123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619 |
- //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass looks for safe point where the prologue and epilogue can be
- // inserted.
- // The safe point for the prologue (resp. epilogue) is called Save
- // (resp. Restore).
- // A point is safe for prologue (resp. epilogue) if and only if
- // it 1) dominates (resp. post-dominates) all the frame related operations and
- // between 2) two executions of the Save (resp. Restore) point there is an
- // execution of the Restore (resp. Save) point.
- //
- // For instance, the following points are safe:
- // for (int i = 0; i < 10; ++i) {
- // Save
- // ...
- // Restore
- // }
- // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
- // And the following points are not:
- // for (int i = 0; i < 10; ++i) {
- // Save
- // ...
- // }
- // for (int i = 0; i < 10; ++i) {
- // ...
- // Restore
- // }
- // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
- //
- // This pass also ensures that the safe points are 3) cheaper than the regular
- // entry and exits blocks.
- //
- // Property #1 is ensured via the use of MachineDominatorTree and
- // MachinePostDominatorTree.
- // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
- // points must be in the same loop.
- // Property #3 is ensured via the MachineBlockFrequencyInfo.
- //
- // If this pass found points matching all these properties, then
- // MachineFrameInfo is updated with this information.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/CFG.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
- #include "llvm/CodeGen/MachineDominators.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineFunctionPass.h"
- #include "llvm/CodeGen/MachineInstr.h"
- #include "llvm/CodeGen/MachineLoopInfo.h"
- #include "llvm/CodeGen/MachineOperand.h"
- #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
- #include "llvm/CodeGen/MachinePostDominators.h"
- #include "llvm/CodeGen/RegisterClassInfo.h"
- #include "llvm/CodeGen/RegisterScavenging.h"
- #include "llvm/CodeGen/TargetFrameLowering.h"
- #include "llvm/CodeGen/TargetInstrInfo.h"
- #include "llