, and it can be merged with both
- // the next and previous groups (which might be the same group), then
- // do so. If it is the same group (so there will be only one group in
- // total), then we need to reverse the order of the range so that it
- // covers the entire 64 bits.
- if (I->StartIdx == 32 && I->EndIdx == 63) {
- assert(std::next(I) == BitGroups.end() &&
- "bit group ends at index 63 but there is another?");
- auto IN = BitGroups.begin();
- if (IP->Repl32 && IN->Repl32 && I->V == IP->V && I->V == IN->V &&
- (I->RLAmt % 32) == IP->RLAmt && (I->RLAmt % 32) == IN->RLAmt &&
- IP->EndIdx == 31 && IN->StartIdx == 0 && I != IP &&
- IsAllLow32(*I)) {
- LLVM_DEBUG(dbgs() << "\tcombining bit group for " << I->V.getNode()
- << " RLAmt = " << I->RLAmt << " [" << I->StartIdx
- << ", " << I->EndIdx
- << "] with 32-bit replicated groups with ranges ["
- << IP->StartIdx << ", " << IP->EndIdx << "] and ["
- << IN->StartIdx << ", " << IN->EndIdx << "]\n");
- if (IP == IN) {
- // There is only one other group; change it to cover the whole
- // range (backward, so that it can still be Repl32 but cover the
- // whole 64-bit range).
- IP->StartIdx = 31;
- IP->EndIdx = 30;
- IP->Repl32CR = IP->Repl32CR || I->RLAmt >= 32;
- IP->Repl32Coalesced = true;
- I = BitGroups.erase(I);
- } else {
- // There are two separate groups, one before this group and one
- // after us (at the beginning). We're going to remove this group,
- // but also the group at the very beginning.
- IP->EndIdx = IN->EndIdx;
- IP->Repl32CR = IP->Repl32CR || IN->Repl32CR || I->RLAmt >= 32;
- IP->Repl32Coalesced = true;
- I = BitGroups.erase(I);
- BitGroups.erase(BitGroups.begin());
- }
- // This must be the last group in the vector (and we might have
- // just invalidated the iterator above), so break here.
- break;
- }
- }
- }
- ++I;
- }
- }
- SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
- return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
- }
- uint64_t getZerosMask() {
- uint64_t Mask = 0;
- for (unsigned i = 0; i < Bits.size(); ++i) {
- if (Bits[i].hasValue())
- continue;
- Mask |= (UINT64_C(1) << i);
- }
- return ~Mask;
- }
- // This method extends an input value to 64 bit if input is 32-bit integer.
- // While selecting instructions in BitPermutationSelector in 64-bit mode,
- // an input value can be a 32-bit integer if a ZERO_EXTEND node is included.
- // In such case, we extend it to 64 bit to be consistent with other values.
- SDValue ExtendToInt64(SDValue V, const SDLoc &dl) {
- if (V.getValueSizeInBits() == 64)
- return V;
- assert(V.getValueSizeInBits() == 32);
- SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
- SDValue ImDef = SDValue(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl,
- MVT::i64), 0);
- SDValue ExtVal = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl,
- MVT::i64, ImDef, V,
- SubRegIdx), 0);
- return ExtVal;
- }
- SDValue TruncateToInt32(SDValue V, const SDLoc &dl) {
- if (V.getValueSizeInBits() == 32)
- return V;
- assert(V.getValueSizeInBits() == 64);
- SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
- SDValue SubVal = SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl,
- MVT::i32, V, SubRegIdx), 0);
- return SubVal;
- }
- // Depending on the number of groups for a particular value, it might be
- // better to rotate, mask explicitly (using andi/andis), and then or the
- // result. Select this part of the result first.
- void SelectAndParts32(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
- if (BPermRewriterNoMasking)
- return;
- for (ValueRotInfo &VRI : ValueRotsVec) {
- unsigned Mask = 0;
- for (unsigned i = 0; i < Bits.size(); ++i) {
- if (!Bits[i].hasValue() || Bits[i].getValue() != VRI.V)
- continue;
- if (RLAmt[i] != VRI.RLAmt)
- continue;
- Mask |= (1u << i);
- }
- // Compute the masks for andi/andis that would be necessary.
- unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
- assert((ANDIMask != 0 || ANDISMask != 0) &&
- "No set bits in mask for value bit groups");
- bool NeedsRotate = VRI.RLAmt != 0;
- // We're trying to minimize the number of instructions. If we have one
- // group, using one of andi/andis can break even. If we have three
- // groups, we can use both andi and andis and break even (to use both
- // andi and andis we also need to or the results together). We need four
- // groups if we also need to rotate. To use andi/andis we need to do more
- // than break even because rotate-and-mask instructions tend to be easier
- // to schedule.
- // FIXME: We've biased here against using andi/andis, which is right for
- // POWER cores, but not optimal everywhere. For example, on the A2,
- // andi/andis have single-cycle latency whereas the rotate-and-mask
- // instructions take two cycles, and it would be better to bias toward
- // andi/andis in break-even cases.
- unsigned NumAndInsts = (unsigned) NeedsRotate +
- (unsigned) (ANDIMask != 0) +
- (unsigned) (ANDISMask != 0) +
- (unsigned) (ANDIMask != 0 && ANDISMask != 0) +
- (unsigned) (bool) Res;
- LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
- << " RL: " << VRI.RLAmt << ":"
- << "\n\t\t\tisel using masking: " << NumAndInsts
- << " using rotates: " << VRI.NumGroups << "\n");
- if (NumAndInsts >= VRI.NumGroups)
- continue;
- LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
- if (InstCnt) *InstCnt += NumAndInsts;
- SDValue VRot;
- if (VRI.RLAmt) {
- SDValue Ops[] =
- { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
- getI32Imm(0, dl), getI32Imm(31, dl) };
- VRot = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
- Ops), 0);
- } else {
- VRot = TruncateToInt32(VRI.V, dl);
- }
- SDValue ANDIVal, ANDISVal;
- if (ANDIMask != 0)
- ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
- VRot, getI32Imm(ANDIMask, dl)),
- 0);
- if (ANDISMask != 0)
- ANDISVal =
- SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, VRot,
- getI32Imm(ANDISMask, dl)),
- 0);
- SDValue TotalVal;
- if (!ANDIVal)
- TotalVal = ANDISVal;
- else if (!ANDISVal)
- TotalVal = ANDIVal;
- else
- TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
- ANDIVal, ANDISVal), 0);
- if (!Res)
- Res = TotalVal;
- else
- Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
- Res, TotalVal), 0);
- // Now, remove all groups with this underlying value and rotation
- // factor.
- eraseMatchingBitGroups([VRI](const BitGroup &BG) {
- return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
- });
- }
- }
- // Instruction selection for the 32-bit case.
- SDNode *Select32(SDNode *N, bool LateMask, unsigned *InstCnt) {
- SDLoc dl(N);
- SDValue Res;
- if (InstCnt) *InstCnt = 0;
- // Take care of cases that should use andi/andis first.
- SelectAndParts32(dl, Res, InstCnt);
- // If we've not yet selected a 'starting' instruction, and we have no zeros
- // to fill in, select the (Value, RLAmt) with the highest priority (largest
- // number of groups), and start with this rotated value.
- if ((!NeedMask || LateMask) && !Res) {
- ValueRotInfo &VRI = ValueRotsVec[0];
- if (VRI.RLAmt) {
- if (InstCnt) *InstCnt += 1;
- SDValue Ops[] =
- { TruncateToInt32(VRI.V, dl), getI32Imm(VRI.RLAmt, dl),
- getI32Imm(0, dl), getI32Imm(31, dl) };
- Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops),
- 0);
- } else {
- Res = TruncateToInt32(VRI.V, dl);
- }
- // Now, remove all groups with this underlying value and rotation factor.
- eraseMatchingBitGroups([VRI](const BitGroup &BG) {
- return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt;
- });
- }
- if (InstCnt) *InstCnt += BitGroups.size();
- // Insert the other groups (one at a time).
- for (auto &BG : BitGroups) {
- if (!Res) {
- SDValue Ops[] =
- { TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
- getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
- getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
- Res = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
- } else {
- SDValue Ops[] =
- { Res, TruncateToInt32(BG.V, dl), getI32Imm(BG.RLAmt, dl),
- getI32Imm(Bits.size() - BG.EndIdx - 1, dl),
- getI32Imm(Bits.size() - BG.StartIdx - 1, dl) };
- Res = SDValue(CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops), 0);
- }
- }
- if (LateMask) {
- unsigned Mask = (unsigned) getZerosMask();
- unsigned ANDIMask = (Mask & UINT16_MAX), ANDISMask = Mask >> 16;
- assert((ANDIMask != 0 || ANDISMask != 0) &&
- "No set bits in zeros mask?");
- if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
- (unsigned) (ANDISMask != 0) +
- (unsigned) (ANDIMask != 0 && ANDISMask != 0);
- SDValue ANDIVal, ANDISVal;
- if (ANDIMask != 0)
- ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI_rec, dl, MVT::i32,
- Res, getI32Imm(ANDIMask, dl)),
- 0);
- if (ANDISMask != 0)
- ANDISVal =
- SDValue(CurDAG->getMachineNode(PPC::ANDIS_rec, dl, MVT::i32, Res,
- getI32Imm(ANDISMask, dl)),
- 0);
- if (!ANDIVal)
- Res = ANDISVal;
- else if (!ANDISVal)
- Res = ANDIVal;
- else
- Res = SDValue(CurDAG->getMachineNode(PPC::OR, dl, MVT::i32,
- ANDIVal, ANDISVal), 0);
- }
- return Res.getNode();
- }
- unsigned SelectRotMask64Count(unsigned RLAmt, bool Repl32,
- unsigned MaskStart, unsigned MaskEnd,
- bool IsIns) {
- // In the notation used by the instructions, 'start' and 'end' are reversed
- // because bits are counted from high to low order.
- unsigned InstMaskStart = 64 - MaskEnd - 1,
- InstMaskEnd = 64 - MaskStart - 1;
- if (Repl32)
- return 1;
- if ((!IsIns && (InstMaskEnd == 63 || InstMaskStart == 0)) ||
- InstMaskEnd == 63 - RLAmt)
- return 1;
- return 2;
- }
- // For 64-bit values, not all combinations of rotates and masks are
- // available. Produce one if it is available.
- SDValue SelectRotMask64(SDValue V, const SDLoc &dl, unsigned RLAmt,
- bool Repl32, unsigned MaskStart, unsigned MaskEnd,
- unsigned *InstCnt = nullptr) {
- // In the notation used by the instructions, 'start' and 'end' are reversed
- // because bits are counted from high to low order.
- unsigned InstMaskStart = 64 - MaskEnd - 1,
- InstMaskEnd = 64 - MaskStart - 1;
- if (InstCnt) *InstCnt += 1;
- if (Repl32) {
- // This rotation amount assumes that the lower 32 bits of the quantity
- // are replicated in the high 32 bits by the rotation operator (which is
- // done by rlwinm and friends).
- assert(InstMaskStart >= 32 && "Mask cannot start out of range");
- assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
- SDValue Ops[] =
- { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLWINM8, dl, MVT::i64,
- Ops), 0);
- }
- if (InstMaskEnd == 63) {
- SDValue Ops[] =
- { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Ops), 0);
- }
- if (InstMaskStart == 0) {
- SDValue Ops[] =
- { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskEnd, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64, Ops), 0);
- }
- if (InstMaskEnd == 63 - RLAmt) {
- SDValue Ops[] =
- { ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLDIC, dl, MVT::i64, Ops), 0);
- }
- // We cannot do this with a single instruction, so we'll use two. The
- // problem is that we're not free to choose both a rotation amount and mask
- // start and end independently. We can choose an arbitrary mask start and
- // end, but then the rotation amount is fixed. Rotation, however, can be
- // inverted, and so by applying an "inverse" rotation first, we can get the
- // desired result.
- if (InstCnt) *InstCnt += 1;
- // The rotation mask for the second instruction must be MaskStart.
- unsigned RLAmt2 = MaskStart;
- // The first instruction must rotate V so that the overall rotation amount
- // is RLAmt.
- unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
- if (RLAmt1)
- V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
- return SelectRotMask64(V, dl, RLAmt2, false, MaskStart, MaskEnd);
- }
- // For 64-bit values, not all combinations of rotates and masks are
- // available. Produce a rotate-mask-and-insert if one is available.
- SDValue SelectRotMaskIns64(SDValue Base, SDValue V, const SDLoc &dl,
- unsigned RLAmt, bool Repl32, unsigned MaskStart,
- unsigned MaskEnd, unsigned *InstCnt = nullptr) {
- // In the notation used by the instructions, 'start' and 'end' are reversed
- // because bits are counted from high to low order.
- unsigned InstMaskStart = 64 - MaskEnd - 1,
- InstMaskEnd = 64 - MaskStart - 1;
- if (InstCnt) *InstCnt += 1;
- if (Repl32) {
- // This rotation amount assumes that the lower 32 bits of the quantity
- // are replicated in the high 32 bits by the rotation operator (which is
- // done by rlwinm and friends).
- assert(InstMaskStart >= 32 && "Mask cannot start out of range");
- assert(InstMaskEnd >= 32 && "Mask cannot end out of range");
- SDValue Ops[] =
- { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart - 32, dl), getI32Imm(InstMaskEnd - 32, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLWIMI8, dl, MVT::i64,
- Ops), 0);
- }
- if (InstMaskEnd == 63 - RLAmt) {
- SDValue Ops[] =
- { ExtendToInt64(Base, dl), ExtendToInt64(V, dl), getI32Imm(RLAmt, dl),
- getI32Imm(InstMaskStart, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLDIMI, dl, MVT::i64, Ops), 0);
- }
- // We cannot do this with a single instruction, so we'll use two. The
- // problem is that we're not free to choose both a rotation amount and mask
- // start and end independently. We can choose an arbitrary mask start and
- // end, but then the rotation amount is fixed. Rotation, however, can be
- // inverted, and so by applying an "inverse" rotation first, we can get the
- // desired result.
- if (InstCnt) *InstCnt += 1;
- // The rotation mask for the second instruction must be MaskStart.
- unsigned RLAmt2 = MaskStart;
- // The first instruction must rotate V so that the overall rotation amount
- // is RLAmt.
- unsigned RLAmt1 = (64 + RLAmt - RLAmt2) % 64;
- if (RLAmt1)
- V = SelectRotMask64(V, dl, RLAmt1, false, 0, 63);
- return SelectRotMaskIns64(Base, V, dl, RLAmt2, false, MaskStart, MaskEnd);
- }
- void SelectAndParts64(const SDLoc &dl, SDValue &Res, unsigned *InstCnt) {
- if (BPermRewriterNoMasking)
- return;
- // The idea here is the same as in the 32-bit version, but with additional
- // complications from the fact that Repl32 might be true. Because we
- // aggressively convert bit groups to Repl32 form (which, for small
- // rotation factors, involves no other change), and then coalesce, it might
- // be the case that a single 64-bit masking operation could handle both
- // some Repl32 groups and some non-Repl32 groups. If converting to Repl32
- // form allowed coalescing, then we must use a 32-bit rotaton in order to
- // completely capture the new combined bit group.
- for (ValueRotInfo &VRI : ValueRotsVec) {
- uint64_t Mask = 0;
- // We need to add to the mask all bits from the associated bit groups.
- // If Repl32 is false, we need to add bits from bit groups that have
- // Repl32 true, but are trivially convertable to Repl32 false. Such a
- // group is trivially convertable if it overlaps only with the lower 32
- // bits, and the group has not been coalesced.
- auto MatchingBG = [VRI](const BitGroup &BG) {
- if (VRI.V != BG.V)
- return false;
- unsigned EffRLAmt = BG.RLAmt;
- if (!VRI.Repl32 && BG.Repl32) {
- if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx <= BG.EndIdx &&
- !BG.Repl32Coalesced) {
- if (BG.Repl32CR)
- EffRLAmt += 32;
- } else {
- return false;
- }
- } else if (VRI.Repl32 != BG.Repl32) {
- return false;
- }
- return VRI.RLAmt == EffRLAmt;
- };
- for (auto &BG : BitGroups) {
- if (!MatchingBG(BG))
- continue;
- if (BG.StartIdx <= BG.EndIdx) {
- for (unsigned i = BG.StartIdx; i <= BG.EndIdx; ++i)
- Mask |= (UINT64_C(1) << i);
- } else {
- for (unsigned i = BG.StartIdx; i < Bits.size(); ++i)
- Mask |= (UINT64_C(1) << i);
- for (unsigned i = 0; i <= BG.EndIdx; ++i)
- Mask |= (UINT64_C(1) << i);
- }
- }
- // We can use the 32-bit andi/andis technique if the mask does not
- // require any higher-order bits. This can save an instruction compared
- // to always using the general 64-bit technique.
- bool Use32BitInsts = isUInt<32>(Mask);
- // Compute the masks for andi/andis that would be necessary.
- unsigned ANDIMask = (Mask & UINT16_MAX),
- ANDISMask = (Mask >> 16) & UINT16_MAX;
- bool NeedsRotate = VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask));
- unsigned NumAndInsts = (unsigned) NeedsRotate +
- (unsigned) (bool) Res;
- unsigned NumOfSelectInsts = 0;
- selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts);
- assert(NumOfSelectInsts > 0 && "Failed to select an i64 constant.");
- if (Use32BitInsts)
- NumAndInsts += (unsigned) (ANDIMask != 0) + (unsigned) (ANDISMask != 0) +
- (unsigned) (ANDIMask != 0 && ANDISMask != 0);
- else
- NumAndInsts += NumOfSelectInsts + /* and */ 1;
- unsigned NumRLInsts = 0;
- bool FirstBG = true;
- bool MoreBG = false;
- for (auto &BG : BitGroups) {
- if (!MatchingBG(BG)) {
- MoreBG = true;
- continue;
- }
- NumRLInsts +=
- SelectRotMask64Count(BG.RLAmt, BG.Repl32, BG.StartIdx, BG.EndIdx,
- !FirstBG);
- FirstBG = false;
- }
- LLVM_DEBUG(dbgs() << "\t\trotation groups for " << VRI.V.getNode()
- << " RL: " << VRI.RLAmt << (VRI.Repl32 ? " (32):" : ":")
- << "\n\t\t\tisel using masking: " << NumAndInsts
- << " using rotates: " << NumRLInsts << "\n");
- // When we'd use andi/andis, we bias toward using the rotates (andi only
- // has a record form, and is cracked on POWER cores). However, when using
- // general 64-bit constant formation, bias toward the constant form,
- // because that exposes more opportunities for CSE.
- if (NumAndInsts > NumRLInsts)
- continue;
- // When merging multiple bit groups, instruction or is used.
- // But when rotate is used, rldimi can inert the rotated value into any
- // register, so instruction or can be avoided.
- if ((Use32BitInsts || MoreBG) && NumAndInsts == NumRLInsts)
- continue;
- LLVM_DEBUG(dbgs() << "\t\t\t\tusing masking\n");
- if (InstCnt) *InstCnt += NumAndInsts;
- SDValue VRot;
- // We actually need to generate a rotation if we have a non-zero rotation
- // factor or, in the Repl32 case, if we care about any of the
- // higher-order replicated bits. In the latter case, we generate a mask
- // backward so that it actually includes the entire 64 bits.
- if (VRI.RLAmt || (VRI.Repl32 && !isUInt<32>(Mask)))
- VRot = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
- VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63);
- else
- VRot = VRI.V;
- SDValue TotalVal;
- if (Use32BitInsts) {
- assert((ANDIMask != 0 || ANDISMask != 0) &&
- "No set bits in mask when using 32-bit ands for 64-bit value");
- SDValue ANDIVal, ANDISVal;
- if (ANDIMask != 0)
- ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
- ExtendToInt64(VRot, dl),
- getI32Imm(ANDIMask, dl)),
- 0);
- if (ANDISMask != 0)
- ANDISVal =
- SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
- ExtendToInt64(VRot, dl),
- getI32Imm(ANDISMask, dl)),
- 0);
- if (!ANDIVal)
- TotalVal = ANDISVal;
- else if (!ANDISVal)
- TotalVal = ANDIVal;
- else
- TotalVal = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
- ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
- } else {
- TotalVal = SDValue(selectI64Imm(CurDAG, dl, Mask), 0);
- TotalVal =
- SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
- ExtendToInt64(VRot, dl), TotalVal),
- 0);
- }
- if (!Res)
- Res = TotalVal;
- else
- Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
- ExtendToInt64(Res, dl), TotalVal),
- 0);
- // Now, remove all groups with this underlying value and rotation
- // factor.
- eraseMatchingBitGroups(MatchingBG);
- }
- }
- // Instruction selection for the 64-bit case.
- SDNode *Select64(SDNode *N, bool LateMask, unsigned *InstCnt) {
- SDLoc dl(N);
- SDValue Res;
- if (InstCnt) *InstCnt = 0;
- // Take care of cases that should use andi/andis first.
- SelectAndParts64(dl, Res, InstCnt);
- // If we've not yet selected a 'starting' instruction, and we have no zeros
- // to fill in, select the (Value, RLAmt) with the highest priority (largest
- // number of groups), and start with this rotated value.
- if ((!NeedMask || LateMask) && !Res) {
- // If we have both Repl32 groups and non-Repl32 groups, the non-Repl32
- // groups will come first, and so the VRI representing the largest number
- // of groups might not be first (it might be the first Repl32 groups).
- unsigned MaxGroupsIdx = 0;
- if (!ValueRotsVec[0].Repl32) {
- for (unsigned i = 0, ie = ValueRotsVec.size(); i < ie; ++i)
- if (ValueRotsVec[i].Repl32) {
- if (ValueRotsVec[i].NumGroups > ValueRotsVec[0].NumGroups)
- MaxGroupsIdx = i;
- break;
- }
- }
- ValueRotInfo &VRI = ValueRotsVec[MaxGroupsIdx];
- bool NeedsRotate = false;
- if (VRI.RLAmt) {
- NeedsRotate = true;
- } else if (VRI.Repl32) {
- for (auto &BG : BitGroups) {
- if (BG.V != VRI.V || BG.RLAmt != VRI.RLAmt ||
- BG.Repl32 != VRI.Repl32)
- continue;
- // We don't need a rotate if the bit group is confined to the lower
- // 32 bits.
- if (BG.StartIdx < 32 && BG.EndIdx < 32 && BG.StartIdx < BG.EndIdx)
- continue;
- NeedsRotate = true;
- break;
- }
- }
- if (NeedsRotate)
- Res = SelectRotMask64(VRI.V, dl, VRI.RLAmt, VRI.Repl32,
- VRI.Repl32 ? 31 : 0, VRI.Repl32 ? 30 : 63,
- InstCnt);
- else
- Res = VRI.V;
- // Now, remove all groups with this underlying value and rotation factor.
- if (Res)
- eraseMatchingBitGroups([VRI](const BitGroup &BG) {
- return BG.V == VRI.V && BG.RLAmt == VRI.RLAmt &&
- BG.Repl32 == VRI.Repl32;
- });
- }
- // Because 64-bit rotates are more flexible than inserts, we might have a
- // preference regarding which one we do first (to save one instruction).
- if (!Res)
- for (auto I = BitGroups.begin(), IE = BitGroups.end(); I != IE; ++I) {
- if (SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
- false) <
- SelectRotMask64Count(I->RLAmt, I->Repl32, I->StartIdx, I->EndIdx,
- true)) {
- if (I != BitGroups.begin()) {
- BitGroup BG = *I;
- BitGroups.erase(I);
- BitGroups.insert(BitGroups.begin(), BG);
- }
- break;
- }
- }
- // Insert the other groups (one at a time).
- for (auto &BG : BitGroups) {
- if (!Res)
- Res = SelectRotMask64(BG.V, dl, BG.RLAmt, BG.Repl32, BG.StartIdx,
- BG.EndIdx, InstCnt);
- else
- Res = SelectRotMaskIns64(Res, BG.V, dl, BG.RLAmt, BG.Repl32,
- BG.StartIdx, BG.EndIdx, InstCnt);
- }
- if (LateMask) {
- uint64_t Mask = getZerosMask();
- // We can use the 32-bit andi/andis technique if the mask does not
- // require any higher-order bits. This can save an instruction compared
- // to always using the general 64-bit technique.
- bool Use32BitInsts = isUInt<32>(Mask);
- // Compute the masks for andi/andis that would be necessary.
- unsigned ANDIMask = (Mask & UINT16_MAX),
- ANDISMask = (Mask >> 16) & UINT16_MAX;
- if (Use32BitInsts) {
- assert((ANDIMask != 0 || ANDISMask != 0) &&
- "No set bits in mask when using 32-bit ands for 64-bit value");
- if (InstCnt) *InstCnt += (unsigned) (ANDIMask != 0) +
- (unsigned) (ANDISMask != 0) +
- (unsigned) (ANDIMask != 0 && ANDISMask != 0);
- SDValue ANDIVal, ANDISVal;
- if (ANDIMask != 0)
- ANDIVal = SDValue(CurDAG->getMachineNode(PPC::ANDI8_rec, dl, MVT::i64,
- ExtendToInt64(Res, dl),
- getI32Imm(ANDIMask, dl)),
- 0);
- if (ANDISMask != 0)
- ANDISVal =
- SDValue(CurDAG->getMachineNode(PPC::ANDIS8_rec, dl, MVT::i64,
- ExtendToInt64(Res, dl),
- getI32Imm(ANDISMask, dl)),
- 0);
- if (!ANDIVal)
- Res = ANDISVal;
- else if (!ANDISVal)
- Res = ANDIVal;
- else
- Res = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
- ExtendToInt64(ANDIVal, dl), ANDISVal), 0);
- } else {
- unsigned NumOfSelectInsts = 0;
- SDValue MaskVal =
- SDValue(selectI64Imm(CurDAG, dl, Mask, &NumOfSelectInsts), 0);
- Res = SDValue(CurDAG->getMachineNode(PPC::AND8, dl, MVT::i64,
- ExtendToInt64(Res, dl), MaskVal),
- 0);
- if (InstCnt)
- *InstCnt += NumOfSelectInsts + /* and */ 1;
- }
- }
- return Res.getNode();
- }
- SDNode *Select(SDNode *N, bool LateMask, unsigned *InstCnt = nullptr) {
- // Fill in BitGroups.
- collectBitGroups(LateMask);
- if (BitGroups.empty())
- return nullptr;
- // For 64-bit values, figure out when we can use 32-bit instructions.
- if (Bits.size() == 64)
- assignRepl32BitGroups();
- // Fill in ValueRotsVec.
- collectValueRotInfo();
- if (Bits.size() == 32) {
- return Select32(N, LateMask, InstCnt);
- } else {
- assert(Bits.size() == 64 && "Not 64 bits here?");
- return Select64(N, LateMask, InstCnt);
- }
- return nullptr;
- }
- void eraseMatchingBitGroups(function_ref<bool(const BitGroup &)> F) {
- erase_if(BitGroups, F);
- }
- SmallVector<ValueBit, 64> Bits;
- bool NeedMask = false;
- SmallVector<unsigned, 64> RLAmt;
- SmallVector<BitGroup, 16> BitGroups;
- DenseMap<std::pair<SDValue, unsigned>, ValueRotInfo> ValueRots;
- SmallVector<ValueRotInfo, 16> ValueRotsVec;
- SelectionDAG *CurDAG = nullptr;
- public:
- BitPermutationSelector(SelectionDAG *DAG)
- : CurDAG(DAG) {}
- // Here we try to match complex bit permutations into a set of
- // rotate-and-shift/shift/and/or instructions, using a set of heuristics
- // known to produce optimal code for common cases (like i32 byte swapping).
- SDNode *Select(SDNode *N) {
- Memoizer.clear();
- auto Result =
- getValueBits(SDValue(N, 0), N->getValueType(0).getSizeInBits());
- if (!Result.first)
- return nullptr;
- Bits = std::move(*Result.second);
- LLVM_DEBUG(dbgs() << "Considering bit-permutation-based instruction"
- " selection for: ");
- LLVM_DEBUG(N->dump(CurDAG));
- // Fill it RLAmt and set NeedMask.
- computeRotationAmounts();
- if (!NeedMask)
- return Select(N, false);
- // We currently have two techniques for handling results with zeros: early
- // masking (the default) and late masking. Late masking is sometimes more
- // efficient, but because the structure of the bit groups is different, it
- // is hard to tell without generating both and comparing the results. With
- // late masking, we ignore zeros in the resulting value when inserting each
- // set of bit groups, and then mask in the zeros at the end. With early
- // masking, we only insert the non-zero parts of the result at every step.
- unsigned InstCnt = 0, InstCntLateMask = 0;
- LLVM_DEBUG(dbgs() << "\tEarly masking:\n");
- SDNode *RN = Select(N, false, &InstCnt);
- LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCnt << " instructions\n");
- LLVM_DEBUG(dbgs() << "\tLate masking:\n");
- SDNode *RNLM = Select(N, true, &InstCntLateMask);
- LLVM_DEBUG(dbgs() << "\t\tisel would use " << InstCntLateMask
- << " instructions\n");
- if (InstCnt <= InstCntLateMask) {
- LLVM_DEBUG(dbgs() << "\tUsing early-masking for isel\n");
- return RN;
- }
- LLVM_DEBUG(dbgs() << "\tUsing late-masking for isel\n");
- return RNLM;
- }
- };
- class IntegerCompareEliminator {
- SelectionDAG *CurDAG;
- PPCDAGToDAGISel *S;
- // Conversion type for interpreting results of a 32-bit instruction as
- // a 64-bit value or vice versa.
- enum ExtOrTruncConversion { Ext, Trunc };
- // Modifiers to guide how an ISD::SETCC node's result is to be computed
- // in a GPR.
- // ZExtOrig - use the original condition code, zero-extend value
- // ZExtInvert - invert the condition code, zero-extend value
- // SExtOrig - use the original condition code, sign-extend value
- // SExtInvert - invert the condition code, sign-extend value
- enum SetccInGPROpts { ZExtOrig, ZExtInvert, SExtOrig, SExtInvert };
- // Comparisons against zero to emit GPR code sequences for. Each of these
- // sequences may need to be emitted for two or more equivalent patterns.
- // For example (a >= 0) == (a > -1). The direction of the comparison (</>)
- // matters as well as the extension type: sext (-1/0), zext (1/0).
- // GEZExt - (zext (LHS >= 0))
- // GESExt - (sext (LHS >= 0))
- // LEZExt - (zext (LHS <= 0))
- // LESExt - (sext (LHS <= 0))
- enum ZeroCompare { GEZExt, GESExt, LEZExt, LESExt };
- SDNode *tryEXTEND(SDNode *N);
- SDNode *tryLogicOpOfCompares(SDNode *N);
- SDValue computeLogicOpInGPR(SDValue LogicOp);
- SDValue signExtendInputIfNeeded(SDValue Input);
- SDValue zeroExtendInputIfNeeded(SDValue Input);
- SDValue addExtOrTrunc(SDValue NatWidthRes, ExtOrTruncConversion Conv);
- SDValue getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
- ZeroCompare CmpTy);
- SDValue get32BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl);
- SDValue get32BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl);
- SDValue get64BitZExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl);
- SDValue get64BitSExtCompare(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl);
- SDValue getSETCCInGPR(SDValue Compare, SetccInGPROpts ConvOpts);
- public:
- IntegerCompareEliminator(SelectionDAG *DAG,
- PPCDAGToDAGISel *Sel) : CurDAG(DAG), S(Sel) {
- assert(CurDAG->getTargetLoweringInfo()
- .getPointerTy(CurDAG->getDataLayout()).getSizeInBits() == 64 &&
- "Only expecting to use this on 64 bit targets.");
- }
- SDNode *Select(SDNode *N) {
- if (CmpInGPR == ICGPR_None)
- return nullptr;
- switch (N->getOpcode()) {
- default: break;
- case ISD::ZERO_EXTEND:
- if (CmpInGPR == ICGPR_Sext || CmpInGPR == ICGPR_SextI32 ||
- CmpInGPR == ICGPR_SextI64)
- return nullptr;
- LLVM_FALLTHROUGH;
- case ISD::SIGN_EXTEND:
- if (CmpInGPR == ICGPR_Zext || CmpInGPR == ICGPR_ZextI32 ||
- CmpInGPR == ICGPR_ZextI64)
- return nullptr;
- return tryEXTEND(N);
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR:
- return tryLogicOpOfCompares(N);
- }
- return nullptr;
- }
- };
- static bool isLogicOp(unsigned Opc) {
- return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR;
- }
- // The obvious case for wanting to keep the value in a GPR. Namely, the
- // result of the comparison is actually needed in a GPR.
- SDNode *IntegerCompareEliminator::tryEXTEND(SDNode *N) {
- assert((N->getOpcode() == ISD::ZERO_EXTEND ||
- N->getOpcode() == ISD::SIGN_EXTEND) &&
- "Expecting a zero/sign extend node!");
- SDValue WideRes;
- // If we are zero-extending the result of a logical operation on i1
- // values, we can keep the values in GPRs.
- if (isLogicOp(N->getOperand(0).getOpcode()) &&
- N->getOperand(0).getValueType() == MVT::i1 &&
- N->getOpcode() == ISD::ZERO_EXTEND)
- WideRes = computeLogicOpInGPR(N->getOperand(0));
- else if (N->getOperand(0).getOpcode() != ISD::SETCC)
- return nullptr;
- else
- WideRes =
- getSETCCInGPR(N->getOperand(0),
- N->getOpcode() == ISD::SIGN_EXTEND ?
- SetccInGPROpts::SExtOrig : SetccInGPROpts::ZExtOrig);
- if (!WideRes)
- return nullptr;
- SDLoc dl(N);
- bool Input32Bit = WideRes.getValueType() == MVT::i32;
- bool Output32Bit = N->getValueType(0) == MVT::i32;
- NumSextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 1 : 0;
- NumZextSetcc += N->getOpcode() == ISD::SIGN_EXTEND ? 0 : 1;
- SDValue ConvOp = WideRes;
- if (Input32Bit != Output32Bit)
- ConvOp = addExtOrTrunc(WideRes, Input32Bit ? ExtOrTruncConversion::Ext :
- ExtOrTruncConversion::Trunc);
- return ConvOp.getNode();
- }
- // Attempt to perform logical operations on the results of comparisons while
- // keeping the values in GPRs. Without doing so, these would end up being
- // lowered to CR-logical operations which suffer from significant latency and
- // low ILP.
- SDNode *IntegerCompareEliminator::tryLogicOpOfCompares(SDNode *N) {
- if (N->getValueType(0) != MVT::i1)
- return nullptr;
- assert(isLogicOp(N->getOpcode()) &&
- "Expected a logic operation on setcc results.");
- SDValue LoweredLogical = computeLogicOpInGPR(SDValue(N, 0));
- if (!LoweredLogical)
- return nullptr;
- SDLoc dl(N);
- bool IsBitwiseNegate = LoweredLogical.getMachineOpcode() == PPC::XORI8;
- unsigned SubRegToExtract = IsBitwiseNegate ? PPC::sub_eq : PPC::sub_gt;
- SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
- SDValue LHS = LoweredLogical.getOperand(0);
- SDValue RHS = LoweredLogical.getOperand(1);
- SDValue WideOp;
- SDValue OpToConvToRecForm;
- // Look through any 32-bit to 64-bit implicit extend nodes to find the
- // opcode that is input to the XORI.
- if (IsBitwiseNegate &&
- LoweredLogical.getOperand(0).getMachineOpcode() == PPC::INSERT_SUBREG)
- OpToConvToRecForm = LoweredLogical.getOperand(0).getOperand(1);
- else if (IsBitwiseNegate)
- // If the input to the XORI isn't an extension, that's what we're after.
- OpToConvToRecForm = LoweredLogical.getOperand(0);
- else
- // If this is not an XORI, it is a reg-reg logical op and we can convert
- // it to record-form.
- OpToConvToRecForm = LoweredLogical;
- // Get the record-form version of the node we're looking to use to get the
- // CR result from.
- uint16_t NonRecOpc = OpToConvToRecForm.getMachineOpcode();
- int NewOpc = PPCInstrInfo::getRecordFormOpcode(NonRecOpc);
- // Convert the right node to record-form. This is either the logical we're
- // looking at or it is the input node to the negation (if we're looking at
- // a bitwise negation).
- if (NewOpc != -1 && IsBitwiseNegate) {
- // The input to the XORI has a record-form. Use it.
- assert(LoweredLogical.getConstantOperandVal(1) == 1 &&
- "Expected a PPC::XORI8 only for bitwise negation.");
- // Emit the record-form instruction.
- std::vector<SDValue> Ops;
- for (int i = 0, e = OpToConvToRecForm.getNumOperands(); i < e; i++)
- Ops.push_back(OpToConvToRecForm.getOperand(i));
- WideOp =
- SDValue(CurDAG->getMachineNode(NewOpc, dl,
- OpToConvToRecForm.getValueType(),
- MVT::Glue, Ops), 0);
- } else {
- assert((NewOpc != -1 || !IsBitwiseNegate) &&
- "No record form available for AND8/OR8/XOR8?");
- WideOp =
- SDValue(CurDAG->getMachineNode(NewOpc == -1 ? PPC::ANDI8_rec : NewOpc,
- dl, MVT::i64, MVT::Glue, LHS, RHS),
- 0);
- }
- // Select this node to a single bit from CR0 set by the record-form node
- // just created. For bitwise negation, use the EQ bit which is the equivalent
- // of negating the result (i.e. it is a bit set when the result of the
- // operation is zero).
- SDValue SRIdxVal =
- CurDAG->getTargetConstant(SubRegToExtract, dl, MVT::i32);
- SDValue CRBit =
- SDValue(CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
- MVT::i1, CR0Reg, SRIdxVal,
- WideOp.getValue(1)), 0);
- return CRBit.getNode();
- }
- // Lower a logical operation on i1 values into a GPR sequence if possible.
- // The result can be kept in a GPR if requested.
- // Three types of inputs can be handled:
- // - SETCC
- // - TRUNCATE
- // - Logical operation (AND/OR/XOR)
- // There is also a special case that is handled (namely a complement operation
- // achieved with xor %a, -1).
- SDValue IntegerCompareEliminator::computeLogicOpInGPR(SDValue LogicOp) {
- assert(isLogicOp(LogicOp.getOpcode()) &&
- "Can only handle logic operations here.");
- assert(LogicOp.getValueType() == MVT::i1 &&
- "Can only handle logic operations on i1 values here.");
- SDLoc dl(LogicOp);
- SDValue LHS, RHS;
- // Special case: xor %a, -1
- bool IsBitwiseNegation = isBitwiseNot(LogicOp);
- // Produces a GPR sequence for each operand of the binary logic operation.
- // For SETCC, it produces the respective comparison, for TRUNCATE it truncates
- // the value in a GPR and for logic operations, it will recursively produce
- // a GPR sequence for the operation.
- auto getLogicOperand = [&] (SDValue Operand) -> SDValue {
- unsigned OperandOpcode = Operand.getOpcode();
- if (OperandOpcode == ISD::SETCC)
- return getSETCCInGPR(Operand, SetccInGPROpts::ZExtOrig);
- else if (OperandOpcode == ISD::TRUNCATE) {
- SDValue InputOp = Operand.getOperand(0);
- EVT InVT = InputOp.getValueType();
- return SDValue(CurDAG->getMachineNode(InVT == MVT::i32 ? PPC::RLDICL_32 :
- PPC::RLDICL, dl, InVT, InputOp,
- S->getI64Imm(0, dl),
- S->getI64Imm(63, dl)), 0);
- } else if (isLogicOp(OperandOpcode))
- return computeLogicOpInGPR(Operand);
- return SDValue();
- };
- LHS = getLogicOperand(LogicOp.getOperand(0));
- RHS = getLogicOperand(LogicOp.getOperand(1));
- // If a GPR sequence can't be produced for the LHS we can't proceed.
- // Not producing a GPR sequence for the RHS is only a problem if this isn't
- // a bitwise negation operation.
- if (!LHS || (!RHS && !IsBitwiseNegation))
- return SDValue();
- NumLogicOpsOnComparison++;
- // We will use the inputs as 64-bit values.
- if (LHS.getValueType() == MVT::i32)
- LHS = addExtOrTrunc(LHS, ExtOrTruncConversion::Ext);
- if (!IsBitwiseNegation && RHS.getValueType() == MVT::i32)
- RHS = addExtOrTrunc(RHS, ExtOrTruncConversion::Ext);
- unsigned NewOpc;
- switch (LogicOp.getOpcode()) {
- default: llvm_unreachable("Unknown logic operation.");
- case ISD::AND: NewOpc = PPC::AND8; break;
- case ISD::OR: NewOpc = PPC::OR8; break;
- case ISD::XOR: NewOpc = PPC::XOR8; break;
- }
- if (IsBitwiseNegation) {
- RHS = S->getI64Imm(1, dl);
- NewOpc = PPC::XORI8;
- }
- return SDValue(CurDAG->getMachineNode(NewOpc, dl, MVT::i64, LHS, RHS), 0);
- }
- /// If the value isn't guaranteed to be sign-extended to 64-bits, extend it.
- /// Otherwise just reinterpret it as a 64-bit value.
- /// Useful when emitting comparison code for 32-bit values without using
- /// the compare instruction (which only considers the lower 32-bits).
- SDValue IntegerCompareEliminator::signExtendInputIfNeeded(SDValue Input) {
- assert(Input.getValueType() == MVT::i32 &&
- "Can only sign-extend 32-bit values here.");
- unsigned Opc = Input.getOpcode();
- // The value was sign extended and then truncated to 32-bits. No need to
- // sign extend it again.
- if (Opc == ISD::TRUNCATE &&
- (Input.getOperand(0).getOpcode() == ISD::AssertSext ||
- Input.getOperand(0).getOpcode() == ISD::SIGN_EXTEND))
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
- LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
- // The input is a sign-extending load. All ppc sign-extending loads
- // sign-extend to the full 64-bits.
- if (InputLoad && InputLoad->getExtensionType() == ISD::SEXTLOAD)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
- ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
- // We don't sign-extend constants.
- if (InputConst)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
- SDLoc dl(Input);
- SignExtensionsAdded++;
- return SDValue(CurDAG->getMachineNode(PPC::EXTSW_32_64, dl,
- MVT::i64, Input), 0);
- }
- /// If the value isn't guaranteed to be zero-extended to 64-bits, extend it.
- /// Otherwise just reinterpret it as a 64-bit value.
- /// Useful when emitting comparison code for 32-bit values without using
- /// the compare instruction (which only considers the lower 32-bits).
- SDValue IntegerCompareEliminator::zeroExtendInputIfNeeded(SDValue Input) {
- assert(Input.getValueType() == MVT::i32 &&
- "Can only zero-extend 32-bit values here.");
- unsigned Opc = Input.getOpcode();
- // The only condition under which we can omit the actual extend instruction:
- // - The value is a positive constant
- // - The value comes from a load that isn't a sign-extending load
- // An ISD::TRUNCATE needs to be zero-extended unless it is fed by a zext.
- bool IsTruncateOfZExt = Opc == ISD::TRUNCATE &&
- (Input.getOperand(0).getOpcode() == ISD::AssertZext ||
- Input.getOperand(0).getOpcode() == ISD::ZERO_EXTEND);
- if (IsTruncateOfZExt)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
- ConstantSDNode *InputConst = dyn_cast<ConstantSDNode>(Input);
- if (InputConst && InputConst->getSExtValue() >= 0)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
- LoadSDNode *InputLoad = dyn_cast<LoadSDNode>(Input);
- // The input is a load that doesn't sign-extend (it will be zero-extended).
- if (InputLoad && InputLoad->getExtensionType() != ISD::SEXTLOAD)
- return addExtOrTrunc(Input, ExtOrTruncConversion::Ext);
- // None of the above, need to zero-extend.
- SDLoc dl(Input);
- ZeroExtensionsAdded++;
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL_32_64, dl, MVT::i64, Input,
- S->getI64Imm(0, dl),
- S->getI64Imm(32, dl)), 0);
- }
- // Handle a 32-bit value in a 64-bit register and vice-versa. These are of
- // course not actual zero/sign extensions that will generate machine code,
- // they're just a way to reinterpret a 32 bit value in a register as a
- // 64 bit value and vice-versa.
- SDValue IntegerCompareEliminator::addExtOrTrunc(SDValue NatWidthRes,
- ExtOrTruncConversion Conv) {
- SDLoc dl(NatWidthRes);
- // For reinterpreting 32-bit values as 64 bit values, we generate
- // INSERT_SUBREG IMPLICIT_DEF:i64, <input>, TargetConstant:i32<1>
- if (Conv == ExtOrTruncConversion::Ext) {
- SDValue ImDef(CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, MVT::i64), 0);
- SDValue SubRegIdx =
- CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
- return SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, MVT::i64,
- ImDef, NatWidthRes, SubRegIdx), 0);
- }
- assert(Conv == ExtOrTruncConversion::Trunc &&
- "Unknown convertion between 32 and 64 bit values.");
- // For reinterpreting 64-bit values as 32-bit values, we just need to
- // EXTRACT_SUBREG (i.e. extract the low word).
- SDValue SubRegIdx =
- CurDAG->getTargetConstant(PPC::sub_32, dl, MVT::i32);
- return SDValue(CurDAG->getMachineNode(PPC::EXTRACT_SUBREG, dl, MVT::i32,
- NatWidthRes, SubRegIdx), 0);
- }
- // Produce a GPR sequence for compound comparisons (<=, >=) against zero.
- // Handle both zero-extensions and sign-extensions.
- SDValue
- IntegerCompareEliminator::getCompoundZeroComparisonInGPR(SDValue LHS, SDLoc dl,
- ZeroCompare CmpTy) {
- EVT InVT = LHS.getValueType();
- bool Is32Bit = InVT == MVT::i32;
- SDValue ToExtend;
- // Produce the value that needs to be either zero or sign extended.
- switch (CmpTy) {
- case ZeroCompare::GEZExt:
- case ZeroCompare::GESExt:
- ToExtend = SDValue(CurDAG->getMachineNode(Is32Bit ? PPC::NOR : PPC::NOR8,
- dl, InVT, LHS, LHS), 0);
- break;
- case ZeroCompare::LEZExt:
- case ZeroCompare::LESExt: {
- if (Is32Bit) {
- // Upper 32 bits cannot be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- SDValue Neg =
- SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
- ToExtend =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- Neg, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- } else {
- SDValue Addi =
- SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
- S->getI64Imm(~0ULL, dl)), 0);
- ToExtend = SDValue(CurDAG->getMachineNode(PPC::OR8, dl, MVT::i64,
- Addi, LHS), 0);
- }
- break;
- }
- }
- // For 64-bit sequences, the extensions are the same for the GE/LE cases.
- if (!Is32Bit &&
- (CmpTy == ZeroCompare::GEZExt || CmpTy == ZeroCompare::LEZExt))
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- ToExtend, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- if (!Is32Bit &&
- (CmpTy == ZeroCompare::GESExt || CmpTy == ZeroCompare::LESExt))
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, ToExtend,
- S->getI64Imm(63, dl)), 0);
- assert(Is32Bit && "Should have handled the 32-bit sequences above.");
- // For 32-bit sequences, the extensions differ between GE/LE cases.
- switch (CmpTy) {
- case ZeroCompare::GEZExt: {
- SDValue ShiftOps[] = { ToExtend, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
- S->getI32Imm(31, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
- ShiftOps), 0);
- }
- case ZeroCompare::GESExt:
- return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, ToExtend,
- S->getI32Imm(31, dl)), 0);
- case ZeroCompare::LEZExt:
- return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, ToExtend,
- S->getI32Imm(1, dl)), 0);
- case ZeroCompare::LESExt:
- return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, ToExtend,
- S->getI32Imm(-1, dl)), 0);
- }
- // The above case covers all the enumerators so it can't have a default clause
- // to avoid compiler warnings.
- llvm_unreachable("Unknown zero-comparison type.");
- }
- /// Produces a zero-extended result of comparing two 32-bit values according to
- /// the passed condition code.
- SDValue
- IntegerCompareEliminator::get32BitZExtCompare(SDValue LHS, SDValue RHS,
- ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl) {
- if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
- CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Sext)
- return SDValue();
- bool IsRHSZero = RHSValue == 0;
- bool IsRHSOne = RHSValue == 1;
- bool IsRHSNegOne = RHSValue == -1LL;
- switch (CC) {
- default: return SDValue();
- case ISD::SETEQ: {
- // (zext (setcc %a, %b, seteq)) -> (lshr (cntlzw (xor %a, %b)), 5)
- // (zext (setcc %a, 0, seteq)) -> (lshr (cntlzw %a), 5)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
- SDValue Clz =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
- SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
- S->getI32Imm(31, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
- ShiftOps), 0);
- }
- case ISD::SETNE: {
- // (zext (setcc %a, %b, setne)) -> (xor (lshr (cntlzw (xor %a, %b)), 5), 1)
- // (zext (setcc %a, 0, setne)) -> (xor (lshr (cntlzw %a), 5), 1)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
- SDValue Clz =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
- SDValue ShiftOps[] = { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl),
- S->getI32Imm(31, dl) };
- SDValue Shift =
- SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
- return SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
- S->getI32Imm(1, dl)), 0);
- }
- case ISD::SETGE: {
- // (zext (setcc %a, %b, setge)) -> (xor (lshr (sub %a, %b), 63), 1)
- // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 31)
- if(IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
- // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
- // by swapping inputs and falling through.
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isZero();
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLE: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // (zext (setcc %a, %b, setle)) -> (xor (lshr (sub %b, %a), 63), 1)
- // (zext (setcc %a, 0, setle)) -> (xor (lshr (- %a), 63), 1)
- if(IsRHSZero) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
- }
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue Sub =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
- SDValue Shift =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Sub,
- S->getI64Imm(1, dl), S->getI64Imm(63, dl)),
- 0);
- return
- SDValue(CurDAG->getMachineNode(PPC::XORI8, dl,
- MVT::i64, Shift, S->getI32Imm(1, dl)), 0);
- }
- case ISD::SETGT: {
- // (zext (setcc %a, %b, setgt)) -> (lshr (sub %b, %a), 63)
- // (zext (setcc %a, -1, setgt)) -> (lshr (~ %a), 31)
- // (zext (setcc %a, 0, setgt)) -> (lshr (- %a), 63)
- // Handle SETLT -1 (which is equivalent to SETGE 0).
- if (IsRHSNegOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
- if (IsRHSZero) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue Neg =
- SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- Neg, S->getI32Imm(1, dl), S->getI32Imm(63, dl)), 0);
- }
- // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
- // (%b < %a) by swapping inputs and falling through.
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isZero();
- IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLT: {
- // (zext (setcc %a, %b, setlt)) -> (lshr (sub %a, %b), 63)
- // (zext (setcc %a, 1, setlt)) -> (xor (lshr (- %a), 63), 1)
- // (zext (setcc %a, 0, setlt)) -> (lshr %a, 31)
- // Handle SETLT 1 (which is equivalent to SETLE 0).
- if (IsRHSOne) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
- }
- if (IsRHSZero) {
- SDValue ShiftOps[] = { LHS, S->getI32Imm(1, dl), S->getI32Imm(31, dl),
- S->getI32Imm(31, dl) };
- return SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32,
- ShiftOps), 0);
- }
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue SUBFNode =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- SUBFNode, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- }
- case ISD::SETUGE:
- // (zext (setcc %a, %b, setuge)) -> (xor (lshr (sub %b, %a), 63), 1)
- // (zext (setcc %a, %b, setule)) -> (xor (lshr (sub %a, %b), 63), 1)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULE: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = zeroExtendInputIfNeeded(LHS);
- RHS = zeroExtendInputIfNeeded(RHS);
- SDValue Subtract =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
- SDValue SrdiNode =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- Subtract, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64, SrdiNode,
- S->getI32Imm(1, dl)), 0);
- }
- case ISD::SETUGT:
- // (zext (setcc %a, %b, setugt)) -> (lshr (sub %b, %a), 63)
- // (zext (setcc %a, %b, setult)) -> (lshr (sub %a, %b), 63)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULT: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = zeroExtendInputIfNeeded(LHS);
- RHS = zeroExtendInputIfNeeded(RHS);
- SDValue Subtract =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- Subtract, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- }
- }
- }
- /// Produces a sign-extended result of comparing two 32-bit values according to
- /// the passed condition code.
- SDValue
- IntegerCompareEliminator::get32BitSExtCompare(SDValue LHS, SDValue RHS,
- ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl) {
- if (CmpInGPR == ICGPR_I64 || CmpInGPR == ICGPR_SextI64 ||
- CmpInGPR == ICGPR_ZextI64 || CmpInGPR == ICGPR_Zext)
- return SDValue();
- bool IsRHSZero = RHSValue == 0;
- bool IsRHSOne = RHSValue == 1;
- bool IsRHSNegOne = RHSValue == -1LL;
- switch (CC) {
- default: return SDValue();
- case ISD::SETEQ: {
- // (sext (setcc %a, %b, seteq)) ->
- // (ashr (shl (ctlz (xor %a, %b)), 58), 63)
- // (sext (setcc %a, 0, seteq)) ->
- // (ashr (shl (ctlz %a), 58), 63)
- SDValue CountInput = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
- SDValue Cntlzw =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, CountInput), 0);
- SDValue SHLOps[] = { Cntlzw, S->getI32Imm(27, dl),
- S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
- SDValue Slwi =
- SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, SHLOps), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Slwi), 0);
- }
- case ISD::SETNE: {
- // Bitwise xor the operands, count leading zeros, shift right by 5 bits and
- // flip the bit, finally take 2's complement.
- // (sext (setcc %a, %b, setne)) ->
- // (neg (xor (lshr (ctlz (xor %a, %b)), 5), 1))
- // Same as above, but the first xor is not needed.
- // (sext (setcc %a, 0, setne)) ->
- // (neg (xor (lshr (ctlz %a), 5), 1))
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR, dl, MVT::i32, LHS, RHS), 0);
- SDValue Clz =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Xor), 0);
- SDValue ShiftOps[] =
- { Clz, S->getI32Imm(27, dl), S->getI32Imm(5, dl), S->getI32Imm(31, dl) };
- SDValue Shift =
- SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, ShiftOps), 0);
- SDValue Xori =
- SDValue(CurDAG->getMachineNode(PPC::XORI, dl, MVT::i32, Shift,
- S->getI32Imm(1, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Xori), 0);
- }
- case ISD::SETGE: {
- // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %a, %b), 63), -1)
- // (sext (setcc %a, 0, setge)) -> (ashr (~ %a), 31)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
- // Not a special case (i.e. RHS == 0). Handle (%a >= %b) as (%b <= %a)
- // by swapping inputs and falling through.
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isZero();
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLE: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // (sext (setcc %a, %b, setge)) -> (add (lshr (sub %b, %a), 63), -1)
- // (sext (setcc %a, 0, setle)) -> (add (lshr (- %a), 63), -1)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue SUBFNode =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 0);
- SDValue Srdi =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- SUBFNode, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Srdi,
- S->getI32Imm(-1, dl)), 0);
- }
- case ISD::SETGT: {
- // (sext (setcc %a, %b, setgt)) -> (ashr (sub %b, %a), 63)
- // (sext (setcc %a, -1, setgt)) -> (ashr (~ %a), 31)
- // (sext (setcc %a, 0, setgt)) -> (ashr (- %a), 63)
- if (IsRHSNegOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
- if (IsRHSZero) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue Neg =
- SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Neg,
- S->getI64Imm(63, dl)), 0);
- }
- // Not a special case (i.e. RHS == 0 or RHS == -1). Handle (%a > %b) as
- // (%b < %a) by swapping inputs and falling through.
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isZero();
- IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLT: {
- // (sext (setcc %a, %b, setgt)) -> (ashr (sub %a, %b), 63)
- // (sext (setcc %a, 1, setgt)) -> (add (lshr (- %a), 63), -1)
- // (sext (setcc %a, 0, setgt)) -> (ashr %a, 31)
- if (IsRHSOne) {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
- }
- if (IsRHSZero)
- return SDValue(CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, LHS,
- S->getI32Imm(31, dl)), 0);
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = signExtendInputIfNeeded(LHS);
- RHS = signExtendInputIfNeeded(RHS);
- SDValue SUBFNode =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
- SUBFNode, S->getI64Imm(63, dl)), 0);
- }
- case ISD::SETUGE:
- // (sext (setcc %a, %b, setuge)) -> (add (lshr (sub %a, %b), 63), -1)
- // (sext (setcc %a, %b, setule)) -> (add (lshr (sub %b, %a), 63), -1)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULE: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = zeroExtendInputIfNeeded(LHS);
- RHS = zeroExtendInputIfNeeded(RHS);
- SDValue Subtract =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, LHS, RHS), 0);
- SDValue Shift =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Subtract,
- S->getI32Imm(1, dl), S->getI32Imm(63,dl)),
- 0);
- return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, Shift,
- S->getI32Imm(-1, dl)), 0);
- }
- case ISD::SETUGT:
- // (sext (setcc %a, %b, setugt)) -> (ashr (sub %b, %a), 63)
- // (sext (setcc %a, %b, setugt)) -> (ashr (sub %a, %b), 63)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULT: {
- if (CmpInGPR == ICGPR_NonExtIn)
- return SDValue();
- // The upper 32-bits of the register can't be undefined for this sequence.
- LHS = zeroExtendInputIfNeeded(LHS);
- RHS = zeroExtendInputIfNeeded(RHS);
- SDValue Subtract =
- SDValue(CurDAG->getMachineNode(PPC::SUBF8, dl, MVT::i64, RHS, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
- Subtract, S->getI64Imm(63, dl)), 0);
- }
- }
- }
- /// Produces a zero-extended result of comparing two 64-bit values according to
- /// the passed condition code.
- SDValue
- IntegerCompareEliminator::get64BitZExtCompare(SDValue LHS, SDValue RHS,
- ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl) {
- if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
- CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Sext)
- return SDValue();
- bool IsRHSZero = RHSValue == 0;
- bool IsRHSOne = RHSValue == 1;
- bool IsRHSNegOne = RHSValue == -1LL;
- switch (CC) {
- default: return SDValue();
- case ISD::SETEQ: {
- // (zext (setcc %a, %b, seteq)) -> (lshr (ctlz (xor %a, %b)), 6)
- // (zext (setcc %a, 0, seteq)) -> (lshr (ctlz %a), 6)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
- SDValue Clz =
- SDValue(CurDAG->getMachineNode(PPC::CNTLZD, dl, MVT::i64, Xor), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Clz,
- S->getI64Imm(58, dl),
- S->getI64Imm(63, dl)), 0);
- }
- case ISD::SETNE: {
- // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
- // (zext (setcc %a, %b, setne)) -> (sube addc.reg, addc.reg, addc.CA)
- // {addcz.reg, addcz.CA} = (addcarry %a, -1)
- // (zext (setcc %a, 0, setne)) -> (sube addcz.reg, addcz.reg, addcz.CA)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
- SDValue AC =
- SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
- Xor, S->getI32Imm(~0U, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, AC,
- Xor, AC.getValue(1)), 0);
- }
- case ISD::SETGE: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setge)) ->
- // (adde (lshr %b, 63), (ashr %a, 63), subc.CA)
- // (zext (setcc %a, 0, setge)) -> (lshr (~ %a), 63)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isZero();
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLE: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setge)) ->
- // (adde (lshr %a, 63), (ashr %b, 63), subc.CA)
- // (zext (setcc %a, 0, setge)) -> (lshr (or %a, (add %a, -1)), 63)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
- SDValue ShiftL =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
- S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue ShiftR =
- SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
- S->getI64Imm(63, dl)), 0);
- SDValue SubtractCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 1);
- return SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
- ShiftR, ShiftL, SubtractCarry), 0);
- }
- case ISD::SETGT: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setgt)) ->
- // (xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
- // (zext (setcc %a, 0, setgt)) -> (lshr (nor (add %a, -1), %a), 63)
- if (IsRHSNegOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GEZExt);
- if (IsRHSZero) {
- SDValue Addi =
- SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
- S->getI64Imm(~0ULL, dl)), 0);
- SDValue Nor =
- SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Addi, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, Nor,
- S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- }
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isZero();
- IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLT: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setlt)) ->
- // (xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
- // (zext (setcc %a, 0, setlt)) -> (lshr %a, 63)
- if (IsRHSOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LEZExt);
- if (IsRHSZero)
- return SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
- S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue SRADINode =
- SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
- LHS, S->getI64Imm(63, dl)), 0);
- SDValue SRDINode =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- RHS, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue SUBFC8Carry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- RHS, LHS), 1);
- SDValue ADDE8Node =
- SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
- SRDINode, SRADINode, SUBFC8Carry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
- ADDE8Node, S->getI64Imm(1, dl)), 0);
- }
- case ISD::SETUGE:
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setuge)) -> (add (sube %b, %b, subc.CA), 1)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULE: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setule)) -> (add (sube %a, %a, subc.CA), 1)
- SDValue SUBFC8Carry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 1);
- SDValue SUBFE8Node =
- SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue,
- LHS, LHS, SUBFC8Carry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64,
- SUBFE8Node, S->getI64Imm(1, dl)), 0);
- }
- case ISD::SETUGT:
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setugt)) -> -(sube %b, %b, subc.CA)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULT: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setult)) -> -(sube %a, %a, subc.CA)
- SDValue SubtractCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- RHS, LHS), 1);
- SDValue ExtSub =
- SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
- LHS, LHS, SubtractCarry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
- ExtSub), 0);
- }
- }
- }
- /// Produces a sign-extended result of comparing two 64-bit values according to
- /// the passed condition code.
- SDValue
- IntegerCompareEliminator::get64BitSExtCompare(SDValue LHS, SDValue RHS,
- ISD::CondCode CC,
- int64_t RHSValue, SDLoc dl) {
- if (CmpInGPR == ICGPR_I32 || CmpInGPR == ICGPR_SextI32 ||
- CmpInGPR == ICGPR_ZextI32 || CmpInGPR == ICGPR_Zext)
- return SDValue();
- bool IsRHSZero = RHSValue == 0;
- bool IsRHSOne = RHSValue == 1;
- bool IsRHSNegOne = RHSValue == -1LL;
- switch (CC) {
- default: return SDValue();
- case ISD::SETEQ: {
- // {addc.reg, addc.CA} = (addcarry (xor %a, %b), -1)
- // (sext (setcc %a, %b, seteq)) -> (sube addc.reg, addc.reg, addc.CA)
- // {addcz.reg, addcz.CA} = (addcarry %a, -1)
- // (sext (setcc %a, 0, seteq)) -> (sube addcz.reg, addcz.reg, addcz.CA)
- SDValue AddInput = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
- SDValue Addic =
- SDValue(CurDAG->getMachineNode(PPC::ADDIC8, dl, MVT::i64, MVT::Glue,
- AddInput, S->getI32Imm(~0U, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, Addic,
- Addic, Addic.getValue(1)), 0);
- }
- case ISD::SETNE: {
- // {subfc.reg, subfc.CA} = (subcarry 0, (xor %a, %b))
- // (sext (setcc %a, %b, setne)) -> (sube subfc.reg, subfc.reg, subfc.CA)
- // {subfcz.reg, subfcz.CA} = (subcarry 0, %a)
- // (sext (setcc %a, 0, setne)) -> (sube subfcz.reg, subfcz.reg, subfcz.CA)
- SDValue Xor = IsRHSZero ? LHS :
- SDValue(CurDAG->getMachineNode(PPC::XOR8, dl, MVT::i64, LHS, RHS), 0);
- SDValue SC =
- SDValue(CurDAG->getMachineNode(PPC::SUBFIC8, dl, MVT::i64, MVT::Glue,
- Xor, S->getI32Imm(0, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, SC,
- SC, SC.getValue(1)), 0);
- }
- case ISD::SETGE: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setge)) ->
- // (- (adde (lshr %b, 63), (ashr %a, 63), subc.CA))
- // (zext (setcc %a, 0, setge)) -> (~ (ashr %a, 63))
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isZero();
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLE: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setge)) ->
- // (- (adde (lshr %a, 63), (ashr %b, 63), subc.CA))
- // (zext (setcc %a, 0, setge)) -> (ashr (or %a, (add %a, -1)), 63)
- if (IsRHSZero)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
- SDValue ShiftR =
- SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, RHS,
- S->getI64Imm(63, dl)), 0);
- SDValue ShiftL =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64, LHS,
- S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue SubtractCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 1);
- SDValue Adde =
- SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64, MVT::Glue,
- ShiftR, ShiftL, SubtractCarry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64, Adde), 0);
- }
- case ISD::SETGT: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (zext (setcc %a, %b, setgt)) ->
- // -(xor (adde (lshr %a, 63), (ashr %b, 63), subc.CA), 1)
- // (zext (setcc %a, 0, setgt)) -> (ashr (nor (add %a, -1), %a), 63)
- if (IsRHSNegOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::GESExt);
- if (IsRHSZero) {
- SDValue Add =
- SDValue(CurDAG->getMachineNode(PPC::ADDI8, dl, MVT::i64, LHS,
- S->getI64Imm(-1, dl)), 0);
- SDValue Nor =
- SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64, Add, LHS), 0);
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, Nor,
- S->getI64Imm(63, dl)), 0);
- }
- std::swap(LHS, RHS);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- IsRHSZero = RHSConst && RHSConst->isZero();
- IsRHSOne = RHSConst && RHSConst->getSExtValue() == 1;
- LLVM_FALLTHROUGH;
- }
- case ISD::SETLT: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (zext (setcc %a, %b, setlt)) ->
- // -(xor (adde (lshr %b, 63), (ashr %a, 63), subc.CA), 1)
- // (zext (setcc %a, 0, setlt)) -> (ashr %a, 63)
- if (IsRHSOne)
- return getCompoundZeroComparisonInGPR(LHS, dl, ZeroCompare::LESExt);
- if (IsRHSZero) {
- return SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, LHS,
- S->getI64Imm(63, dl)), 0);
- }
- SDValue SRADINode =
- SDValue(CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64,
- LHS, S->getI64Imm(63, dl)), 0);
- SDValue SRDINode =
- SDValue(CurDAG->getMachineNode(PPC::RLDICL, dl, MVT::i64,
- RHS, S->getI64Imm(1, dl),
- S->getI64Imm(63, dl)), 0);
- SDValue SUBFC8Carry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- RHS, LHS), 1);
- SDValue ADDE8Node =
- SDValue(CurDAG->getMachineNode(PPC::ADDE8, dl, MVT::i64,
- SRDINode, SRADINode, SUBFC8Carry), 0);
- SDValue XORI8Node =
- SDValue(CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
- ADDE8Node, S->getI64Imm(1, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NEG8, dl, MVT::i64,
- XORI8Node), 0);
- }
- case ISD::SETUGE:
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (sext (setcc %a, %b, setuge)) -> ~(sube %b, %b, subc.CA)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULE: {
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (sext (setcc %a, %b, setule)) -> ~(sube %a, %a, subc.CA)
- SDValue SubtractCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- LHS, RHS), 1);
- SDValue ExtSub =
- SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64, MVT::Glue, LHS,
- LHS, SubtractCarry), 0);
- return SDValue(CurDAG->getMachineNode(PPC::NOR8, dl, MVT::i64,
- ExtSub, ExtSub), 0);
- }
- case ISD::SETUGT:
- // {subc.reg, subc.CA} = (subcarry %b, %a)
- // (sext (setcc %a, %b, setugt)) -> (sube %b, %b, subc.CA)
- std::swap(LHS, RHS);
- LLVM_FALLTHROUGH;
- case ISD::SETULT: {
- // {subc.reg, subc.CA} = (subcarry %a, %b)
- // (sext (setcc %a, %b, setult)) -> (sube %a, %a, subc.CA)
- SDValue SubCarry =
- SDValue(CurDAG->getMachineNode(PPC::SUBFC8, dl, MVT::i64, MVT::Glue,
- RHS, LHS), 1);
- return SDValue(CurDAG->getMachineNode(PPC::SUBFE8, dl, MVT::i64,
- LHS, LHS, SubCarry), 0);
- }
- }
- }
- /// Do all uses of this SDValue need the result in a GPR?
- /// This is meant to be used on values that have type i1 since
- /// it is somewhat meaningless to ask if values of other types
- /// should be kept in GPR's.
- static bool allUsesExtend(SDValue Compare, SelectionDAG *CurDAG) {
- assert(Compare.getOpcode() == ISD::SETCC &&
- "An ISD::SETCC node required here.");
- // For values that have a single use, the caller should obviously already have
- // checked if that use is an extending use. We check the other uses here.
- if (Compare.hasOneUse())
- return true;
- // We want the value in a GPR if it is being extended, used for a select, or
- // used in logical operations.
- for (auto CompareUse : Compare.getNode()->uses())
- if (CompareUse->getOpcode() != ISD::SIGN_EXTEND &&
- CompareUse->getOpcode() != ISD::ZERO_EXTEND &&
- CompareUse->getOpcode() != ISD::SELECT &&
- !isLogicOp(CompareUse->getOpcode())) {
- OmittedForNonExtendUses++;
- return false;
- }
- return true;
- }
- /// Returns an equivalent of a SETCC node but with the result the same width as
- /// the inputs. This can also be used for SELECT_CC if either the true or false
- /// values is a power of two while the other is zero.
- SDValue IntegerCompareEliminator::getSETCCInGPR(SDValue Compare,
- SetccInGPROpts ConvOpts) {
- assert((Compare.getOpcode() == ISD::SETCC ||
- Compare.getOpcode() == ISD::SELECT_CC) &&
- "An ISD::SETCC node required here.");
- // Don't convert this comparison to a GPR sequence because there are uses
- // of the i1 result (i.e. uses that require the result in the CR).
- if ((Compare.getOpcode() == ISD::SETCC) && !allUsesExtend(Compare, CurDAG))
- return SDValue();
- SDValue LHS = Compare.getOperand(0);
- SDValue RHS = Compare.getOperand(1);
- // The condition code is operand 2 for SETCC and operand 4 for SELECT_CC.
- int CCOpNum = Compare.getOpcode() == ISD::SELECT_CC ? 4 : 2;
- ISD::CondCode CC =
- cast<CondCodeSDNode>(Compare.getOperand(CCOpNum))->get();
- EVT InputVT = LHS.getValueType();
- if (InputVT != MVT::i32 && InputVT != MVT::i64)
- return SDValue();
- if (ConvOpts == SetccInGPROpts::ZExtInvert ||
- ConvOpts == SetccInGPROpts::SExtInvert)
- CC = ISD::getSetCCInverse(CC, InputVT);
- bool Inputs32Bit = InputVT == MVT::i32;
- SDLoc dl(Compare);
- ConstantSDNode *RHSConst = dyn_cast<ConstantSDNode>(RHS);
- int64_t RHSValue = RHSConst ? RHSConst->getSExtValue() : INT64_MAX;
- bool IsSext = ConvOpts == SetccInGPROpts::SExtOrig ||
- ConvOpts == SetccInGPROpts::SExtInvert;
- if (IsSext && Inputs32Bit)
- return get32BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
- else if (Inputs32Bit)
- return get32BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
- else if (IsSext)
- return get64BitSExtCompare(LHS, RHS, CC, RHSValue, dl);
- return get64BitZExtCompare(LHS, RHS, CC, RHSValue, dl);
- }
- } // end anonymous namespace
- bool PPCDAGToDAGISel::tryIntCompareInGPR(SDNode *N) {
- if (N->getValueType(0) != MVT::i32 &&
- N->getValueType(0) != MVT::i64)
- return false;
- // This optimization will emit code that assumes 64-bit registers
- // so we don't want to run it in 32-bit mode. Also don't run it
- // on functions that are not to be optimized.
- if (TM.getOptLevel() == CodeGenOpt::None || !TM.isPPC64())
- return false;
- // For POWER10, it is more profitable to use the set boolean extension
- // instructions rather than the integer compare elimination codegen.
- // Users can override this via the command line option, `--ppc-gpr-icmps`.
- if (!(CmpInGPR.getNumOccurrences() > 0) && Subtarget->isISA3_1())
- return false;
- switch (N->getOpcode()) {
- default: break;
- case ISD::ZERO_EXTEND:
- case ISD::SIGN_EXTEND:
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR: {
- IntegerCompareEliminator ICmpElim(CurDAG, this);
- if (SDNode *New = ICmpElim.Select(N)) {
- ReplaceNode(N, New);
- return true;
- }
- }
- }
- return false;
- }
- bool PPCDAGToDAGISel::tryBitPermutation(SDNode *N) {
- if (N->getValueType(0) != MVT::i32 &&
- N->getValueType(0) != MVT::i64)
- return false;
- if (!UseBitPermRewriter)
- return false;
- switch (N->getOpcode()) {
- default: break;
- case ISD::ROTL:
- case ISD::SHL:
- case ISD::SRL:
- case ISD::AND:
- case ISD::OR: {
- BitPermutationSelector BPS(CurDAG);
- if (SDNode *New = BPS.Select(N)) {
- ReplaceNode(N, New);
- return true;
- }
- return false;
- }
- }
- return false;
- }
- /// SelectCC - Select a comparison of the specified values with the specified
- /// condition code, returning the CR# of the expression.
- SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC,
- const SDLoc &dl, SDValue Chain) {
- // Always select the LHS.
- unsigned Opc;
- if (LHS.getValueType() == MVT::i32) {
- unsigned Imm;
- if (CC == ISD::SETEQ || CC == ISD::SETNE) {
- if (isInt32Immediate(RHS, Imm)) {
- // SETEQ/SETNE comparison with 16-bit immediate, fold it.
- if (isUInt<16>(Imm))
- return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
- getI32Imm(Imm & 0xFFFF, dl)),
- 0);
- // If this is a 16-bit signed immediate, fold it.
- if (isInt<16>((int)Imm))
- return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
- getI32Imm(Imm & 0xFFFF, dl)),
- 0);
- // For non-equality comparisons, the default code would materialize the
- // constant, then compare against it, like this:
- // lis r2, 4660
- // ori r2, r2, 22136
- // cmpw cr0, r3, r2
- // Since we are just comparing for equality, we can emit this instead:
- // xoris r0,r3,0x1234
- // cmplwi cr0,r0,0x5678
- // beq cr0,L6
- SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
- getI32Imm(Imm >> 16, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
- getI32Imm(Imm & 0xFFFF, dl)), 0);
- }
- Opc = PPC::CMPLW;
- } else if (ISD::isUnsignedIntSetCC(CC)) {
- if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
- return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
- getI32Imm(Imm & 0xFFFF, dl)), 0);
- Opc = PPC::CMPLW;
- } else {
- int16_t SImm;
- if (isIntS16Immediate(RHS, SImm))
- return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
- getI32Imm((int)SImm & 0xFFFF,
- dl)),
- 0);
- Opc = PPC::CMPW;
- }
- } else if (LHS.getValueType() == MVT::i64) {
- uint64_t Imm;
- if (CC == ISD::SETEQ || CC == ISD::SETNE) {
- if (isInt64Immediate(RHS.getNode(), Imm)) {
- // SETEQ/SETNE comparison with 16-bit immediate, fold it.
- if (isUInt<16>(Imm))
- return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
- getI32Imm(Imm & 0xFFFF, dl)),
- 0);
- // If this is a 16-bit signed immediate, fold it.
- if (isInt<16>(Imm))
- return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
- getI32Imm(Imm & 0xFFFF, dl)),
- 0);
- // For non-equality comparisons, the default code would materialize the
- // constant, then compare against it, like this:
- // lis r2, 4660
- // ori r2, r2, 22136
- // cmpd cr0, r3, r2
- // Since we are just comparing for equality, we can emit this instead:
- // xoris r0,r3,0x1234
- // cmpldi cr0,r0,0x5678
- // beq cr0,L6
- if (isUInt<32>(Imm)) {
- SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
- getI64Imm(Imm >> 16, dl)), 0);
- return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
- getI64Imm(Imm & 0xFFFF, dl)),
- 0);
- }
- }
- Opc = PPC::CMPLD;
- } else if (ISD::isUnsignedIntSetCC(CC)) {
- if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
- return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
- getI64Imm(Imm & 0xFFFF, dl)), 0);
- Opc = PPC::CMPLD;
- } else {
- int16_t SImm;
- if (isIntS16Immediate(RHS, SImm))
- return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
- getI64Imm(SImm & 0xFFFF, dl)),
- 0);
- Opc = PPC::CMPD;
- }
- } else if (LHS.getValueType() == MVT::f32) {
- if (Subtarget->hasSPE()) {
- switch (CC) {
- default:
- case ISD::SETEQ:
- case ISD::SETNE:
- Opc = PPC::EFSCMPEQ;
- break;
- case ISD::SETLT:
- case ISD::SETGE:
- case ISD::SETOLT:
- case ISD::SETOGE:
- case ISD::SETULT:
- case ISD::SETUGE:
- Opc = PPC::EFSCMPLT;
- break;
- case ISD::SETGT:
- case ISD::SETLE:
- case ISD::SETOGT:
- case ISD::SETOLE:
- case ISD::SETUGT:
- case ISD::SETULE:
- Opc = PPC::EFSCMPGT;
- break;
- }
- } else
- Opc = PPC::FCMPUS;
- } else if (LHS.getValueType() == MVT::f64) {
- if (Subtarget->hasSPE()) {
- switch (CC) {
- default:
- case ISD::SETEQ:
- case ISD::SETNE:
- Opc = PPC::EFDCMPEQ;
- break;
- case ISD::SETLT:
- case ISD::SETGE:
- case ISD::SETOLT:
- case ISD::SETOGE:
- case ISD::SETULT:
- case ISD::SETUGE:
- Opc = PPC::EFDCMPLT;
- break;
- case ISD::SETGT:
- case ISD::SETLE:
- case ISD::SETOGT:
- case ISD::SETOLE:
- case ISD::SETUGT:
- case ISD::SETULE:
- Opc = PPC::EFDCMPGT;
- break;
- }
- } else
- Opc = Subtarget->hasVSX() ? PPC::XSCMPUDP : PPC::FCMPUD;
- } else {
- assert(LHS.getValueType() == MVT::f128 && "Unknown vt!");
- assert(Subtarget->hasP9Vector() && "XSCMPUQP requires Power9 Vector");
- Opc = PPC::XSCMPUQP;
- }
- if (Chain)
- return SDValue(
- CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::Other, LHS, RHS, Chain),
- 0);
- else
- return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
- }
- static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC, const EVT &VT,
- const PPCSubtarget *Subtarget) {
- // For SPE instructions, the result is in GT bit of the CR
- bool UseSPE = Subtarget->hasSPE() && VT.isFloatingPoint();
- switch (CC) {
- case ISD::SETUEQ:
- case ISD::SETONE:
- case ISD::SETOLE:
- case ISD::SETOGE:
- llvm_unreachable("Should be lowered by legalize!");
- default: llvm_unreachable("Unknown condition!");
- case ISD::SETOEQ:
- case ISD::SETEQ:
- return UseSPE ? PPC::PRED_GT : PPC::PRED_EQ;
- case ISD::SETUNE:
- case ISD::SETNE:
- return UseSPE ? PPC::PRED_LE : PPC::PRED_NE;
- case ISD::SETOLT:
- case ISD::SETLT:
- return UseSPE ? PPC::PRED_GT : PPC::PRED_LT;
- case ISD::SETULE:
- case ISD::SETLE:
- return PPC::PRED_LE;
- case ISD::SETOGT:
- case ISD::SETGT:
- return PPC::PRED_GT;
- case ISD::SETUGE:
- case ISD::SETGE:
- return UseSPE ? PPC::PRED_LE : PPC::PRED_GE;
- case ISD::SETO: return PPC::PRED_NU;
- case ISD::SETUO: return PPC::PRED_UN;
- // These two are invalid for floating point. Assume we have int.
- case ISD::SETULT: return PPC::PRED_LT;
- case ISD::SETUGT: return PPC::PRED_GT;
- }
- }
- /// getCRIdxForSetCC - Return the index of the condition register field
- /// associated with the SetCC condition, and whether or not the field is
- /// treated as inverted. That is, lt = 0; ge = 0 inverted.
- static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert) {
- Invert = false;
- switch (CC) {
- default: llvm_unreachable("Unknown condition!");
- case ISD::SETOLT:
- case ISD::SETLT: return 0; // Bit #0 = SETOLT
- case ISD::SETOGT:
- case ISD::SETGT: return 1; // Bit #1 = SETOGT
- case ISD::SETOEQ:
- case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
- case ISD::SETUO: return 3; // Bit #3 = SETUO
- case ISD::SETUGE:
- case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
- case ISD::SETULE:
- case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
- case ISD::SETUNE:
- case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
- case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
- case ISD::SETUEQ:
- case ISD::SETOGE:
- case ISD::SETOLE:
- case ISD::SETONE:
- llvm_unreachable("Invalid branch code: should be expanded by legalize");
- // These are invalid for floating point. Assume integer.
- case ISD::SETULT: return 0;
- case ISD::SETUGT: return 1;
- }
- }
- // getVCmpInst: return the vector compare instruction for the specified
- // vector type and condition code. Since this is for altivec specific code,
- // only support the altivec types (v16i8, v8i16, v4i32, v2i64, v1i128,
- // and v4f32).
- static unsigned int getVCmpInst(MVT VecVT, ISD::CondCode CC,
- bool HasVSX, bool &Swap, bool &Negate) {
- Swap = false;
- Negate = false;
- if (VecVT.isFloatingPoint()) {
- /* Handle some cases by swapping input operands. */
- switch (CC) {
- case ISD::SETLE: CC = ISD::SETGE; Swap = true; break;
- case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
- case ISD::SETOLE: CC = ISD::SETOGE; Swap = true; break;
- case ISD::SETOLT: CC = ISD::SETOGT; Swap = true; break;
- case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
- case ISD::SETUGT: CC = ISD::SETULT; Swap = true; break;
- default: break;
- }
- /* Handle some cases by negating the result. */
- switch (CC) {
- case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
- case ISD::SETUNE: CC = ISD::SETOEQ; Negate = true; break;
- case ISD::SETULE: CC = ISD::SETOGT; Negate = true; break;
- case ISD::SETULT: CC = ISD::SETOGE; Negate = true; break;
- default: break;
- }
- /* We have instructions implementing the remaining cases. */
- switch (CC) {
- case ISD::SETEQ:
- case ISD::SETOEQ:
- if (VecVT == MVT::v4f32)
- return HasVSX ? PPC::XVCMPEQSP : PPC::VCMPEQFP;
- else if (VecVT == MVT::v2f64)
- return PPC::XVCMPEQDP;
- break;
- case ISD::SETGT:
- case ISD::SETOGT:
- if (VecVT == MVT::v4f32)
- return HasVSX ? PPC::XVCMPGTSP : PPC::VCMPGTFP;
- else if (VecVT == MVT::v2f64)
- return PPC::XVCMPGTDP;
- break;
- case ISD::SETGE:
- case ISD::SETOGE:
- if (VecVT == MVT::v4f32)
- return HasVSX ? PPC::XVCMPGESP : PPC::VCMPGEFP;
- else if (VecVT == MVT::v2f64)
- return PPC::XVCMPGEDP;
- break;
- default:
- break;
- }
- llvm_unreachable("Invalid floating-point vector compare condition");
- } else {
- /* Handle some cases by swapping input operands. */
- switch (CC) {
- case ISD::SETGE: CC = ISD::SETLE; Swap = true; break;
- case ISD::SETLT: CC = ISD::SETGT; Swap = true; break;
- case ISD::SETUGE: CC = ISD::SETULE; Swap = true; break;
- case ISD::SETULT: CC = ISD::SETUGT; Swap = true; break;
- default: break;
- }
- /* Handle some cases by negating the result. */
- switch (CC) {
- case ISD::SETNE: CC = ISD::SETEQ; Negate = true; break;
- case ISD::SETUNE: CC = ISD::SETUEQ; Negate = true; break;
- case ISD::SETLE: CC = ISD::SETGT; Negate = true; break;
- case ISD::SETULE: CC = ISD::SETUGT; Negate = true; break;
- default: break;
- }
- /* We have instructions implementing the remaining cases. */
- switch (CC) {
- case ISD::SETEQ:
- case ISD::SETUEQ:
- if (VecVT == MVT::v16i8)
- return PPC::VCMPEQUB;
- else if (VecVT == MVT::v8i16)
- return PPC::VCMPEQUH;
- else if (VecVT == MVT::v4i32)
- return PPC::VCMPEQUW;
- else if (VecVT == MVT::v2i64)
- return PPC::VCMPEQUD;
- else if (VecVT == MVT::v1i128)
- return PPC::VCMPEQUQ;
- break;
- case ISD::SETGT:
- if (VecVT == MVT::v16i8)
- return PPC::VCMPGTSB;
- else if (VecVT == MVT::v8i16)
- return PPC::VCMPGTSH;
- else if (VecVT == MVT::v4i32)
- return PPC::VCMPGTSW;
- else if (VecVT == MVT::v2i64)
- return PPC::VCMPGTSD;
- else if (VecVT == MVT::v1i128)
- return PPC::VCMPGTSQ;
- break;
- case ISD::SETUGT:
- if (VecVT == MVT::v16i8)
- return PPC::VCMPGTUB;
- else if (VecVT == MVT::v8i16)
- return PPC::VCMPGTUH;
- else if (VecVT == MVT::v4i32)
- return PPC::VCMPGTUW;
- else if (VecVT == MVT::v2i64)
- return PPC::VCMPGTUD;
- else if (VecVT == MVT::v1i128)
- return PPC::VCMPGTUQ;
- break;
- default:
- break;
- }
- llvm_unreachable("Invalid integer vector compare condition");
- }
- }
- bool PPCDAGToDAGISel::trySETCC(SDNode *N) {
- SDLoc dl(N);
- unsigned Imm;
- bool IsStrict = N->isStrictFPOpcode();
- ISD::CondCode CC =
- cast<CondCodeSDNode>(N->getOperand(IsStrict ? 3 : 2))->get();
- EVT PtrVT =
- CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
- bool isPPC64 = (PtrVT == MVT::i64);
- SDValue Chain = IsStrict ? N->getOperand(0) : SDValue();
- SDValue LHS = N->getOperand(IsStrict ? 1 : 0);
- SDValue RHS = N->getOperand(IsStrict ? 2 : 1);
- if (!IsStrict && !Subtarget->useCRBits() && isInt32Immediate(RHS, Imm)) {
- // We can codegen setcc op, imm very efficiently compared to a brcond.
- // Check for those cases here.
- // setcc op, 0
- if (Imm == 0) {
- SDValue Op = LHS;
- switch (CC) {
- default: break;
- case ISD::SETEQ: {
- Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
- SDValue Ops[] = { Op, getI32Imm(27, dl), getI32Imm(5, dl),
- getI32Imm(31, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
- }
- case ISD::SETNE: {
- if (isPPC64) break;
- SDValue AD =
- SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
- Op, getI32Imm(~0U, dl)), 0);
- CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op, AD.getValue(1));
- return true;
- }
- case ISD::SETLT: {
- SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
- getI32Imm(31, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
- }
- case ISD::SETGT: {
- SDValue T =
- SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
- T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
- SDValue Ops[] = { T, getI32Imm(1, dl), getI32Imm(31, dl),
- getI32Imm(31, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
- }
- }
- } else if (Imm == ~0U) { // setcc op, -1
- SDValue Op = LHS;
- switch (CC) {
- default: break;
- case ISD::SETEQ:
- if (isPPC64) break;
- Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
- Op, getI32Imm(1, dl)), 0);
- CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
- SDValue(CurDAG->getMachineNode(PPC::LI, dl,
- MVT::i32,
- getI32Imm(0, dl)),
- 0), Op.getValue(1));
- return true;
- case ISD::SETNE: {
- if (isPPC64) break;
- Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
- SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
- Op, getI32Imm(~0U, dl));
- CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0), Op,
- SDValue(AD, 1));
- return true;
- }
- case ISD::SETLT: {
- SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
- getI32Imm(1, dl)), 0);
- SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
- Op), 0);
- SDValue Ops[] = { AN, getI32Imm(1, dl), getI32Imm(31, dl),
- getI32Imm(31, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
- }
- case ISD::SETGT: {
- SDValue Ops[] = { Op, getI32Imm(1, dl), getI32Imm(31, dl),
- getI32Imm(31, dl) };
- Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
- CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op, getI32Imm(1, dl));
- return true;
- }
- }
- }
- }
- // Altivec Vector compare instructions do not set any CR register by default and
- // vector compare operations return the same type as the operands.
- if (!IsStrict && LHS.getValueType().isVector()) {
- if (Subtarget->hasSPE())
- return false;
- EVT VecVT = LHS.getValueType();
- bool Swap, Negate;
- unsigned int VCmpInst =
- getVCmpInst(VecVT.getSimpleVT(), CC, Subtarget->hasVSX(), Swap, Negate);
- if (Swap)
- std::swap(LHS, RHS);
- EVT ResVT = VecVT.changeVectorElementTypeToInteger();
- if (Negate) {
- SDValue VCmp(CurDAG->getMachineNode(VCmpInst, dl, ResVT, LHS, RHS), 0);
- CurDAG->SelectNodeTo(N, Subtarget->hasVSX() ? PPC::XXLNOR : PPC::VNOR,
- ResVT, VCmp, VCmp);
- return true;
- }
- CurDAG->SelectNodeTo(N, VCmpInst, ResVT, LHS, RHS);
- return true;
- }
- if (Subtarget->useCRBits())
- return false;
- bool Inv;
- unsigned Idx = getCRIdxForSetCC(CC, Inv);
- SDValue CCReg = SelectCC(LHS, RHS, CC, dl, Chain);
- if (IsStrict)
- CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), CCReg.getValue(1));
- SDValue IntCR;
- // SPE e*cmp* instructions only set the 'gt' bit, so hard-code that
- // The correct compare instruction is already set by SelectCC()
- if (Subtarget->hasSPE() && LHS.getValueType().isFloatingPoint()) {
- Idx = 1;
- }
- // Force the ccreg into CR7.
- SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
- SDValue InFlag; // Null incoming flag value.
- CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
- InFlag).getValue(1);
- IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
- CCReg), 0);
- SDValue Ops[] = { IntCR, getI32Imm((32 - (3 - Idx)) & 31, dl),
- getI32Imm(31, dl), getI32Imm(31, dl) };
- if (!Inv) {
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
- }
- // Get the specified bit.
- SDValue Tmp =
- SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
- CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1, dl));
- return true;
- }
- /// Does this node represent a load/store node whose address can be represented
- /// with a register plus an immediate that's a multiple of \p Val:
- bool PPCDAGToDAGISel::isOffsetMultipleOf(SDNode *N, unsigned Val) const {
- LoadSDNode *LDN = dyn_cast<LoadSDNode>(N);
- StoreSDNode *STN = dyn_cast<StoreSDNode>(N);
- MemIntrinsicSDNode *MIN = dyn_cast<MemIntrinsicSDNode>(N);
- SDValue AddrOp;
- if (LDN || (MIN && MIN->getOpcode() == PPCISD::LD_SPLAT))
- AddrOp = N->getOperand(1);
- else if (STN)
- AddrOp = STN->getOperand(2);
- // If the address points a frame object or a frame object with an offset,
- // we need to check the object alignment.
- short Imm = 0;
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(
- AddrOp.getOpcode() == ISD::ADD ? AddrOp.getOperand(0) :
- AddrOp)) {
- // If op0 is a frame index that is under aligned, we can't do it either,
- // because it is translated to r31 or r1 + slot + offset. We won't know the
- // slot number until the stack frame is finalized.
- const MachineFrameInfo &MFI = CurDAG->getMachineFunction().getFrameInfo();
- unsigned SlotAlign = MFI.getObjectAlign(FI->getIndex()).value();
- if ((SlotAlign % Val) != 0)
- return false;
- // If we have an offset, we need further check on the offset.
- if (AddrOp.getOpcode() != ISD::ADD)
- return true;
- }
- if (AddrOp.getOpcode() == ISD::ADD)
- return isIntS16Immediate(AddrOp.getOperand(1), Imm) && !(Imm % Val);
- // If the address comes from the outside, the offset will be zero.
- return AddrOp.getOpcode() == ISD::CopyFromReg;
- }
- void PPCDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
- // Transfer memoperands.
- MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
- CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
- }
- static bool mayUseP9Setb(SDNode *N, const ISD::CondCode &CC, SelectionDAG *DAG,
- bool &NeedSwapOps, bool &IsUnCmp) {
- assert(N->getOpcode() == ISD::SELECT_CC && "Expecting a SELECT_CC here.");
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- SDValue TrueRes = N->getOperand(2);
- SDValue FalseRes = N->getOperand(3);
- ConstantSDNode *TrueConst = dyn_cast<ConstantSDNode>(TrueRes);
- if (!TrueConst || (N->getSimpleValueType(0) != MVT::i64 &&
- N->getSimpleValueType(0) != MVT::i32))
- return false;
- // We are looking for any of:
- // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, cc2)), cc1)
- // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, cc2)), cc1)
- // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, 1, -1, cc2), seteq)
- // (select_cc lhs, rhs, 0, (select_cc [lr]hs, [lr]hs, -1, 1, cc2), seteq)
- int64_t TrueResVal = TrueConst->getSExtValue();
- if ((TrueResVal < -1 || TrueResVal > 1) ||
- (TrueResVal == -1 && FalseRes.getOpcode() != ISD::ZERO_EXTEND) ||
- (TrueResVal == 1 && FalseRes.getOpcode() != ISD::SIGN_EXTEND) ||
- (TrueResVal == 0 &&
- (FalseRes.getOpcode() != ISD::SELECT_CC || CC != ISD::SETEQ)))
- return false;
- SDValue SetOrSelCC = FalseRes.getOpcode() == ISD::SELECT_CC
- ? FalseRes
- : FalseRes.getOperand(0);
- bool InnerIsSel = SetOrSelCC.getOpcode() == ISD::SELECT_CC;
- if (SetOrSelCC.getOpcode() != ISD::SETCC &&
- SetOrSelCC.getOpcode() != ISD::SELECT_CC)
- return false;
- // Without this setb optimization, the outer SELECT_CC will be manually
- // selected to SELECT_CC_I4/SELECT_CC_I8 Pseudo, then expand-isel-pseudos pass
- // transforms pseudo instruction to isel instruction. When there are more than
- // one use for result like zext/sext, with current optimization we only see
- // isel is replaced by setb but can't see any significant gain. Since
- // setb has longer latency than original isel, we should avoid this. Another
- // point is that setb requires comparison always kept, it can break the
- // opportunity to get the comparison away if we have in future.
- if (!SetOrSelCC.hasOneUse() || (!InnerIsSel && !FalseRes.hasOneUse()))
- return false;
- SDValue InnerLHS = SetOrSelCC.getOperand(0);
- SDValue InnerRHS = SetOrSelCC.getOperand(1);
- ISD::CondCode InnerCC =
- cast<CondCodeSDNode>(SetOrSelCC.getOperand(InnerIsSel ? 4 : 2))->get();
- // If the inner comparison is a select_cc, make sure the true/false values are
- // 1/-1 and canonicalize it if needed.
- if (InnerIsSel) {
- ConstantSDNode *SelCCTrueConst =
- dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(2));
- ConstantSDNode *SelCCFalseConst =
- dyn_cast<ConstantSDNode>(SetOrSelCC.getOperand(3));
- if (!SelCCTrueConst || !SelCCFalseConst)
- return false;
- int64_t SelCCTVal = SelCCTrueConst->getSExtValue();
- int64_t SelCCFVal = SelCCFalseConst->getSExtValue();
- // The values must be -1/1 (requiring a swap) or 1/-1.
- if (SelCCTVal == -1 && SelCCFVal == 1) {
- std::swap(InnerLHS, InnerRHS);
- } else if (SelCCTVal != 1 || SelCCFVal != -1)
- return false;
- }
- // Canonicalize unsigned case
- if (InnerCC == ISD::SETULT || InnerCC == ISD::SETUGT) {
- IsUnCmp = true;
- InnerCC = (InnerCC == ISD::SETULT) ? ISD::SETLT : ISD::SETGT;
- }
- bool InnerSwapped = false;
- if (LHS == InnerRHS && RHS == InnerLHS)
- InnerSwapped = true;
- else if (LHS != InnerLHS || RHS != InnerRHS)
- return false;
- switch (CC) {
- // (select_cc lhs, rhs, 0, \
- // (select_cc [lr]hs, [lr]hs, 1, -1, setlt/setgt), seteq)
- case ISD::SETEQ:
- if (!InnerIsSel)
- return false;
- if (InnerCC != ISD::SETLT && InnerCC != ISD::SETGT)
- return false;
- NeedSwapOps = (InnerCC == ISD::SETGT) ? InnerSwapped : !InnerSwapped;
- break;
- // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
- // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setgt)), setu?lt)
- // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setlt)), setu?lt)
- // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?lt)
- // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setgt)), setu?lt)
- // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setlt)), setu?lt)
- case ISD::SETULT:
- if (!IsUnCmp && InnerCC != ISD::SETNE)
- return false;
- IsUnCmp = true;
- LLVM_FALLTHROUGH;
- case ISD::SETLT:
- if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETGT && !InnerSwapped) ||
- (InnerCC == ISD::SETLT && InnerSwapped))
- NeedSwapOps = (TrueResVal == 1);
- else
- return false;
- break;
- // (select_cc lhs, rhs, 1, (sext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
- // (select_cc lhs, rhs, 1, (sext (setcc lhs, rhs, setlt)), setu?gt)
- // (select_cc lhs, rhs, 1, (sext (setcc rhs, lhs, setgt)), setu?gt)
- // (select_cc lhs, rhs, -1, (zext (setcc [lr]hs, [lr]hs, setne)), setu?gt)
- // (select_cc lhs, rhs, -1, (zext (setcc lhs, rhs, setlt)), setu?gt)
- // (select_cc lhs, rhs, -1, (zext (setcc rhs, lhs, setgt)), setu?gt)
- case ISD::SETUGT:
- if (!IsUnCmp && InnerCC != ISD::SETNE)
- return false;
- IsUnCmp = true;
- LLVM_FALLTHROUGH;
- case ISD::SETGT:
- if (InnerCC == ISD::SETNE || (InnerCC == ISD::SETLT && !InnerSwapped) ||
- (InnerCC == ISD::SETGT && InnerSwapped))
- NeedSwapOps = (TrueResVal == -1);
- else
- return false;
- break;
- default:
- return false;
- }
- LLVM_DEBUG(dbgs() << "Found a node that can be lowered to a SETB: ");
- LLVM_DEBUG(N->dump());
- return true;
- }
- // Return true if it's a software square-root/divide operand.
- static bool isSWTestOp(SDValue N) {
- if (N.getOpcode() == PPCISD::FTSQRT)
- return true;
- if (N.getNumOperands() < 1 || !isa<ConstantSDNode>(N.getOperand(0)))
- return false;
- switch (N.getConstantOperandVal(0)) {
- case Intrinsic::ppc_vsx_xvtdivdp:
- case Intrinsic::ppc_vsx_xvtdivsp:
- case Intrinsic::ppc_vsx_xvtsqrtdp:
- case Intrinsic::ppc_vsx_xvtsqrtsp:
- return true;
- }
- return false;
- }
- bool PPCDAGToDAGISel::tryFoldSWTestBRCC(SDNode *N) {
- assert(N->getOpcode() == ISD::BR_CC && "ISD::BR_CC is expected.");
- // We are looking for following patterns, where `truncate to i1` actually has
- // the same semantic with `and 1`.
- // (br_cc seteq, (truncateToi1 SWTestOp), 0) -> (BCC PRED_NU, SWTestOp)
- // (br_cc seteq, (and SWTestOp, 2), 0) -> (BCC PRED_NE, SWTestOp)
- // (br_cc seteq, (and SWTestOp, 4), 0) -> (BCC PRED_LE, SWTestOp)
- // (br_cc seteq, (and SWTestOp, 8), 0) -> (BCC PRED_GE, SWTestOp)
- // (br_cc setne, (truncateToi1 SWTestOp), 0) -> (BCC PRED_UN, SWTestOp)
- // (br_cc setne, (and SWTestOp, 2), 0) -> (BCC PRED_EQ, SWTestOp)
- // (br_cc setne, (and SWTestOp, 4), 0) -> (BCC PRED_GT, SWTestOp)
- // (br_cc setne, (and SWTestOp, 8), 0) -> (BCC PRED_LT, SWTestOp)
- ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
- if (CC != ISD::SETEQ && CC != ISD::SETNE)
- return false;
- SDValue CmpRHS = N->getOperand(3);
- if (!isa<ConstantSDNode>(CmpRHS) ||
- cast<ConstantSDNode>(CmpRHS)->getSExtValue() != 0)
- return false;
- SDValue CmpLHS = N->getOperand(2);
- if (CmpLHS.getNumOperands() < 1 || !isSWTestOp(CmpLHS.getOperand(0)))
- return false;
- unsigned PCC = 0;
- bool IsCCNE = CC == ISD::SETNE;
- if (CmpLHS.getOpcode() == ISD::AND &&
- isa<ConstantSDNode>(CmpLHS.getOperand(1)))
- switch (CmpLHS.getConstantOperandVal(1)) {
- case 1:
- PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
- break;
- case 2:
- PCC = IsCCNE ? PPC::PRED_EQ : PPC::PRED_NE;
- break;
- case 4:
- PCC = IsCCNE ? PPC::PRED_GT : PPC::PRED_LE;
- break;
- case 8:
- PCC = IsCCNE ? PPC::PRED_LT : PPC::PRED_GE;
- break;
- default:
- return false;
- }
- else if (CmpLHS.getOpcode() == ISD::TRUNCATE &&
- CmpLHS.getValueType() == MVT::i1)
- PCC = IsCCNE ? PPC::PRED_UN : PPC::PRED_NU;
- if (PCC) {
- SDLoc dl(N);
- SDValue Ops[] = {getI32Imm(PCC, dl), CmpLHS.getOperand(0), N->getOperand(4),
- N->getOperand(0)};
- CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
- return true;
- }
- return false;
- }
- bool PPCDAGToDAGISel::tryAsSingleRLWINM(SDNode *N) {
- assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
- unsigned Imm;
- if (!isInt32Immediate(N->getOperand(1), Imm))
- return false;
- SDLoc dl(N);
- SDValue Val = N->getOperand(0);
- unsigned SH, MB, ME;
- // If this is an and of a value rotated between 0 and 31 bits and then and'd
- // with a mask, emit rlwinm
- if (isRotateAndMask(Val.getNode(), Imm, false, SH, MB, ME)) {
- Val = Val.getOperand(0);
- SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl),
- getI32Imm(ME, dl)};
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
- }
- // If this is just a masked value where the input is not handled, and
- // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
- if (isRunOfOnes(Imm, MB, ME) && Val.getOpcode() != ISD::ROTL) {
- SDValue Ops[] = {Val, getI32Imm(0, dl), getI32Imm(MB, dl),
- getI32Imm(ME, dl)};
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return true;
- }
- // AND X, 0 -> 0, not "rlwinm 32".
- if (Imm == 0) {
- ReplaceUses(SDValue(N, 0), N->getOperand(1));
- return true;
- }
- return false;
- }
- bool PPCDAGToDAGISel::tryAsSingleRLWINM8(SDNode *N) {
- assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
- uint64_t Imm64;
- if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
- return false;
- unsigned MB, ME;
- if (isRunOfOnes64(Imm64, MB, ME) && MB >= 32 && MB <= ME) {
- // MB ME
- // +----------------------+
- // |xxxxxxxxxxx00011111000|
- // +----------------------+
- // 0 32 64
- // We can only do it if the MB is larger than 32 and MB <= ME
- // as RLWINM will replace the contents of [0 - 32) with [32 - 64) even
- // we didn't rotate it.
- SDLoc dl(N);
- SDValue Ops[] = {N->getOperand(0), getI64Imm(0, dl), getI64Imm(MB - 32, dl),
- getI64Imm(ME - 32, dl)};
- CurDAG->SelectNodeTo(N, PPC::RLWINM8, MVT::i64, Ops);
- return true;
- }
- return false;
- }
- bool PPCDAGToDAGISel::tryAsPairOfRLDICL(SDNode *N) {
- assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
- uint64_t Imm64;
- if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64))
- return false;
- // Do nothing if it is 16-bit imm as the pattern in the .td file handle
- // it well with "andi.".
- if (isUInt<16>(Imm64))
- return false;
- SDLoc Loc(N);
- SDValue Val = N->getOperand(0);
- // Optimized with two rldicl's as follows:
- // Add missing bits on left to the mask and check that the mask is a
- // wrapped run of ones, i.e.
- // Change pattern |0001111100000011111111|
- // to |1111111100000011111111|.
- unsigned NumOfLeadingZeros = countLeadingZeros(Imm64);
- if (NumOfLeadingZeros != 0)
- Imm64 |= maskLeadingOnes<uint64_t>(NumOfLeadingZeros);
- unsigned MB, ME;
- if (!isRunOfOnes64(Imm64, MB, ME))
- return false;
- // ME MB MB-ME+63
- // +----------------------+ +----------------------+
- // |1111111100000011111111| -> |0000001111111111111111|
- // +----------------------+ +----------------------+
- // 0 63 0 63
- // There are ME + 1 ones on the left and (MB - ME + 63) & 63 zeros in between.
- unsigned OnesOnLeft = ME + 1;
- unsigned ZerosInBetween = (MB - ME + 63) & 63;
- // Rotate left by OnesOnLeft (so leading ones are now trailing ones) and clear
- // on the left the bits that are already zeros in the mask.
- Val = SDValue(CurDAG->getMachineNode(PPC::RLDICL, Loc, MVT::i64, Val,
- getI64Imm(OnesOnLeft, Loc),
- getI64Imm(ZerosInBetween, Loc)),
- 0);
- // MB-ME+63 ME MB
- // +----------------------+ +----------------------+
- // |0000001111111111111111| -> |0001111100000011111111|
- // +----------------------+ +----------------------+
- // 0 63 0 63
- // Rotate back by 64 - OnesOnLeft to undo previous rotate. Then clear on the
- // left the number of ones we previously added.
- SDValue Ops[] = {Val, getI64Imm(64 - OnesOnLeft, Loc),
- getI64Imm(NumOfLeadingZeros, Loc)};
- CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
- return true;
- }
- bool PPCDAGToDAGISel::tryAsSingleRLWIMI(SDNode *N) {
- assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
- unsigned Imm;
- if (!isInt32Immediate(N->getOperand(1), Imm))
- return false;
- SDValue Val = N->getOperand(0);
- unsigned Imm2;
- // ISD::OR doesn't get all the bitfield insertion fun.
- // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) might be a
- // bitfield insert.
- if (Val.getOpcode() != ISD::OR || !isInt32Immediate(Val.getOperand(1), Imm2))
- return false;
- // The idea here is to check whether this is equivalent to:
- // (c1 & m) | (x & ~m)
- // where m is a run-of-ones mask. The logic here is that, for each bit in
- // c1 and c2:
- // - if both are 1, then the output will be 1.
- // - if both are 0, then the output will be 0.
- // - if the bit in c1 is 0, and the bit in c2 is 1, then the output will
- // come from x.
- // - if the bit in c1 is 1, and the bit in c2 is 0, then the output will
- // be 0.
- // If that last condition is never the case, then we can form m from the
- // bits that are the same between c1 and c2.
- unsigned MB, ME;
- if (isRunOfOnes(~(Imm ^ Imm2), MB, ME) && !(~Imm & Imm2)) {
- SDLoc dl(N);
- SDValue Ops[] = {Val.getOperand(0), Val.getOperand(1), getI32Imm(0, dl),
- getI32Imm(MB, dl), getI32Imm(ME, dl)};
- ReplaceNode(N, CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops));
- return true;
- }
- return false;
- }
- bool PPCDAGToDAGISel::tryAsSingleRLDICL(SDNode *N) {
- assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
- uint64_t Imm64;
- if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) || !isMask_64(Imm64))
- return false;
- // If this is a 64-bit zero-extension mask, emit rldicl.
- unsigned MB = 64 - countTrailingOnes(Imm64);
- unsigned SH = 0;
- unsigned Imm;
- SDValue Val = N->getOperand(0);
- SDLoc dl(N);
- if (Val.getOpcode() == ISD::ANY_EXTEND) {
- auto Op0 = Val.getOperand(0);
- if (Op0.getOpcode() == ISD::SRL &&
- isInt32Immediate(Op0.getOperand(1).getNode(), Imm) && Imm <= MB) {
- auto ResultType = Val.getNode()->getValueType(0);
- auto ImDef = CurDAG->getMachineNode(PPC::IMPLICIT_DEF, dl, ResultType);
- SDValue IDVal(ImDef, 0);
- Val = SDValue(CurDAG->getMachineNode(PPC::INSERT_SUBREG, dl, ResultType,
- IDVal, Op0.getOperand(0),
- getI32Imm(1, dl)),
- 0);
- SH = 64 - Imm;
- }
- }
- // If the operand is a logical right shift, we can fold it into this
- // instruction: rldicl(rldicl(x, 64-n, n), 0, mb) -> rldicl(x, 64-n, mb)
- // for n <= mb. The right shift is really a left rotate followed by a
- // mask, and this mask is a more-restrictive sub-mask of the mask implied
- // by the shift.
- if (Val.getOpcode() == ISD::SRL &&
- isInt32Immediate(Val.getOperand(1).getNode(), Imm) && Imm <= MB) {
- assert(Imm < 64 && "Illegal shift amount");
- Val = Val.getOperand(0);
- SH = 64 - Imm;
- }
- SDValue Ops[] = {Val, getI32Imm(SH, dl), getI32Imm(MB, dl)};
- CurDAG->SelectNodeTo(N, PPC::RLDICL, MVT::i64, Ops);
- return true;
- }
- bool PPCDAGToDAGISel::tryAsSingleRLDICR(SDNode *N) {
- assert(N->getOpcode() == ISD::AND && "ISD::AND SDNode expected");
- uint64_t Imm64;
- if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
- !isMask_64(~Imm64))
- return false;
- // If this is a negated 64-bit zero-extension mask,
- // i.e. the immediate is a sequence of ones from most significant side
- // and all zero for reminder, we should use rldicr.
- unsigned MB = 63 - countTrailingOnes(~Imm64);
- unsigned SH = 0;
- SDLoc dl(N);
- SDValue Ops[] = {N->getOperand(0), getI32Imm(SH, dl), getI32Imm(MB, dl)};
- CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, Ops);
- return true;
- }
- bool PPCDAGToDAGISel::tryAsSingleRLDIMI(SDNode *N) {
- assert(N->getOpcode() == ISD::OR && "ISD::OR SDNode expected");
- uint64_t Imm64;
- unsigned MB, ME;
- SDValue N0 = N->getOperand(0);
- // We won't get fewer instructions if the imm is 32-bit integer.
- // rldimi requires the imm to have consecutive ones with both sides zero.
- // Also, make sure the first Op has only one use, otherwise this may increase
- // register pressure since rldimi is destructive.
- if (!isInt64Immediate(N->getOperand(1).getNode(), Imm64) ||
- isUInt<32>(Imm64) || !isRunOfOnes64(Imm64, MB, ME) || !N0.hasOneUse())
- return false;
- unsigned SH = 63 - ME;
- SDLoc Dl(N);
- // Use select64Imm for making LI instr instead of directly putting Imm64
- SDValue Ops[] = {
- N->getOperand(0),
- SDValue(selectI64Imm(CurDAG, getI64Imm(-1, Dl).getNode()), 0),
- getI32Imm(SH, Dl), getI32Imm(MB, Dl)};
- CurDAG->SelectNodeTo(N, PPC::RLDIMI, MVT::i64, Ops);
- return true;
- }
- // Select - Convert the specified operand from a target-independent to a
- // target-specific node if it hasn't already been changed.
- void PPCDAGToDAGISel::Select(SDNode *N) {
- SDLoc dl(N);
- if (N->isMachineOpcode()) {
- N->setNodeId(-1);
- return; // Already selected.
- }
- // In case any misguided DAG-level optimizations form an ADD with a
- // TargetConstant operand, crash here instead of miscompiling (by selecting
- // an r+r add instead of some kind of r+i add).
- if (N->getOpcode() == ISD::ADD &&
- N->getOperand(1).getOpcode() == ISD::TargetConstant)
- llvm_unreachable("Invalid ADD with TargetConstant operand");
- // Try matching complex bit permutations before doing anything else.
- if (tryBitPermutation(N))
- return;
- // Try to emit integer compares as GPR-only sequences (i.e. no use of CR).
- if (tryIntCompareInGPR(N))
- return;
- switch (N->getOpcode()) {
- default: break;
- case ISD::Constant:
- if (N->getValueType(0) == MVT::i64) {
- ReplaceNode(N, selectI64Imm(CurDAG, N));
- return;
- }
- break;
- case ISD::INTRINSIC_VOID: {
- auto IntrinsicID = N->getConstantOperandVal(1);
- if (IntrinsicID == Intrinsic::ppc_tdw || IntrinsicID == Intrinsic::ppc_tw) {
- unsigned Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TDI : PPC::TWI;
- SDValue Ops[] = {N->getOperand(4), N->getOperand(2), N->getOperand(3)};
- int16_t SImmOperand2;
- int16_t SImmOperand3;
- int16_t SImmOperand4;
- bool isOperand2IntS16Immediate =
- isIntS16Immediate(N->getOperand(2), SImmOperand2);
- bool isOperand3IntS16Immediate =
- isIntS16Immediate(N->getOperand(3), SImmOperand3);
- // We will emit PPC::TD or PPC::TW if the 2nd and 3rd operands are reg +
- // reg or imm + imm. The imm + imm form will be optimized to either an
- // unconditional trap or a nop in a later pass.
- if (isOperand2IntS16Immediate == isOperand3IntS16Immediate)
- Opcode = IntrinsicID == Intrinsic::ppc_tdw ? PPC::TD : PPC::TW;
- else if (isOperand3IntS16Immediate)
- // The 2nd and 3rd operands are reg + imm.
- Ops[2] = getI32Imm(int(SImmOperand3) & 0xFFFF, dl);
- else {
- // The 2nd and 3rd operands are imm + reg.
- bool isOperand4IntS16Immediate =
- isIntS16Immediate(N->getOperand(4), SImmOperand4);
- (void)isOperand4IntS16Immediate;
- assert(isOperand4IntS16Immediate &&
- "The 4th operand is not an Immediate");
- // We need to flip the condition immediate TO.
- int16_t TO = int(SImmOperand4) & 0x1F;
- // We swap the first and second bit of TO if they are not same.
- if ((TO & 0x1) != ((TO & 0x2) >> 1))
- TO = (TO & 0x1) ? TO + 1 : TO - 1;
- // We swap the fourth and fifth bit of TO if they are not same.
- if ((TO & 0x8) != ((TO & 0x10) >> 1))
- TO = (TO & 0x8) ? TO + 8 : TO - 8;
- Ops[0] = getI32Imm(TO, dl);
- Ops[1] = N->getOperand(3);
- Ops[2] = getI32Imm(int(SImmOperand2) & 0xFFFF, dl);
- }
- CurDAG->SelectNodeTo(N, Opcode, MVT::Other, Ops);
- return;
- }
- break;
- }
- case ISD::INTRINSIC_WO_CHAIN: {
- // We emit the PPC::FSELS instruction here because of type conflicts with
- // the comparison operand. The FSELS instruction is defined to use an 8-byte
- // comparison like the FSELD version. The fsels intrinsic takes a 4-byte
- // value for the comparison. When selecting through a .td file, a type
- // error is raised. Must check this first so we never break on the
- // !Subtarget->isISA3_1() check.
- auto IntID = N->getConstantOperandVal(0);
- if (IntID == Intrinsic::ppc_fsels) {
- SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3)};
- CurDAG->SelectNodeTo(N, PPC::FSELS, MVT::f32, Ops);
- return;
- }
- if (IntID == Intrinsic::ppc_bcdadd_p || IntID == Intrinsic::ppc_bcdsub_p) {
- auto Pred = N->getConstantOperandVal(1);
- unsigned Opcode =
- IntID == Intrinsic::ppc_bcdadd_p ? PPC::BCDADD_rec : PPC::BCDSUB_rec;
- unsigned SubReg = 0;
- unsigned ShiftVal = 0;
- bool Reverse = false;
- switch (Pred) {
- case 0:
- SubReg = PPC::sub_eq;
- ShiftVal = 1;
- break;
- case 1:
- SubReg = PPC::sub_eq;
- ShiftVal = 1;
- Reverse = true;
- break;
- case 2:
- SubReg = PPC::sub_lt;
- ShiftVal = 3;
- break;
- case 3:
- SubReg = PPC::sub_lt;
- ShiftVal = 3;
- Reverse = true;
- break;
- case 4:
- SubReg = PPC::sub_gt;
- ShiftVal = 2;
- break;
- case 5:
- SubReg = PPC::sub_gt;
- ShiftVal = 2;
- Reverse = true;
- break;
- case 6:
- SubReg = PPC::sub_un;
- break;
- case 7:
- SubReg = PPC::sub_un;
- Reverse = true;
- break;
- }
- EVT VTs[] = {MVT::v16i8, MVT::Glue};
- SDValue Ops[] = {N->getOperand(2), N->getOperand(3),
- CurDAG->getTargetConstant(0, dl, MVT::i32)};
- SDValue BCDOp = SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, Ops), 0);
- SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
- // On Power10, we can use SETBC[R]. On prior architectures, we have to use
- // MFOCRF and shift/negate the value.
- if (Subtarget->isISA3_1()) {
- SDValue SubRegIdx = CurDAG->getTargetConstant(SubReg, dl, MVT::i32);
- SDValue CRBit = SDValue(
- CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
- CR6Reg, SubRegIdx, BCDOp.getValue(1)),
- 0);
- CurDAG->SelectNodeTo(N, Reverse ? PPC::SETBCR : PPC::SETBC, MVT::i32,
- CRBit);
- } else {
- SDValue Move =
- SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR6Reg,
- BCDOp.getValue(1)),
- 0);
- SDValue Ops[] = {Move, getI32Imm((32 - (4 + ShiftVal)) & 31, dl),
- getI32Imm(31, dl), getI32Imm(31, dl)};
- if (!Reverse)
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- else {
- SDValue Shift = SDValue(
- CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops), 0);
- CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Shift, getI32Imm(1, dl));
- }
- }
- return;
- }
- if (!Subtarget->isISA3_1())
- break;
- unsigned Opcode = 0;
- switch (IntID) {
- default:
- break;
- case Intrinsic::ppc_altivec_vstribr_p:
- Opcode = PPC::VSTRIBR_rec;
- break;
- case Intrinsic::ppc_altivec_vstribl_p:
- Opcode = PPC::VSTRIBL_rec;
- break;
- case Intrinsic::ppc_altivec_vstrihr_p:
- Opcode = PPC::VSTRIHR_rec;
- break;
- case Intrinsic::ppc_altivec_vstrihl_p:
- Opcode = PPC::VSTRIHL_rec;
- break;
- }
- if (!Opcode)
- break;
- // Generate the appropriate vector string isolate intrinsic to match.
- EVT VTs[] = {MVT::v16i8, MVT::Glue};
- SDValue VecStrOp =
- SDValue(CurDAG->getMachineNode(Opcode, dl, VTs, N->getOperand(2)), 0);
- // Vector string isolate instructions update the EQ bit of CR6.
- // Generate a SETBC instruction to extract the bit and place it in a GPR.
- SDValue SubRegIdx = CurDAG->getTargetConstant(PPC::sub_eq, dl, MVT::i32);
- SDValue CR6Reg = CurDAG->getRegister(PPC::CR6, MVT::i32);
- SDValue CRBit = SDValue(
- CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i1,
- CR6Reg, SubRegIdx, VecStrOp.getValue(1)),
- 0);
- CurDAG->SelectNodeTo(N, PPC::SETBC, MVT::i32, CRBit);
- return;
- }
- case ISD::SETCC:
- case ISD::STRICT_FSETCC:
- case ISD::STRICT_FSETCCS:
- if (trySETCC(N))
- return;
- break;
- // These nodes will be transformed into GETtlsADDR32 node, which
- // later becomes BL_TLS __tls_get_addr(sym at tlsgd)@PLT
- case PPCISD::ADDI_TLSLD_L_ADDR:
- case PPCISD::ADDI_TLSGD_L_ADDR: {
- const Module *Mod = MF->getFunction().getParent();
- if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
- !Subtarget->isSecurePlt() || !Subtarget->isTargetELF() ||
- Mod->getPICLevel() == PICLevel::SmallPIC)
- break;
- // Attach global base pointer on GETtlsADDR32 node in order to
- // generate secure plt code for TLS symbols.
- getGlobalBaseReg();
- } break;
- case PPCISD::CALL: {
- if (PPCLowering->getPointerTy(CurDAG->getDataLayout()) != MVT::i32 ||
- !TM.isPositionIndependent() || !Subtarget->isSecurePlt() ||
- !Subtarget->isTargetELF())
- break;
- SDValue Op = N->getOperand(1);
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
- if (GA->getTargetFlags() == PPCII::MO_PLT)
- getGlobalBaseReg();
- }
- else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
- if (ES->getTargetFlags() == PPCII::MO_PLT)
- getGlobalBaseReg();
- }
- }
- break;
- case PPCISD::GlobalBaseReg:
- ReplaceNode(N, getGlobalBaseReg());
- return;
- case ISD::FrameIndex:
- selectFrameIndex(N, N);
- return;
- case PPCISD::MFOCRF: {
- SDValue InFlag = N->getOperand(1);
- ReplaceNode(N, CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
- N->getOperand(0), InFlag));
- return;
- }
- case PPCISD::READ_TIME_BASE:
- ReplaceNode(N, CurDAG->getMachineNode(PPC::ReadTB, dl, MVT::i32, MVT::i32,
- MVT::Other, N->getOperand(0)));
- return;
- case PPCISD::SRA_ADDZE: {
- SDValue N0 = N->getOperand(0);
- SDValue ShiftAmt =
- CurDAG->getTargetConstant(*cast<ConstantSDNode>(N->getOperand(1))->
- getConstantIntValue(), dl,
- N->getValueType(0));
- if (N->getValueType(0) == MVT::i64) {
- SDNode *Op =
- CurDAG->getMachineNode(PPC::SRADI, dl, MVT::i64, MVT::Glue,
- N0, ShiftAmt);
- CurDAG->SelectNodeTo(N, PPC::ADDZE8, MVT::i64, SDValue(Op, 0),
- SDValue(Op, 1));
- return;
- } else {
- assert(N->getValueType(0) == MVT::i32 &&
- "Expecting i64 or i32 in PPCISD::SRA_ADDZE");
- SDNode *Op =
- CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
- N0, ShiftAmt);
- CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32, SDValue(Op, 0),
- SDValue(Op, 1));
- return;
- }
- }
- case ISD::STORE: {
- // Change TLS initial-exec D-form stores to X-form stores.
- StoreSDNode *ST = cast<StoreSDNode>(N);
- if (EnableTLSOpt && Subtarget->isELFv2ABI() &&
- ST->getAddressingMode() != ISD::PRE_INC)
- if (tryTLSXFormStore(ST))
- return;
- break;
- }
- case ISD::LOAD: {
- // Handle preincrement loads.
- LoadSDNode *LD = cast<LoadSDNode>(N);
- EVT LoadedVT = LD->getMemoryVT();
- // Normal loads are handled by code generated from the .td file.
- if (LD->getAddressingMode() != ISD::PRE_INC) {
- // Change TLS initial-exec D-form loads to X-form loads.
- if (EnableTLSOpt && Subtarget->isELFv2ABI())
- if (tryTLSXFormLoad(LD))
- return;
- break;
- }
- SDValue Offset = LD->getOffset();
- if (Offset.getOpcode() == ISD::TargetConstant ||
- Offset.getOpcode() == ISD::TargetGlobalAddress) {
- unsigned Opcode;
- bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
- if (LD->getValueType(0) != MVT::i64) {
- // Handle PPC32 integer and normal FP loads.
- assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
- switch (LoadedVT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Invalid PPC load type!");
- case MVT::f64: Opcode = PPC::LFDU; break;
- case MVT::f32: Opcode = PPC::LFSU; break;
- case MVT::i32: Opcode = PPC::LWZU; break;
- case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
- case MVT::i1:
- case MVT::i8: Opcode = PPC::LBZU; break;
- }
- } else {
- assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
- assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
- switch (LoadedVT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Invalid PPC load type!");
- case MVT::i64: Opcode = PPC::LDU; break;
- case MVT::i32: Opcode = PPC::LWZU8; break;
- case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
- case MVT::i1:
- case MVT::i8: Opcode = PPC::LBZU8; break;
- }
- }
- SDValue Chain = LD->getChain();
- SDValue Base = LD->getBasePtr();
- SDValue Ops[] = { Offset, Base, Chain };
- SDNode *MN = CurDAG->getMachineNode(
- Opcode, dl, LD->getValueType(0),
- PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
- transferMemOperands(N, MN);
- ReplaceNode(N, MN);
- return;
- } else {
- unsigned Opcode;
- bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
- if (LD->getValueType(0) != MVT::i64) {
- // Handle PPC32 integer and normal FP loads.
- assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
- switch (LoadedVT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Invalid PPC load type!");
- case MVT::f64: Opcode = PPC::LFDUX; break;
- case MVT::f32: Opcode = PPC::LFSUX; break;
- case MVT::i32: Opcode = PPC::LWZUX; break;
- case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
- case MVT::i1:
- case MVT::i8: Opcode = PPC::LBZUX; break;
- }
- } else {
- assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
- assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
- "Invalid sext update load");
- switch (LoadedVT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Invalid PPC load type!");
- case MVT::i64: Opcode = PPC::LDUX; break;
- case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
- case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
- case MVT::i1:
- case MVT::i8: Opcode = PPC::LBZUX8; break;
- }
- }
- SDValue Chain = LD->getChain();
- SDValue Base = LD->getBasePtr();
- SDValue Ops[] = { Base, Offset, Chain };
- SDNode *MN = CurDAG->getMachineNode(
- Opcode, dl, LD->getValueType(0),
- PPCLowering->getPointerTy(CurDAG->getDataLayout()), MVT::Other, Ops);
- transferMemOperands(N, MN);
- ReplaceNode(N, MN);
- return;
- }
- }
- case ISD::AND:
- // If this is an 'and' with a mask, try to emit rlwinm/rldicl/rldicr
- if (tryAsSingleRLWINM(N) || tryAsSingleRLWIMI(N) || tryAsSingleRLDICL(N) ||
- tryAsSingleRLDICR(N) || tryAsSingleRLWINM8(N) || tryAsPairOfRLDICL(N))
- return;
- // Other cases are autogenerated.
- break;
- case ISD::OR: {
- if (N->getValueType(0) == MVT::i32)
- if (tryBitfieldInsert(N))
- return;
- int16_t Imm;
- if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
- isIntS16Immediate(N->getOperand(1), Imm)) {
- KnownBits LHSKnown = CurDAG->computeKnownBits(N->getOperand(0));
- // If this is equivalent to an add, then we can fold it with the
- // FrameIndex calculation.
- if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)Imm) == ~0ULL) {
- selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
- return;
- }
- }
- // If this is 'or' against an imm with consecutive ones and both sides zero,
- // try to emit rldimi
- if (tryAsSingleRLDIMI(N))
- return;
- // OR with a 32-bit immediate can be handled by ori + oris
- // without creating an immediate in a GPR.
- uint64_t Imm64 = 0;
- bool IsPPC64 = Subtarget->isPPC64();
- if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
- (Imm64 & ~0xFFFFFFFFuLL) == 0) {
- // If ImmHi (ImmHi) is zero, only one ori (oris) is generated later.
- uint64_t ImmHi = Imm64 >> 16;
- uint64_t ImmLo = Imm64 & 0xFFFF;
- if (ImmHi != 0 && ImmLo != 0) {
- SDNode *Lo = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
- N->getOperand(0),
- getI16Imm(ImmLo, dl));
- SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
- CurDAG->SelectNodeTo(N, PPC::ORIS8, MVT::i64, Ops1);
- return;
- }
- }
- // Other cases are autogenerated.
- break;
- }
- case ISD::XOR: {
- // XOR with a 32-bit immediate can be handled by xori + xoris
- // without creating an immediate in a GPR.
- uint64_t Imm64 = 0;
- bool IsPPC64 = Subtarget->isPPC64();
- if (IsPPC64 && isInt64Immediate(N->getOperand(1), Imm64) &&
- (Imm64 & ~0xFFFFFFFFuLL) == 0) {
- // If ImmHi (ImmHi) is zero, only one xori (xoris) is generated later.
- uint64_t ImmHi = Imm64 >> 16;
- uint64_t ImmLo = Imm64 & 0xFFFF;
- if (ImmHi != 0 && ImmLo != 0) {
- SDNode *Lo = CurDAG->getMachineNode(PPC::XORI8, dl, MVT::i64,
- N->getOperand(0),
- getI16Imm(ImmLo, dl));
- SDValue Ops1[] = { SDValue(Lo, 0), getI16Imm(ImmHi, dl)};
- CurDAG->SelectNodeTo(N, PPC::XORIS8, MVT::i64, Ops1);
- return;
- }
- }
- break;
- }
- case ISD::ADD: {
- int16_t Imm;
- if (N->getOperand(0)->getOpcode() == ISD::FrameIndex &&
- isIntS16Immediate(N->getOperand(1), Imm)) {
- selectFrameIndex(N, N->getOperand(0).getNode(), (int)Imm);
- return;
- }
- break;
- }
- case ISD::SHL: {
- unsigned Imm, SH, MB, ME;
- if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
- isRotateAndMask(N, Imm, true, SH, MB, ME)) {
- SDValue Ops[] = { N->getOperand(0).getOperand(0),
- getI32Imm(SH, dl), getI32Imm(MB, dl),
- getI32Imm(ME, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return;
- }
- // Other cases are autogenerated.
- break;
- }
- case ISD::SRL: {
- unsigned Imm, SH, MB, ME;
- if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
- isRotateAndMask(N, Imm, true, SH, MB, ME)) {
- SDValue Ops[] = { N->getOperand(0).getOperand(0),
- getI32Imm(SH, dl), getI32Imm(MB, dl),
- getI32Imm(ME, dl) };
- CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops);
- return;
- }
- // Other cases are autogenerated.
- break;
- }
- case ISD::MUL: {
- SDValue Op1 = N->getOperand(1);
- if (Op1.getOpcode() != ISD::Constant || Op1.getValueType() != MVT::i64)
- break;
- // If the multiplier fits int16, we can handle it with mulli.
- int64_t Imm = cast<ConstantSDNode>(Op1)->getZExtValue();
- unsigned Shift = countTrailingZeros<uint64_t>(Imm);
- if (isInt<16>(Imm) || !Shift)
- break;
- // If the shifted value fits int16, we can do this transformation:
- // (mul X, c1 << c2) -> (rldicr (mulli X, c1) c2). We do this in ISEL due to
- // DAGCombiner prefers (shl (mul X, c1), c2) -> (mul X, c1 << c2).
- uint64_t ImmSh = Imm >> Shift;
- if (isInt<16>(ImmSh)) {
- uint64_t SextImm = SignExtend64(ImmSh & 0xFFFF, 16);
- SDValue SDImm = CurDAG->getTargetConstant(SextImm, dl, MVT::i64);
- SDNode *MulNode = CurDAG->getMachineNode(PPC::MULLI8, dl, MVT::i64,
- N->getOperand(0), SDImm);
- CurDAG->SelectNodeTo(N, PPC::RLDICR, MVT::i64, SDValue(MulNode, 0),
- getI32Imm(Shift, dl), getI32Imm(63 - Shift, dl));
- return;
- }
- break;
- }
- // FIXME: Remove this once the ANDI glue bug is fixed:
- case PPCISD::ANDI_rec_1_EQ_BIT:
- case PPCISD::ANDI_rec_1_GT_BIT: {
- if (!ANDIGlueBug)
- break;
- EVT InVT = N->getOperand(0).getValueType();
- assert((InVT == MVT::i64 || InVT == MVT::i32) &&
- "Invalid input type for ANDI_rec_1_EQ_BIT");
- unsigned Opcode = (InVT == MVT::i64) ? PPC::ANDI8_rec : PPC::ANDI_rec;
- SDValue AndI(CurDAG->getMachineNode(Opcode, dl, InVT, MVT::Glue,
- N->getOperand(0),
- CurDAG->getTargetConstant(1, dl, InVT)),
- 0);
- SDValue CR0Reg = CurDAG->getRegister(PPC::CR0, MVT::i32);
- SDValue SRIdxVal = CurDAG->getTargetConstant(
- N->getOpcode() == PPCISD::ANDI_rec_1_EQ_BIT ? PPC::sub_eq : PPC::sub_gt,
- dl, MVT::i32);
- CurDAG->SelectNodeTo(N, TargetOpcode::EXTRACT_SUBREG, MVT::i1, CR0Reg,
- SRIdxVal, SDValue(AndI.getNode(), 1) /* glue */);
- return;
- }
- case ISD::SELECT_CC: {
- ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
- EVT PtrVT =
- CurDAG->getTargetLoweringInfo().getPointerTy(CurDAG->getDataLayout());
- bool isPPC64 = (PtrVT == MVT::i64);
- // If this is a select of i1 operands, we'll pattern match it.
- if (Subtarget->useCRBits() && N->getOperand(0).getValueType() == MVT::i1)
- break;
- if (Subtarget->isISA3_0() && Subtarget->isPPC64()) {
- bool NeedSwapOps = false;
- bool IsUnCmp = false;
- if (mayUseP9Setb(N, CC, CurDAG, NeedSwapOps, IsUnCmp)) {
- SDValue LHS = N->getOperand(0);
- SDValue RHS = N->getOperand(1);
- if (NeedSwapOps)
- std::swap(LHS, RHS);
- // Make use of SelectCC to generate the comparison to set CR bits, for
- // equality comparisons having one literal operand, SelectCC probably
- // doesn't need to materialize the whole literal and just use xoris to
- // check it first, it leads the following comparison result can't
- // exactly represent GT/LT relationship. So to avoid this we specify
- // SETGT/SETUGT here instead of SETEQ.
- SDValue GenCC =
- SelectCC(LHS, RHS, IsUnCmp ? ISD::SETUGT : ISD::SETGT, dl);
- CurDAG->SelectNodeTo(
- N, N->getSimpleValueType(0) == MVT::i64 ? PPC::SETB8 : PPC::SETB,
- N->getValueType(0), GenCC);
- NumP9Setb++;
- return;
- }
- }
- // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
- if (!isPPC64)
- if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
- if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
- if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
- if (N1C->isZero() && N3C->isZero() && N2C->getZExtValue() == 1ULL &&
- CC == ISD::SETNE &&
- // FIXME: Implement this optzn for PPC64.
- N->getValueType(0) == MVT::i32) {
- SDNode *Tmp =
- CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
- N->getOperand(0), getI32Imm(~0U, dl));
- CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(Tmp, 0),
- N->getOperand(0), SDValue(Tmp, 1));
- return;
- }
- SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
- if (N->getValueType(0) == MVT::i1) {
- // An i1 select is: (c & t) | (!c & f).
- bool Inv;
- unsigned Idx = getCRIdxForSetCC(CC, Inv);
- unsigned SRI;
- switch (Idx) {
- default: llvm_unreachable("Invalid CC index");
- case 0: SRI = PPC::sub_lt; break;
- case 1: SRI = PPC::sub_gt; break;
- case 2: SRI = PPC::sub_eq; break;
- case 3: SRI = PPC::sub_un; break;
- }
- SDValue CCBit = CurDAG->getTargetExtractSubreg(SRI, dl, MVT::i1, CCReg);
- SDValue NotCCBit(CurDAG->getMachineNode(PPC::CRNOR, dl, MVT::i1,
- CCBit, CCBit), 0);
- SDValue C = Inv ? NotCCBit : CCBit,
- NotC = Inv ? CCBit : NotCCBit;
- SDValue CAndT(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
- C, N->getOperand(2)), 0);
- SDValue NotCAndF(CurDAG->getMachineNode(PPC::CRAND, dl, MVT::i1,
- NotC, N->getOperand(3)), 0);
- CurDAG->SelectNodeTo(N, PPC::CROR, MVT::i1, CAndT, NotCAndF);
- return;
- }
- unsigned BROpc =
- getPredicateForSetCC(CC, N->getOperand(0).getValueType(), Subtarget);
- unsigned SelectCCOp;
- if (N->getValueType(0) == MVT::i32)
- SelectCCOp = PPC::SELECT_CC_I4;
- else if (N->getValueType(0) == MVT::i64)
- SelectCCOp = PPC::SELECT_CC_I8;
- else if (N->getValueType(0) == MVT::f32) {
- if (Subtarget->hasP8Vector())
- SelectCCOp = PPC::SELECT_CC_VSSRC;
- else if (Subtarget->hasSPE())
- SelectCCOp = PPC::SELECT_CC_SPE4;
- else
- SelectCCOp = PPC::SELECT_CC_F4;
- } else if (N->getValueType(0) == MVT::f64) {
- if (Subtarget->hasVSX())
- SelectCCOp = PPC::SELECT_CC_VSFRC;
- else if (Subtarget->hasSPE())
- SelectCCOp = PPC::SELECT_CC_SPE;
- else
- SelectCCOp = PPC::SELECT_CC_F8;
- } else if (N->getValueType(0) == MVT::f128)
- SelectCCOp = PPC::SELECT_CC_F16;
- else if (Subtarget->hasSPE())
- SelectCCOp = PPC::SELECT_CC_SPE;
- else if (N->getValueType(0) == MVT::v2f64 ||
- N->getValueType(0) == MVT::v2i64)
- SelectCCOp = PPC::SELECT_CC_VSRC;
- else
- SelectCCOp = PPC::SELECT_CC_VRRC;
- SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
- getI32Imm(BROpc, dl) };
- CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops);
- return;
- }
- case ISD::VECTOR_SHUFFLE:
- if (Subtarget->hasVSX() && (N->getValueType(0) == MVT::v2f64 ||
- N->getValueType(0) == MVT::v2i64)) {
- ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
- SDValue Op1 = N->getOperand(SVN->getMaskElt(0) < 2 ? 0 : 1),
- Op2 = N->getOperand(SVN->getMaskElt(1) < 2 ? 0 : 1);
- unsigned DM[2];
- for (int i = 0; i < 2; ++i)
- if (SVN->getMaskElt(i) <= 0 || SVN->getMaskElt(i) == 2)
- DM[i] = 0;
- else
- DM[i] = 1;
- if (Op1 == Op2 && DM[0] == 0 && DM[1] == 0 &&
- Op1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
- isa<LoadSDNode>(Op1.getOperand(0))) {
- LoadSDNode *LD = cast<LoadSDNode>(Op1.getOperand(0));
- SDValue Base, Offset;
- if (LD->isUnindexed() && LD->hasOneUse() && Op1.hasOneUse() &&
- (LD->getMemoryVT() == MVT::f64 ||
- LD->getMemoryVT() == MVT::i64) &&
- SelectAddrIdxOnly(LD->getBasePtr(), Base, Offset)) {
- SDValue Chain = LD->getChain();
- SDValue Ops[] = { Base, Offset, Chain };
- MachineMemOperand *MemOp = LD->getMemOperand();
- SDNode *NewN = CurDAG->SelectNodeTo(N, PPC::LXVDSX,
- N->getValueType(0), Ops);
- CurDAG->setNodeMemRefs(cast<MachineSDNode>(NewN), {MemOp});
- return;
- }
- }
- // For little endian, we must swap the input operands and adjust
- // the mask elements (reverse and invert them).
- if (Subtarget->isLittleEndian()) {
- std::swap(Op1, Op2);
- unsigned tmp = DM[0];
- DM[0] = 1 - DM[1];
- DM[1] = 1 - tmp;
- }
- SDValue DMV = CurDAG->getTargetConstant(DM[1] | (DM[0] << 1), dl,
- MVT::i32);
- SDValue Ops[] = { Op1, Op2, DMV };
- CurDAG->SelectNodeTo(N, PPC::XXPERMDI, N->getValueType(0), Ops);
- return;
- }
- break;
- case PPCISD::BDNZ:
- case PPCISD::BDZ: {
- bool IsPPC64 = Subtarget->isPPC64();
- SDValue Ops[] = { N->getOperand(1), N->getOperand(0) };
- CurDAG->SelectNodeTo(N, N->getOpcode() == PPCISD::BDNZ
- ? (IsPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
- : (IsPPC64 ? PPC::BDZ8 : PPC::BDZ),
- MVT::Other, Ops);
- return;
- }
- case PPCISD::COND_BRANCH: {
- // Op #0 is the Chain.
- // Op #1 is the PPC::PRED_* number.
- // Op #2 is the CR#
- // Op #3 is the Dest MBB
- // Op #4 is the Flag.
- // Prevent PPC::PRED_* from being selected into LI.
- unsigned PCC = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
- if (EnableBranchHint)
- PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(3));
- SDValue Pred = getI32Imm(PCC, dl);
- SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
- N->getOperand(0), N->getOperand(4) };
- CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
- return;
- }
- case ISD::BR_CC: {
- if (tryFoldSWTestBRCC(N))
- return;
- ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
- unsigned PCC =
- getPredicateForSetCC(CC, N->getOperand(2).getValueType(), Subtarget);
- if (N->getOperand(2).getValueType() == MVT::i1) {
- unsigned Opc;
- bool Swap;
- switch (PCC) {
- default: llvm_unreachable("Unexpected Boolean-operand predicate");
- case PPC::PRED_LT: Opc = PPC::CRANDC; Swap = true; break;
- case PPC::PRED_LE: Opc = PPC::CRORC; Swap = true; break;
- case PPC::PRED_EQ: Opc = PPC::CREQV; Swap = false; break;
- case PPC::PRED_GE: Opc = PPC::CRORC; Swap = false; break;
- case PPC::PRED_GT: Opc = PPC::CRANDC; Swap = false; break;
- case PPC::PRED_NE: Opc = PPC::CRXOR; Swap = false; break;
- }
- // A signed comparison of i1 values produces the opposite result to an
- // unsigned one if the condition code includes less-than or greater-than.
- // This is because 1 is the most negative signed i1 number and the most
- // positive unsigned i1 number. The CR-logical operations used for such
- // comparisons are non-commutative so for signed comparisons vs. unsigned
- // ones, the input operands just need to be swapped.
- if (ISD::isSignedIntSetCC(CC))
- Swap = !Swap;
- SDValue BitComp(CurDAG->getMachineNode(Opc, dl, MVT::i1,
- N->getOperand(Swap ? 3 : 2),
- N->getOperand(Swap ? 2 : 3)), 0);
- CurDAG->SelectNodeTo(N, PPC::BC, MVT::Other, BitComp, N->getOperand(4),
- N->getOperand(0));
- return;
- }
- if (EnableBranchHint)
- PCC |= getBranchHint(PCC, *FuncInfo, N->getOperand(4));
- SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
- SDValue Ops[] = { getI32Imm(PCC, dl), CondCode,
- N->getOperand(4), N->getOperand(0) };
- CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops);
- return;
- }
- case ISD::BRIND: {
- // FIXME: Should custom lower this.
- SDValue Chain = N->getOperand(0);
- SDValue Target = N->getOperand(1);
- unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
- unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
- Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
- Chain), 0);
- CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
- return;
- }
- case PPCISD::TOC_ENTRY: {
- const bool isPPC64 = Subtarget->isPPC64();
- const bool isELFABI = Subtarget->isSVR4ABI();
- const bool isAIXABI = Subtarget->isAIXABI();
- // PowerPC only support small, medium and large code model.
- const CodeModel::Model CModel = TM.getCodeModel();
- assert(!(CModel == CodeModel::Tiny || CModel == CodeModel::Kernel) &&
- "PowerPC doesn't support tiny or kernel code models.");
- if (isAIXABI && CModel == CodeModel::Medium)
- report_fatal_error("Medium code model is not supported on AIX.");
- // For 64-bit ELF small code model, we allow SelectCodeCommon to handle
- // this, selecting one of LDtoc, LDtocJTI, LDtocCPT, and LDtocBA. For AIX
- // small code model, we need to check for a toc-data attribute.
- if (isPPC64 && !isAIXABI && CModel == CodeModel::Small)
- break;
- auto replaceWith = [this, &dl](unsigned OpCode, SDNode *TocEntry,
- EVT OperandTy) {
- SDValue GA = TocEntry->getOperand(0);
- SDValue TocBase = TocEntry->getOperand(1);
- SDNode *MN = CurDAG->getMachineNode(OpCode, dl, OperandTy, GA, TocBase);
- transferMemOperands(TocEntry, MN);
- ReplaceNode(TocEntry, MN);
- };
- // Handle 32-bit small code model.
- if (!isPPC64 && CModel == CodeModel::Small) {
- // Transforms the ISD::TOC_ENTRY node to passed in Opcode, either
- // PPC::ADDItoc, or PPC::LWZtoc
- if (isELFABI) {
- assert(TM.isPositionIndependent() &&
- "32-bit ELF can only have TOC entries in position independent"
- " code.");
- // 32-bit ELF always uses a small code model toc access.
- replaceWith(PPC::LWZtoc, N, MVT::i32);
- return;
- }
- assert(isAIXABI && "ELF ABI already handled");
- if (hasTocDataAttr(N->getOperand(0),
- CurDAG->getDataLayout().getPointerSize())) {
- replaceWith(PPC::ADDItoc, N, MVT::i32);
- return;
- }
- replaceWith(PPC::LWZtoc, N, MVT::i32);
- return;
- }
- if (isPPC64 && CModel == CodeModel::Small) {
- assert(isAIXABI && "ELF ABI handled in common SelectCode");
- if (hasTocDataAttr(N->getOperand(0),
- CurDAG->getDataLayout().getPointerSize())) {
- replaceWith(PPC::ADDItoc8, N, MVT::i64);
- return;
- }
- // Break if it doesn't have toc data attribute. Proceed with common
- // SelectCode.
- break;
- }
- assert(CModel != CodeModel::Small && "All small code models handled.");
- assert((isPPC64 || (isAIXABI && !isPPC64)) && "We are dealing with 64-bit"
- " ELF/AIX or 32-bit AIX in the following.");
- // Transforms the ISD::TOC_ENTRY node for 32-bit AIX large code model mode
- // or 64-bit medium (ELF-only) or large (ELF and AIX) code model code. We
- // generate two instructions as described below. The first source operand
- // is a symbol reference. If it must be toc-referenced according to
- // Subtarget, we generate:
- // [32-bit AIX]
- // LWZtocL(@sym, ADDIStocHA(%r2, @sym))
- // [64-bit ELF/AIX]
- // LDtocL(@sym, ADDIStocHA8(%x2, @sym))
- // Otherwise we generate:
- // ADDItocL(ADDIStocHA8(%x2, @sym), @sym)
- SDValue GA = N->getOperand(0);
- SDValue TOCbase = N->getOperand(1);
- EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
- SDNode *Tmp = CurDAG->getMachineNode(
- isPPC64 ? PPC::ADDIStocHA8 : PPC::ADDIStocHA, dl, VT, TOCbase, GA);
- if (PPCLowering->isAccessedAsGotIndirect(GA)) {
- // If it is accessed as got-indirect, we need an extra LWZ/LD to load
- // the address.
- SDNode *MN = CurDAG->getMachineNode(
- isPPC64 ? PPC::LDtocL : PPC::LWZtocL, dl, VT, GA, SDValue(Tmp, 0));
- transferMemOperands(N, MN);
- ReplaceNode(N, MN);
- return;
- }
- // Build the address relative to the TOC-pointer.
- ReplaceNode(N, CurDAG->getMachineNode(PPC::ADDItocL, dl, MVT::i64,
- SDValue(Tmp, 0), GA));
- return;
- }
- case PPCISD::PPC32_PICGOT:
- // Generate a PIC-safe GOT reference.
- assert(Subtarget->is32BitELFABI() &&
- "PPCISD::PPC32_PICGOT is only supported for 32-bit SVR4");
- CurDAG->SelectNodeTo(N, PPC::PPC32PICGOT,
- PPCLowering->getPointerTy(CurDAG->getDataLayout()),
- MVT::i32);
- return;
- case PPCISD::VADD_SPLAT: {
- // This expands into one of three sequences, depending on whether
- // the first operand is odd or even, positive or negative.
- assert(isa<ConstantSDNode>(N->getOperand(0)) &&
- isa<ConstantSDNode>(N->getOperand(1)) &&
- "Invalid operand on VADD_SPLAT!");
- int Elt = N->getConstantOperandVal(0);
- int EltSize = N->getConstantOperandVal(1);
- unsigned Opc1, Opc2, Opc3;
- EVT VT;
- if (EltSize == 1) {
- Opc1 = PPC::VSPLTISB;
- Opc2 = PPC::VADDUBM;
- Opc3 = PPC::VSUBUBM;
- VT = MVT::v16i8;
- } else if (EltSize == 2) {
- Opc1 = PPC::VSPLTISH;
- Opc2 = PPC::VADDUHM;
- Opc3 = PPC::VSUBUHM;
- VT = MVT::v8i16;
- } else {
- assert(EltSize == 4 && "Invalid element size on VADD_SPLAT!");
- Opc1 = PPC::VSPLTISW;
- Opc2 = PPC::VADDUWM;
- Opc3 = PPC::VSUBUWM;
- VT = MVT::v4i32;
- }
- if ((Elt & 1) == 0) {
- // Elt is even, in the range [-32,-18] + [16,30].
- //
- // Convert: VADD_SPLAT elt, size
- // Into: tmp = VSPLTIS[BHW] elt
- // VADDU[BHW]M tmp, tmp
- // Where: [BHW] = B for size = 1, H for size = 2, W for size = 4
- SDValue EltVal = getI32Imm(Elt >> 1, dl);
- SDNode *Tmp = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
- SDValue TmpVal = SDValue(Tmp, 0);
- ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, TmpVal, TmpVal));
- return;
- } else if (Elt > 0) {
- // Elt is odd and positive, in the range [17,31].
- //
- // Convert: VADD_SPLAT elt, size
- // Into: tmp1 = VSPLTIS[BHW] elt-16
- // tmp2 = VSPLTIS[BHW] -16
- // VSUBU[BHW]M tmp1, tmp2
- SDValue EltVal = getI32Imm(Elt - 16, dl);
- SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
- EltVal = getI32Imm(-16, dl);
- SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
- ReplaceNode(N, CurDAG->getMachineNode(Opc3, dl, VT, SDValue(Tmp1, 0),
- SDValue(Tmp2, 0)));
- return;
- } else {
- // Elt is odd and negative, in the range [-31,-17].
- //
- // Convert: VADD_SPLAT elt, size
- // Into: tmp1 = VSPLTIS[BHW] elt+16
- // tmp2 = VSPLTIS[BHW] -16
- // VADDU[BHW]M tmp1, tmp2
- SDValue EltVal = getI32Imm(Elt + 16, dl);
- SDNode *Tmp1 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
- EltVal = getI32Imm(-16, dl);
- SDNode *Tmp2 = CurDAG->getMachineNode(Opc1, dl, VT, EltVal);
- ReplaceNode(N, CurDAG->getMachineNode(Opc2, dl, VT, SDValue(Tmp1, 0),
- SDValue(Tmp2, 0)));
- return;
- }
- }
- case PPCISD::LD_SPLAT: {
- // Here we want to handle splat load for type v16i8 and v8i16 when there is
- // no direct move, we don't need to use stack for this case. If target has
- // direct move, we should be able to get the best selection in the .td file.
- if (!Subtarget->hasAltivec() || Subtarget->hasDirectMove())
- break;
- EVT Type = N->getValueType(0);
- if (Type != MVT::v16i8 && Type != MVT::v8i16)
- break;
- // If the alignment for the load is 16 or bigger, we don't need the
- // permutated mask to get the required value. The value must be the 0
- // element in big endian target or 7/15 in little endian target in the
- // result vsx register of lvx instruction.
- // Select the instruction in the .td file.
- if (cast<MemIntrinsicSDNode>(N)->getAlign() >= Align(16) &&
- isOffsetMultipleOf(N, 16))
- break;
- SDValue ZeroReg =
- CurDAG->getRegister(Subtarget->isPPC64() ? PPC::ZERO8 : PPC::ZERO,
- Subtarget->isPPC64() ? MVT::i64 : MVT::i32);
- unsigned LIOpcode = Subtarget->isPPC64() ? PPC::LI8 : PPC::LI;
- // v16i8 LD_SPLAT addr
- // ======>
- // Mask = LVSR/LVSL 0, addr
- // LoadLow = LVX 0, addr
- // Perm = VPERM LoadLow, LoadLow, Mask
- // Splat = VSPLTB 15/0, Perm
- //
- // v8i16 LD_SPLAT addr
- // ======>
- // Mask = LVSR/LVSL 0, addr
- // LoadLow = LVX 0, addr
- // LoadHigh = LVX (LI, 1), addr
- // Perm = VPERM LoadLow, LoadHigh, Mask
- // Splat = VSPLTH 7/0, Perm
- unsigned SplatOp = (Type == MVT::v16i8) ? PPC::VSPLTB : PPC::VSPLTH;
- unsigned SplatElemIndex =
- Subtarget->isLittleEndian() ? ((Type == MVT::v16i8) ? 15 : 7) : 0;
- SDNode *Mask = CurDAG->getMachineNode(
- Subtarget->isLittleEndian() ? PPC::LVSR : PPC::LVSL, dl, Type, ZeroReg,
- N->getOperand(1));
- SDNode *LoadLow =
- CurDAG->getMachineNode(PPC::LVX, dl, MVT::v16i8, MVT::Other,
- {ZeroReg, N->getOperand(1), N->getOperand(0)});
- SDNode *LoadHigh = LoadLow;
- if (Type == MVT::v8i16) {
- LoadHigh = CurDAG->getMachineNode(
- PPC::LVX, dl, MVT::v16i8, MVT::Other,
- {SDValue(CurDAG->getMachineNode(
- LIOpcode, dl, MVT::i32,
- CurDAG->getTargetConstant(1, dl, MVT::i8)),
- 0),
- N->getOperand(1), SDValue(LoadLow, 1)});
- }
- CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(LoadHigh, 1));
- transferMemOperands(N, LoadHigh);
- SDNode *Perm =
- CurDAG->getMachineNode(PPC::VPERM, dl, Type, SDValue(LoadLow, 0),
- SDValue(LoadHigh, 0), SDValue(Mask, 0));
- CurDAG->SelectNodeTo(N, SplatOp, Type,
- CurDAG->getTargetConstant(SplatElemIndex, dl, MVT::i8),
- SDValue(Perm, 0));
- return;
- }
- }
- SelectCode(N);
- }
- // If the target supports the cmpb instruction, do the idiom recognition here.
- // We don't do this as a DAG combine because we don't want to do it as nodes
- // are being combined (because we might miss part of the eventual idiom). We
- // don't want to do it during instruction selection because we want to reuse
- // the logic for lowering the masking operations already part of the
- // instruction selector.
- SDValue PPCDAGToDAGISel::combineToCMPB(SDNode *N) {
- SDLoc dl(N);
- assert(N->getOpcode() == ISD::OR &&
- "Only OR nodes are supported for CMPB");
- SDValue Res;
- if (!Subtarget->hasCMPB())
- return Res;
- if (N->getValueType(0) != MVT::i32 &&
- N->getValueType(0) != MVT::i64)
- return Res;
- EVT VT = N->getValueType(0);
- SDValue RHS, LHS;
- bool BytesFound[8] = {false, false, false, false, false, false, false, false};
- uint64_t Mask = 0, Alt = 0;
- auto IsByteSelectCC = [this](SDValue O, unsigned &b,
- uint64_t &Mask, uint64_t &Alt,
- SDValue &LHS, SDValue &RHS) {
- if (O.getOpcode() != ISD::SELECT_CC)
- return false;
- ISD::CondCode CC = cast<CondCodeSDNode>(O.getOperand(4))->get();
- if (!isa<ConstantSDNode>(O.getOperand(2)) ||
- !isa<ConstantSDNode>(O.getOperand(3)))
- return false;
- uint64_t PM = O.getConstantOperandVal(2);
- uint64_t PAlt = O.getConstantOperandVal(3);
- for (b = 0; b < 8; ++b) {
- uint64_t Mask = UINT64_C(0xFF) << (8*b);
- if (PM && (PM & Mask) == PM && (PAlt & Mask) == PAlt)
- break;
- }
- if (b == 8)
- return false;
- Mask |= PM;
- Alt |= PAlt;
- if (!isa<ConstantSDNode>(O.getOperand(1)) ||
- O.getConstantOperandVal(1) != 0) {
- SDValue Op0 = O.getOperand(0), Op1 = O.getOperand(1);
- if (Op0.getOpcode() == ISD::TRUNCATE)
- Op0 = Op0.getOperand(0);
- if (Op1.getOpcode() == ISD::TRUNCATE)
- Op1 = Op1.getOperand(0);
- if (Op0.getOpcode() == ISD::SRL && Op1.getOpcode() == ISD::SRL &&
- Op0.getOperand(1) == Op1.getOperand(1) && CC == ISD::SETEQ &&
- isa<ConstantSDNode>(Op0.getOperand(1))) {
- unsigned Bits = Op0.getValueSizeInBits();
- if (b != Bits/8-1)
- return false;
- if (Op0.getConstantOperandVal(1) != Bits-8)
- return false;
- LHS = Op0.getOperand(0);
- RHS = Op1.getOperand(0);
- return true;
- }
- // When we have small integers (i16 to be specific), the form present
- // post-legalization uses SETULT in the SELECT_CC for the
- // higher-order byte, depending on the fact that the
- // even-higher-order bytes are known to all be zero, for example:
- // select_cc (xor $lhs, $rhs), 256, 65280, 0, setult
- // (so when the second byte is the same, because all higher-order
- // bits from bytes 3 and 4 are known to be zero, the result of the
- // xor can be at most 255)
- if (Op0.getOpcode() == ISD::XOR && CC == ISD::SETULT &&
- isa<ConstantSDNode>(O.getOperand(1))) {
- uint64_t ULim = O.getConstantOperandVal(1);
- if (ULim != (UINT64_C(1) << b*8))
- return false;
- // Now we need to make sure that the upper bytes are known to be
- // zero.
- unsigned Bits = Op0.getValueSizeInBits();
- if (!CurDAG->MaskedValueIsZero(
- Op0, APInt::getHighBitsSet(Bits, Bits - (b + 1) * 8)))
- return false;
- LHS = Op0.getOperand(0);
- RHS = Op0.getOperand(1);
- return true;
- }
- return false;
- }
- if (CC != ISD::SETEQ)
- return false;
- SDValue Op = O.getOperand(0);
- if (Op.getOpcode() == ISD::AND) {
- if (!isa<ConstantSDNode>(Op.getOperand(1)))
- return false;
- if (Op.getConstantOperandVal(1) != (UINT64_C(0xFF) << (8*b)))
- return false;
- SDValue XOR = Op.getOperand(0);
- if (XOR.getOpcode() == ISD::TRUNCATE)
- XOR = XOR.getOperand(0);
- if (XOR.getOpcode() != ISD::XOR)
- return false;
- LHS = XOR.getOperand(0);
- RHS = XOR.getOperand(1);
- return true;
- } else if (Op.getOpcode() == ISD::SRL) {
- if (!isa<ConstantSDNode>(Op.getOperand(1)))
- return false;
- unsigned Bits = Op.getValueSizeInBits();
- if (b != Bits/8-1)
- return false;
- if (Op.getConstantOperandVal(1) != Bits-8)
- return false;
- SDValue XOR = Op.getOperand(0);
- if (XOR.getOpcode() == ISD::TRUNCATE)
- XOR = XOR.getOperand(0);
- if (XOR.getOpcode() != ISD::XOR)
- return false;
- LHS = XOR.getOperand(0);
- RHS = XOR.getOperand(1);
- return true;
- }
- return false;
- };
- SmallVector<SDValue, 8> Queue(1, SDValue(N, 0));
- while (!Queue.empty()) {
- SDValue V = Queue.pop_back_val();
- for (const SDValue &O : V.getNode()->ops()) {
- unsigned b = 0;
- uint64_t M = 0, A = 0;
- SDValue OLHS, ORHS;
- if (O.getOpcode() == ISD::OR) {
- Queue.push_back(O);
- } else if (IsByteSelectCC(O, b, M, A, OLHS, ORHS)) {
- if (!LHS) {
- LHS = OLHS;
- RHS = ORHS;
- BytesFound[b] = true;
- Mask |= M;
- Alt |= A;
- } else if ((LHS == ORHS && RHS == OLHS) ||
- (RHS == ORHS && LHS == OLHS)) {
- BytesFound[b] = true;
- Mask |= M;
- Alt |= A;
- } else {
- return Res;
- }
- } else {
- return Res;
- }
- }
- }
- unsigned LastB = 0, BCnt = 0;
- for (unsigned i = 0; i < 8; ++i)
- if (BytesFound[LastB]) {
- ++BCnt;
- LastB = i;
- }
- if (!LastB || BCnt < 2)
- return Res;
- // Because we'll be zero-extending the output anyway if don't have a specific
- // value for each input byte (via the Mask), we can 'anyext' the inputs.
- if (LHS.getValueType() != VT) {
- LHS = CurDAG->getAnyExtOrTrunc(LHS, dl, VT);
- RHS = CurDAG->getAnyExtOrTrunc(RHS, dl, VT);
- }
- Res = CurDAG->getNode(PPCISD::CMPB, dl, VT, LHS, RHS);
- bool NonTrivialMask = ((int64_t) Mask) != INT64_C(-1);
- if (NonTrivialMask && !Alt) {
- // Res = Mask & CMPB
- Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
- CurDAG->getConstant(Mask, dl, VT));
- } else if (Alt) {
- // Res = (CMPB & Mask) | (~CMPB & Alt)
- // Which, as suggested here:
- // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge
- // can be written as:
- // Res = Alt ^ ((Alt ^ Mask) & CMPB)
- // useful because the (Alt ^ Mask) can be pre-computed.
- Res = CurDAG->getNode(ISD::AND, dl, VT, Res,
- CurDAG->getConstant(Mask ^ Alt, dl, VT));
- Res = CurDAG->getNode(ISD::XOR, dl, VT, Res,
- CurDAG->getConstant(Alt, dl, VT));
- }
- return Res;
- }
- // When CR bit registers are enabled, an extension of an i1 variable to a i32
- // or i64 value is lowered in terms of a SELECT_I[48] operation, and thus
- // involves constant materialization of a 0 or a 1 or both. If the result of
- // the extension is then operated upon by some operator that can be constant
- // folded with a constant 0 or 1, and that constant can be materialized using
- // only one instruction (like a zero or one), then we should fold in those
- // operations with the select.
- void PPCDAGToDAGISel::foldBoolExts(SDValue &Res, SDNode *&N) {
- if (!Subtarget->useCRBits())
- return;
- if (N->getOpcode() != ISD::ZERO_EXTEND &&
- N->getOpcode() != ISD::SIGN_EXTEND &&
- N->getOpcode() != ISD::ANY_EXTEND)
- return;
- if (N->getOperand(0).getValueType() != MVT::i1)
- return;
- if (!N->hasOneUse())
- return;
- SDLoc dl(N);
- EVT VT = N->getValueType(0);
- SDValue Cond = N->getOperand(0);
- SDValue ConstTrue =
- CurDAG->getConstant(N->getOpcode() == ISD::SIGN_EXTEND ? -1 : 1, dl, VT);
- SDValue ConstFalse = CurDAG->getConstant(0, dl, VT);
- do {
- SDNode *User = *N->use_begin();
- if (User->getNumOperands() != 2)
- break;
- auto TryFold = [this, N, User, dl](SDValue Val) {
- SDValue UserO0 = User->getOperand(0), UserO1 = User->getOperand(1);
- SDValue O0 = UserO0.getNode() == N ? Val : UserO0;
- SDValue O1 = UserO1.getNode() == N ? Val : UserO1;
- return CurDAG->FoldConstantArithmetic(User->getOpcode(), dl,
- User->getValueType(0), {O0, O1});
- };
- // FIXME: When the semantics of the interaction between select and undef
- // are clearly defined, it may turn out to be unnecessary to break here.
- SDValue TrueRes = TryFold(ConstTrue);
- if (!TrueRes || TrueRes.isUndef())
- break;
- SDValue FalseRes = TryFold(ConstFalse);
- if (!FalseRes || FalseRes.isUndef())
- break;
- // For us to materialize these using one instruction, we must be able to
- // represent them as signed 16-bit integers.
- uint64_t True = cast<ConstantSDNode>(TrueRes)->getZExtValue(),
- False = cast<ConstantSDNode>(FalseRes)->getZExtValue();
- if (!isInt<16>(True) || !isInt<16>(False))
- break;
- // We can replace User with a new SELECT node, and try again to see if we
- // can fold the select with its user.
- Res = CurDAG->getSelect(dl, User->getValueType(0), Cond, TrueRes, FalseRes);
- N = User;
- ConstTrue = TrueRes;
- ConstFalse = FalseRes;
- } while (N->hasOneUse());
- }
- void PPCDAGToDAGISel::PreprocessISelDAG() {
- SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
- bool MadeChange = false;
- while (Position != CurDAG->allnodes_begin()) {
- SDNode *N = &*--Position;
- if (N->use_empty())
- continue;
- SDValue Res;
- switch (N->getOpcode()) {
- default: break;
- case ISD::OR:
- Res = combineToCMPB(N);
- break;
- }
- if (!Res)
- foldBoolExts(Res, N);
- if (Res) {
- LLVM_DEBUG(dbgs() << "PPC DAG preprocessing replacing:\nOld: ");
- LLVM_DEBUG(N->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(Res.getNode()->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
- CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
- MadeChange = true;
- }
- }
- if (MadeChange)
- CurDAG->RemoveDeadNodes();
- }
- /// PostprocessISelDAG - Perform some late peephole optimizations
- /// on the DAG representation.
- void PPCDAGToDAGISel::PostprocessISelDAG() {
- // Skip peepholes at -O0.
- if (TM.getOptLevel() == CodeGenOpt::None)
- return;
- PeepholePPC64();
- PeepholeCROps();
- PeepholePPC64ZExt();
- }
- // Check if all users of this node will become isel where the second operand
- // is the constant zero. If this is so, and if we can negate the condition,
- // then we can flip the true and false operands. This will allow the zero to
- // be folded with the isel so that we don't need to materialize a register
- // containing zero.
- bool PPCDAGToDAGISel::AllUsersSelectZero(SDNode *N) {
- for (const SDNode *User : N->uses()) {
- if (!User->isMachineOpcode())
- return false;
- if (User->getMachineOpcode() != PPC::SELECT_I4 &&
- User->getMachineOpcode() != PPC::SELECT_I8)
- return false;
- SDNode *Op1 = User->getOperand(1).getNode();
- SDNode *Op2 = User->getOperand(2).getNode();
- // If we have a degenerate select with two equal operands, swapping will
- // not do anything, and we may run into an infinite loop.
- if (Op1 == Op2)
- return false;
- if (!Op2->isMachineOpcode())
- return false;
- if (Op2->getMachineOpcode() != PPC::LI &&
- Op2->getMachineOpcode() != PPC::LI8)
- return false;
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2->getOperand(0));
- if (!C)
- return false;
- if (!C->isZero())
- return false;
- }
- return true;
- }
- void PPCDAGToDAGISel::SwapAllSelectUsers(SDNode *N) {
- SmallVector<SDNode *, 4> ToReplace;
- for (SDNode *User : N->uses()) {
- assert((User->getMachineOpcode() == PPC::SELECT_I4 ||
- User->getMachineOpcode() == PPC::SELECT_I8) &&
- "Must have all select users");
- ToReplace.push_back(User);
- }
- for (SDNode *User : ToReplace) {
- SDNode *ResNode =
- CurDAG->getMachineNode(User->getMachineOpcode(), SDLoc(User),
- User->getValueType(0), User->getOperand(0),
- User->getOperand(2),
- User->getOperand(1));
- LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
- LLVM_DEBUG(User->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(ResNode->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
- ReplaceUses(User, ResNode);
- }
- }
- void PPCDAGToDAGISel::PeepholeCROps() {
- bool IsModified;
- do {
- IsModified = false;
- for (SDNode &Node : CurDAG->allnodes()) {
- MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(&Node);
- if (!MachineNode || MachineNode->use_empty())
- continue;
- SDNode *ResNode = MachineNode;
- bool Op1Set = false, Op1Unset = false,
- Op1Not = false,
- Op2Set = false, Op2Unset = false,
- Op2Not = false;
- unsigned Opcode = MachineNode->getMachineOpcode();
- switch (Opcode) {
- default: break;
- case PPC::CRAND:
- case PPC::CRNAND:
- case PPC::CROR:
- case PPC::CRXOR:
- case PPC::CRNOR:
- case PPC::CREQV:
- case PPC::CRANDC:
- case PPC::CRORC: {
- SDValue Op = MachineNode->getOperand(1);
- if (Op.isMachineOpcode()) {
- if (Op.getMachineOpcode() == PPC::CRSET)
- Op2Set = true;
- else if (Op.getMachineOpcode() == PPC::CRUNSET)
- Op2Unset = true;
- else if (Op.getMachineOpcode() == PPC::CRNOR &&
- Op.getOperand(0) == Op.getOperand(1))
- Op2Not = true;
- }
- LLVM_FALLTHROUGH;
- }
- case PPC::BC:
- case PPC::BCn:
- case PPC::SELECT_I4:
- case PPC::SELECT_I8:
- case PPC::SELECT_F4:
- case PPC::SELECT_F8:
- case PPC::SELECT_SPE:
- case PPC::SELECT_SPE4:
- case PPC::SELECT_VRRC:
- case PPC::SELECT_VSFRC:
- case PPC::SELECT_VSSRC:
- case PPC::SELECT_VSRC: {
- SDValue Op = MachineNode->getOperand(0);
- if (Op.isMachineOpcode()) {
- if (Op.getMachineOpcode() == PPC::CRSET)
- Op1Set = true;
- else if (Op.getMachineOpcode() == PPC::CRUNSET)
- Op1Unset = true;
- else if (Op.getMachineOpcode() == PPC::CRNOR &&
- Op.getOperand(0) == Op.getOperand(1))
- Op1Not = true;
- }
- }
- break;
- }
- bool SelectSwap = false;
- switch (Opcode) {
- default: break;
- case PPC::CRAND:
- if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
- // x & x = x
- ResNode = MachineNode->getOperand(0).getNode();
- else if (Op1Set)
- // 1 & y = y
- ResNode = MachineNode->getOperand(1).getNode();
- else if (Op2Set)
- // x & 1 = x
- ResNode = MachineNode->getOperand(0).getNode();
- else if (Op1Unset || Op2Unset)
- // x & 0 = 0 & y = 0
- ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op1Not)
- // ~x & y = andc(y, x)
- ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(0).
- getOperand(0));
- else if (Op2Not)
- // x & ~y = andc(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1).
- getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
- ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
- SelectSwap = true;
- }
- break;
- case PPC::CRNAND:
- if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
- // nand(x, x) -> nor(x, x)
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(0));
- else if (Op1Set)
- // nand(1, y) -> nor(y, y)
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(1));
- else if (Op2Set)
- // nand(x, 1) -> nor(x, x)
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(0));
- else if (Op1Unset || Op2Unset)
- // nand(x, 0) = nand(0, y) = 1
- ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op1Not)
- // nand(~x, y) = ~(~x & y) = x | ~y = orc(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0).
- getOperand(0),
- MachineNode->getOperand(1));
- else if (Op2Not)
- // nand(x, ~y) = ~x | y = orc(y, x)
- ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1).
- getOperand(0),
- MachineNode->getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
- ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
- SelectSwap = true;
- }
- break;
- case PPC::CROR:
- if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
- // x | x = x
- ResNode = MachineNode->getOperand(0).getNode();
- else if (Op1Set || Op2Set)
- // x | 1 = 1 | y = 1
- ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op1Unset)
- // 0 | y = y
- ResNode = MachineNode->getOperand(1).getNode();
- else if (Op2Unset)
- // x | 0 = x
- ResNode = MachineNode->getOperand(0).getNode();
- else if (Op1Not)
- // ~x | y = orc(y, x)
- ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(0).
- getOperand(0));
- else if (Op2Not)
- // x | ~y = orc(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1).
- getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
- SelectSwap = true;
- }
- break;
- case PPC::CRXOR:
- if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
- // xor(x, x) = 0
- ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op1Set)
- // xor(1, y) -> nor(y, y)
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(1));
- else if (Op2Set)
- // xor(x, 1) -> nor(x, x)
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(0));
- else if (Op1Unset)
- // xor(0, y) = y
- ResNode = MachineNode->getOperand(1).getNode();
- else if (Op2Unset)
- // xor(x, 0) = x
- ResNode = MachineNode->getOperand(0).getNode();
- else if (Op1Not)
- // xor(~x, y) = eqv(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0).
- getOperand(0),
- MachineNode->getOperand(1));
- else if (Op2Not)
- // xor(x, ~y) = eqv(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1).
- getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
- ResNode = CurDAG->getMachineNode(PPC::CREQV, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
- SelectSwap = true;
- }
- break;
- case PPC::CRNOR:
- if (Op1Set || Op2Set)
- // nor(1, y) -> 0
- ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op1Unset)
- // nor(0, y) = ~y -> nor(y, y)
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(1));
- else if (Op2Unset)
- // nor(x, 0) = ~x
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(0));
- else if (Op1Not)
- // nor(~x, y) = andc(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0).
- getOperand(0),
- MachineNode->getOperand(1));
- else if (Op2Not)
- // nor(x, ~y) = andc(y, x)
- ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1).
- getOperand(0),
- MachineNode->getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
- ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
- SelectSwap = true;
- }
- break;
- case PPC::CREQV:
- if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
- // eqv(x, x) = 1
- ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op1Set)
- // eqv(1, y) = y
- ResNode = MachineNode->getOperand(1).getNode();
- else if (Op2Set)
- // eqv(x, 1) = x
- ResNode = MachineNode->getOperand(0).getNode();
- else if (Op1Unset)
- // eqv(0, y) = ~y -> nor(y, y)
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(1));
- else if (Op2Unset)
- // eqv(x, 0) = ~x
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(0));
- else if (Op1Not)
- // eqv(~x, y) = xor(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0).
- getOperand(0),
- MachineNode->getOperand(1));
- else if (Op2Not)
- // eqv(x, ~y) = xor(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1).
- getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
- ResNode = CurDAG->getMachineNode(PPC::CRXOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1));
- SelectSwap = true;
- }
- break;
- case PPC::CRANDC:
- if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
- // andc(x, x) = 0
- ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op1Set)
- // andc(1, y) = ~y
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(1));
- else if (Op1Unset || Op2Set)
- // andc(0, y) = andc(x, 1) = 0
- ResNode = CurDAG->getMachineNode(PPC::CRUNSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op2Unset)
- // andc(x, 0) = x
- ResNode = MachineNode->getOperand(0).getNode();
- else if (Op1Not)
- // andc(~x, y) = ~(x | y) = nor(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0).
- getOperand(0),
- MachineNode->getOperand(1));
- else if (Op2Not)
- // andc(x, ~y) = x & y
- ResNode = CurDAG->getMachineNode(PPC::CRAND, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1).
- getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
- ResNode = CurDAG->getMachineNode(PPC::CRORC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(0));
- SelectSwap = true;
- }
- break;
- case PPC::CRORC:
- if (MachineNode->getOperand(0) == MachineNode->getOperand(1))
- // orc(x, x) = 1
- ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op1Set || Op2Unset)
- // orc(1, y) = orc(x, 0) = 1
- ResNode = CurDAG->getMachineNode(PPC::CRSET, SDLoc(MachineNode),
- MVT::i1);
- else if (Op2Set)
- // orc(x, 1) = x
- ResNode = MachineNode->getOperand(0).getNode();
- else if (Op1Unset)
- // orc(0, y) = ~y
- ResNode = CurDAG->getMachineNode(PPC::CRNOR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(1));
- else if (Op1Not)
- // orc(~x, y) = ~(x & y) = nand(x, y)
- ResNode = CurDAG->getMachineNode(PPC::CRNAND, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0).
- getOperand(0),
- MachineNode->getOperand(1));
- else if (Op2Not)
- // orc(x, ~y) = x | y
- ResNode = CurDAG->getMachineNode(PPC::CROR, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(0),
- MachineNode->getOperand(1).
- getOperand(0));
- else if (AllUsersSelectZero(MachineNode)) {
- ResNode = CurDAG->getMachineNode(PPC::CRANDC, SDLoc(MachineNode),
- MVT::i1, MachineNode->getOperand(1),
- MachineNode->getOperand(0));
- SelectSwap = true;
- }
- break;
- case PPC::SELECT_I4:
- case PPC::SELECT_I8:
- case PPC::SELECT_F4:
- case PPC::SELECT_F8:
- case PPC::SELECT_SPE:
- case PPC::SELECT_SPE4:
- case PPC::SELECT_VRRC:
- case PPC::SELECT_VSFRC:
- case PPC::SELECT_VSSRC:
- case PPC::SELECT_VSRC:
- if (Op1Set)
- ResNode = MachineNode->getOperand(1).getNode();
- else if (Op1Unset)
- ResNode = MachineNode->getOperand(2).getNode();
- else if (Op1Not)
- ResNode = CurDAG->getMachineNode(MachineNode->getMachineOpcode(),
- SDLoc(MachineNode),
- MachineNode->getValueType(0),
- MachineNode->getOperand(0).
- getOperand(0),
- MachineNode->getOperand(2),
- MachineNode->getOperand(1));
- break;
- case PPC::BC:
- case PPC::BCn:
- if (Op1Not)
- ResNode = CurDAG->getMachineNode(Opcode == PPC::BC ? PPC::BCn :
- PPC::BC,
- SDLoc(MachineNode),
- MVT::Other,
- MachineNode->getOperand(0).
- getOperand(0),
- MachineNode->getOperand(1),
- MachineNode->getOperand(2));
- // FIXME: Handle Op1Set, Op1Unset here too.
- break;
- }
- // If we're inverting this node because it is used only by selects that
- // we'd like to swap, then swap the selects before the node replacement.
- if (SelectSwap)
- SwapAllSelectUsers(MachineNode);
- if (ResNode != MachineNode) {
- LLVM_DEBUG(dbgs() << "CR Peephole replacing:\nOld: ");
- LLVM_DEBUG(MachineNode->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(ResNode->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
- ReplaceUses(MachineNode, ResNode);
- IsModified = true;
- }
- }
- if (IsModified)
- CurDAG->RemoveDeadNodes();
- } while (IsModified);
- }
- // Gather the set of 32-bit operations that are known to have their
- // higher-order 32 bits zero, where ToPromote contains all such operations.
- static bool PeepholePPC64ZExtGather(SDValue Op32,
- SmallPtrSetImpl<SDNode *> &ToPromote) {
- if (!Op32.isMachineOpcode())
- return false;
- // First, check for the "frontier" instructions (those that will clear the
- // higher-order 32 bits.
- // For RLWINM and RLWNM, we need to make sure that the mask does not wrap
- // around. If it does not, then these instructions will clear the
- // higher-order bits.
- if ((Op32.getMachineOpcode() == PPC::RLWINM ||
- Op32.getMachineOpcode() == PPC::RLWNM) &&
- Op32.getConstantOperandVal(2) <= Op32.getConstantOperandVal(3)) {
- ToPromote.insert(Op32.getNode());
- return true;
- }
- // SLW and SRW always clear the higher-order bits.
- if (Op32.getMachineOpcode() == PPC::SLW ||
- Op32.getMachineOpcode() == PPC::SRW) {
- ToPromote.insert(Op32.getNode());
- return true;
- }
- // For LI and LIS, we need the immediate to be positive (so that it is not
- // sign extended).
- if (Op32.getMachineOpcode() == PPC::LI ||
- Op32.getMachineOpcode() == PPC::LIS) {
- if (!isUInt<15>(Op32.getConstantOperandVal(0)))
- return false;
- ToPromote.insert(Op32.getNode());
- return true;
- }
- // LHBRX and LWBRX always clear the higher-order bits.
- if (Op32.getMachineOpcode() == PPC::LHBRX ||
- Op32.getMachineOpcode() == PPC::LWBRX) {
- ToPromote.insert(Op32.getNode());
- return true;
- }
- // CNT[LT]ZW always produce a 64-bit value in [0,32], and so is zero extended.
- if (Op32.getMachineOpcode() == PPC::CNTLZW ||
- Op32.getMachineOpcode() == PPC::CNTTZW) {
- ToPromote.insert(Op32.getNode());
- return true;
- }
- // Next, check for those instructions we can look through.
- // Assuming the mask does not wrap around, then the higher-order bits are
- // taken directly from the first operand.
- if (Op32.getMachineOpcode() == PPC::RLWIMI &&
- Op32.getConstantOperandVal(3) <= Op32.getConstantOperandVal(4)) {
- SmallPtrSet<SDNode *, 16> ToPromote1;
- if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
- return false;
- ToPromote.insert(Op32.getNode());
- ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
- return true;
- }
- // For OR, the higher-order bits are zero if that is true for both operands.
- // For SELECT_I4, the same is true (but the relevant operand numbers are
- // shifted by 1).
- if (Op32.getMachineOpcode() == PPC::OR ||
- Op32.getMachineOpcode() == PPC::SELECT_I4) {
- unsigned B = Op32.getMachineOpcode() == PPC::SELECT_I4 ? 1 : 0;
- SmallPtrSet<SDNode *, 16> ToPromote1;
- if (!PeepholePPC64ZExtGather(Op32.getOperand(B+0), ToPromote1))
- return false;
- if (!PeepholePPC64ZExtGather(Op32.getOperand(B+1), ToPromote1))
- return false;
- ToPromote.insert(Op32.getNode());
- ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
- return true;
- }
- // For ORI and ORIS, we need the higher-order bits of the first operand to be
- // zero, and also for the constant to be positive (so that it is not sign
- // extended).
- if (Op32.getMachineOpcode() == PPC::ORI ||
- Op32.getMachineOpcode() == PPC::ORIS) {
- SmallPtrSet<SDNode *, 16> ToPromote1;
- if (!PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1))
- return false;
- if (!isUInt<15>(Op32.getConstantOperandVal(1)))
- return false;
- ToPromote.insert(Op32.getNode());
- ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
- return true;
- }
- // The higher-order bits of AND are zero if that is true for at least one of
- // the operands.
- if (Op32.getMachineOpcode() == PPC::AND) {
- SmallPtrSet<SDNode *, 16> ToPromote1, ToPromote2;
- bool Op0OK =
- PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
- bool Op1OK =
- PeepholePPC64ZExtGather(Op32.getOperand(1), ToPromote2);
- if (!Op0OK && !Op1OK)
- return false;
- ToPromote.insert(Op32.getNode());
- if (Op0OK)
- ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
- if (Op1OK)
- ToPromote.insert(ToPromote2.begin(), ToPromote2.end());
- return true;
- }
- // For ANDI and ANDIS, the higher-order bits are zero if either that is true
- // of the first operand, or if the second operand is positive (so that it is
- // not sign extended).
- if (Op32.getMachineOpcode() == PPC::ANDI_rec ||
- Op32.getMachineOpcode() == PPC::ANDIS_rec) {
- SmallPtrSet<SDNode *, 16> ToPromote1;
- bool Op0OK =
- PeepholePPC64ZExtGather(Op32.getOperand(0), ToPromote1);
- bool Op1OK = isUInt<15>(Op32.getConstantOperandVal(1));
- if (!Op0OK && !Op1OK)
- return false;
- ToPromote.insert(Op32.getNode());
- if (Op0OK)
- ToPromote.insert(ToPromote1.begin(), ToPromote1.end());
- return true;
- }
- return false;
- }
- void PPCDAGToDAGISel::PeepholePPC64ZExt() {
- if (!Subtarget->isPPC64())
- return;
- // When we zero-extend from i32 to i64, we use a pattern like this:
- // def : Pat<(i64 (zext i32:$in)),
- // (RLDICL (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $in, sub_32),
- // 0, 32)>;
- // There are several 32-bit shift/rotate instructions, however, that will
- // clear the higher-order bits of their output, rendering the RLDICL
- // unnecessary. When that happens, we remove it here, and redefine the
- // relevant 32-bit operation to be a 64-bit operation.
- SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
- bool MadeChange = false;
- while (Position != CurDAG->allnodes_begin()) {
- SDNode *N = &*--Position;
- // Skip dead nodes and any non-machine opcodes.
- if (N->use_empty() || !N->isMachineOpcode())
- continue;
- if (N->getMachineOpcode() != PPC::RLDICL)
- continue;
- if (N->getConstantOperandVal(1) != 0 ||
- N->getConstantOperandVal(2) != 32)
- continue;
- SDValue ISR = N->getOperand(0);
- if (!ISR.isMachineOpcode() ||
- ISR.getMachineOpcode() != TargetOpcode::INSERT_SUBREG)
- continue;
- if (!ISR.hasOneUse())
- continue;
- if (ISR.getConstantOperandVal(2) != PPC::sub_32)
- continue;
- SDValue IDef = ISR.getOperand(0);
- if (!IDef.isMachineOpcode() ||
- IDef.getMachineOpcode() != TargetOpcode::IMPLICIT_DEF)
- continue;
- // We now know that we're looking at a canonical i32 -> i64 zext. See if we
- // can get rid of it.
- SDValue Op32 = ISR->getOperand(1);
- if (!Op32.isMachineOpcode())
- continue;
- // There are some 32-bit instructions that always clear the high-order 32
- // bits, there are also some instructions (like AND) that we can look
- // through.
- SmallPtrSet<SDNode *, 16> ToPromote;
- if (!PeepholePPC64ZExtGather(Op32, ToPromote))
- continue;
- // If the ToPromote set contains nodes that have uses outside of the set
- // (except for the original INSERT_SUBREG), then abort the transformation.
- bool OutsideUse = false;
- for (SDNode *PN : ToPromote) {
- for (SDNode *UN : PN->uses()) {
- if (!ToPromote.count(UN) && UN != ISR.getNode()) {
- OutsideUse = true;
- break;
- }
- }
- if (OutsideUse)
- break;
- }
- if (OutsideUse)
- continue;
- MadeChange = true;
- // We now know that this zero extension can be removed by promoting to
- // nodes in ToPromote to 64-bit operations, where for operations in the
- // frontier of the set, we need to insert INSERT_SUBREGs for their
- // operands.
- for (SDNode *PN : ToPromote) {
- unsigned NewOpcode;
- switch (PN->getMachineOpcode()) {
- default:
- llvm_unreachable("Don't know the 64-bit variant of this instruction");
- case PPC::RLWINM: NewOpcode = PPC::RLWINM8; break;
- case PPC::RLWNM: NewOpcode = PPC::RLWNM8; break;
- case PPC::SLW: NewOpcode = PPC::SLW8; break;
- case PPC::SRW: NewOpcode = PPC::SRW8; break;
- case PPC::LI: NewOpcode = PPC::LI8; break;
- case PPC::LIS: NewOpcode = PPC::LIS8; break;
- case PPC::LHBRX: NewOpcode = PPC::LHBRX8; break;
- case PPC::LWBRX: NewOpcode = PPC::LWBRX8; break;
- case PPC::CNTLZW: NewOpcode = PPC::CNTLZW8; break;
- case PPC::CNTTZW: NewOpcode = PPC::CNTTZW8; break;
- case PPC::RLWIMI: NewOpcode = PPC::RLWIMI8; break;
- case PPC::OR: NewOpcode = PPC::OR8; break;
- case PPC::SELECT_I4: NewOpcode = PPC::SELECT_I8; break;
- case PPC::ORI: NewOpcode = PPC::ORI8; break;
- case PPC::ORIS: NewOpcode = PPC::ORIS8; break;
- case PPC::AND: NewOpcode = PPC::AND8; break;
- case PPC::ANDI_rec:
- NewOpcode = PPC::ANDI8_rec;
- break;
- case PPC::ANDIS_rec:
- NewOpcode = PPC::ANDIS8_rec;
- break;
- }
- // Note: During the replacement process, the nodes will be in an
- // inconsistent state (some instructions will have operands with values
- // of the wrong type). Once done, however, everything should be right
- // again.
- SmallVector<SDValue, 4> Ops;
- for (const SDValue &V : PN->ops()) {
- if (!ToPromote.count(V.getNode()) && V.getValueType() == MVT::i32 &&
- !isa<ConstantSDNode>(V)) {
- SDValue ReplOpOps[] = { ISR.getOperand(0), V, ISR.getOperand(2) };
- SDNode *ReplOp =
- CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, SDLoc(V),
- ISR.getNode()->getVTList(), ReplOpOps);
- Ops.push_back(SDValue(ReplOp, 0));
- } else {
- Ops.push_back(V);
- }
- }
- // Because all to-be-promoted nodes only have users that are other
- // promoted nodes (or the original INSERT_SUBREG), we can safely replace
- // the i32 result value type with i64.
- SmallVector<EVT, 2> NewVTs;
- SDVTList VTs = PN->getVTList();
- for (unsigned i = 0, ie = VTs.NumVTs; i != ie; ++i)
- if (VTs.VTs[i] == MVT::i32)
- NewVTs.push_back(MVT::i64);
- else
- NewVTs.push_back(VTs.VTs[i]);
- LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole morphing:\nOld: ");
- LLVM_DEBUG(PN->dump(CurDAG));
- CurDAG->SelectNodeTo(PN, NewOpcode, CurDAG->getVTList(NewVTs), Ops);
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(PN->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
- }
- // Now we replace the original zero extend and its associated INSERT_SUBREG
- // with the value feeding the INSERT_SUBREG (which has now been promoted to
- // return an i64).
- LLVM_DEBUG(dbgs() << "PPC64 ZExt Peephole replacing:\nOld: ");
- LLVM_DEBUG(N->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nNew: ");
- LLVM_DEBUG(Op32.getNode()->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
- ReplaceUses(N, Op32.getNode());
- }
- if (MadeChange)
- CurDAG->RemoveDeadNodes();
- }
- static bool isVSXSwap(SDValue N) {
- if (!N->isMachineOpcode())
- return false;
- unsigned Opc = N->getMachineOpcode();
- // Single-operand XXPERMDI or the regular XXPERMDI/XXSLDWI where the immediate
- // operand is 2.
- if (Opc == PPC::XXPERMDIs) {
- return isa<ConstantSDNode>(N->getOperand(1)) &&
- N->getConstantOperandVal(1) == 2;
- } else if (Opc == PPC::XXPERMDI || Opc == PPC::XXSLDWI) {
- return N->getOperand(0) == N->getOperand(1) &&
- isa<ConstantSDNode>(N->getOperand(2)) &&
- N->getConstantOperandVal(2) == 2;
- }
- return false;
- }
- // TODO: Make this complete and replace with a table-gen bit.
- static bool isLaneInsensitive(SDValue N) {
- if (!N->isMachineOpcode())
- return false;
- unsigned Opc = N->getMachineOpcode();
- switch (Opc) {
- default:
- return false;
- case PPC::VAVGSB:
- case PPC::VAVGUB:
- case PPC::VAVGSH:
- case PPC::VAVGUH:
- case PPC::VAVGSW:
- case PPC::VAVGUW:
- case PPC::VMAXFP:
- case PPC::VMAXSB:
- case PPC::VMAXUB:
- case PPC::VMAXSH:
- case PPC::VMAXUH:
- case PPC::VMAXSW:
- case PPC::VMAXUW:
- case PPC::VMINFP:
- case PPC::VMINSB:
- case PPC::VMINUB:
- case PPC::VMINSH:
- case PPC::VMINUH:
- case PPC::VMINSW:
- case PPC::VMINUW:
- case PPC::VADDFP:
- case PPC::VADDUBM:
- case PPC::VADDUHM:
- case PPC::VADDUWM:
- case PPC::VSUBFP:
- case PPC::VSUBUBM:
- case PPC::VSUBUHM:
- case PPC::VSUBUWM:
- case PPC::VAND:
- case PPC::VANDC:
- case PPC::VOR:
- case PPC::VORC:
- case PPC::VXOR:
- case PPC::VNOR:
- case PPC::VMULUWM:
- return true;
- }
- }
- // Try to simplify (xxswap (vec-op (xxswap) (xxswap))) where vec-op is
- // lane-insensitive.
- static void reduceVSXSwap(SDNode *N, SelectionDAG *DAG) {
- // Our desired xxswap might be source of COPY_TO_REGCLASS.
- // TODO: Can we put this a common method for DAG?
- auto SkipRCCopy = [](SDValue V) {
- while (V->isMachineOpcode() &&
- V->getMachineOpcode() == TargetOpcode::COPY_TO_REGCLASS) {
- // All values in the chain should have single use.
- if (V->use_empty() || !V->use_begin()->isOnlyUserOf(V.getNode()))
- return SDValue();
- V = V->getOperand(0);
- }
- return V.hasOneUse() ? V : SDValue();
- };
- SDValue VecOp = SkipRCCopy(N->getOperand(0));
- if (!VecOp || !isLaneInsensitive(VecOp))
- return;
- SDValue LHS = SkipRCCopy(VecOp.getOperand(0)),
- RHS = SkipRCCopy(VecOp.getOperand(1));
- if (!LHS || !RHS || !isVSXSwap(LHS) || !isVSXSwap(RHS))
- return;
- // These swaps may still have chain-uses here, count on dead code elimination
- // in following passes to remove them.
- DAG->ReplaceAllUsesOfValueWith(LHS, LHS.getOperand(0));
- DAG->ReplaceAllUsesOfValueWith(RHS, RHS.getOperand(0));
- DAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), N->getOperand(0));
- }
- void PPCDAGToDAGISel::PeepholePPC64() {
- SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
- while (Position != CurDAG->allnodes_begin()) {
- SDNode *N = &*--Position;
- // Skip dead nodes and any non-machine opcodes.
- if (N->use_empty() || !N->isMachineOpcode())
- continue;
- if (isVSXSwap(SDValue(N, 0)))
- reduceVSXSwap(N, CurDAG);
- unsigned FirstOp;
- unsigned StorageOpcode = N->getMachineOpcode();
- bool RequiresMod4Offset = false;
- switch (StorageOpcode) {
- default: continue;
- case PPC::LWA:
- case PPC::LD:
- case PPC::DFLOADf64:
- case PPC::DFLOADf32:
- RequiresMod4Offset = true;
- LLVM_FALLTHROUGH;
- case PPC::LBZ:
- case PPC::LBZ8:
- case PPC::LFD:
- case PPC::LFS:
- case PPC::LHA:
- case PPC::LHA8:
- case PPC::LHZ:
- case PPC::LHZ8:
- case PPC::LWZ:
- case PPC::LWZ8:
- FirstOp = 0;
- break;
- case PPC::STD:
- case PPC::DFSTOREf64:
- case PPC::DFSTOREf32:
- RequiresMod4Offset = true;
- LLVM_FALLTHROUGH;
- case PPC::STB:
- case PPC::STB8:
- case PPC::STFD:
- case PPC::STFS:
- case PPC::STH:
- case PPC::STH8:
- case PPC::STW:
- case PPC::STW8:
- FirstOp = 1;
- break;
- }
- // If this is a load or store with a zero offset, or within the alignment,
- // we may be able to fold an add-immediate into the memory operation.
- // The check against alignment is below, as it can't occur until we check
- // the arguments to N
- if (!isa<ConstantSDNode>(N->getOperand(FirstOp)))
- continue;
- SDValue Base = N->getOperand(FirstOp + 1);
- if (!Base.isMachineOpcode())
- continue;
- unsigned Flags = 0;
- bool ReplaceFlags = true;
- // When the feeding operation is an add-immediate of some sort,
- // determine whether we need to add relocation information to the
- // target flags on the immediate operand when we fold it into the
- // load instruction.
- //
- // For something like ADDItocL, the relocation information is
- // inferred from the opcode; when we process it in the AsmPrinter,
- // we add the necessary relocation there. A load, though, can receive
- // relocation from various flavors of ADDIxxx, so we need to carry
- // the relocation information in the target flags.
- switch (Base.getMachineOpcode()) {
- default: continue;
- case PPC::ADDI8:
- case PPC::ADDI:
- // In some cases (such as TLS) the relocation information
- // is already in place on the operand, so copying the operand
- // is sufficient.
- ReplaceFlags = false;
- // For these cases, the immediate may not be divisible by 4, in
- // which case the fold is illegal for DS-form instructions. (The
- // other cases provide aligned addresses and are always safe.)
- if (RequiresMod4Offset &&
- (!isa<ConstantSDNode>(Base.getOperand(1)) ||
- Base.getConstantOperandVal(1) % 4 != 0))
- continue;
- break;
- case PPC::ADDIdtprelL:
- Flags = PPCII::MO_DTPREL_LO;
- break;
- case PPC::ADDItlsldL:
- Flags = PPCII::MO_TLSLD_LO;
- break;
- case PPC::ADDItocL:
- Flags = PPCII::MO_TOC_LO;
- break;
- }
- SDValue ImmOpnd = Base.getOperand(1);
- // On PPC64, the TOC base pointer is guaranteed by the ABI only to have
- // 8-byte alignment, and so we can only use offsets less than 8 (otherwise,
- // we might have needed different @ha relocation values for the offset
- // pointers).
- int MaxDisplacement = 7;
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
- const GlobalValue *GV = GA->getGlobal();
- Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
- MaxDisplacement = std::min((int)Alignment.value() - 1, MaxDisplacement);
- }
- bool UpdateHBase = false;
- SDValue HBase = Base.getOperand(0);
- int Offset = N->getConstantOperandVal(FirstOp);
- if (ReplaceFlags) {
- if (Offset < 0 || Offset > MaxDisplacement) {
- // If we have a addi(toc@l)/addis(toc@ha) pair, and the addis has only
- // one use, then we can do this for any offset, we just need to also
- // update the offset (i.e. the symbol addend) on the addis also.
- if (Base.getMachineOpcode() != PPC::ADDItocL)
- continue;
- if (!HBase.isMachineOpcode() ||
- HBase.getMachineOpcode() != PPC::ADDIStocHA8)
- continue;
- if (!Base.hasOneUse() || !HBase.hasOneUse())
- continue;
- SDValue HImmOpnd = HBase.getOperand(1);
- if (HImmOpnd != ImmOpnd)
- continue;
- UpdateHBase = true;
- }
- } else {
- // If we're directly folding the addend from an addi instruction, then:
- // 1. In general, the offset on the memory access must be zero.
- // 2. If the addend is a constant, then it can be combined with a
- // non-zero offset, but only if the result meets the encoding
- // requirements.
- if (auto *C = dyn_cast<ConstantSDNode>(ImmOpnd)) {
- Offset += C->getSExtValue();
- if (RequiresMod4Offset && (Offset % 4) != 0)
- continue;
- if (!isInt<16>(Offset))
- continue;
- ImmOpnd = CurDAG->getTargetConstant(Offset, SDLoc(ImmOpnd),
- ImmOpnd.getValueType());
- } else if (Offset != 0) {
- continue;
- }
- }
- // We found an opportunity. Reverse the operands from the add
- // immediate and substitute them into the load or store. If
- // needed, update the target flags for the immediate operand to
- // reflect the necessary relocation information.
- LLVM_DEBUG(dbgs() << "Folding add-immediate into mem-op:\nBase: ");
- LLVM_DEBUG(Base->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\nN: ");
- LLVM_DEBUG(N->dump(CurDAG));
- LLVM_DEBUG(dbgs() << "\n");
- // If the relocation information isn't already present on the
- // immediate operand, add it now.
- if (ReplaceFlags) {
- if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(ImmOpnd)) {
- SDLoc dl(GA);
- const GlobalValue *GV = GA->getGlobal();
- Align Alignment = GV->getPointerAlignment(CurDAG->getDataLayout());
- // We can't perform this optimization for data whose alignment
- // is insufficient for the instruction encoding.
- if (Alignment < 4 && (RequiresMod4Offset || (Offset % 4) != 0)) {
- LLVM_DEBUG(dbgs() << "Rejected this candidate for alignment.\n\n");
- continue;
- }
- ImmOpnd = CurDAG->getTargetGlobalAddress(GV, dl, MVT::i64, Offset, Flags);
- } else if (ConstantPoolSDNode *CP =
- dyn_cast<ConstantPoolSDNode>(ImmOpnd)) {
- const Constant *C = CP->getConstVal();
- ImmOpnd = CurDAG->getTargetConstantPool(C, MVT::i64, CP->getAlign(),
- Offset, Flags);
- }
- }
- if (FirstOp == 1) // Store
- (void)CurDAG->UpdateNodeOperands(N, N->getOperand(0), ImmOpnd,
- Base.getOperand(0), N->getOperand(3));
- else // Load
- (void)CurDAG->UpdateNodeOperands(N, ImmOpnd, Base.getOperand(0),
- N->getOperand(2));
- if (UpdateHBase)
- (void)CurDAG->UpdateNodeOperands(HBase.getNode(), HBase.getOperand(0),
- ImmOpnd);
- // The add-immediate may now be dead, in which case remove it.
- if (Base.getNode()->use_empty())
- CurDAG->RemoveDeadNode(Base.getNode());
- }
- }
- /// createPPCISelDag - This pass converts a legalized DAG into a
- /// PowerPC-specific DAG, ready for instruction scheduling.
- ///
- FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM,
- CodeGenOpt::Level OptLevel) {
- return new PPCDAGToDAGISel(TM, OptLevel);
- }
|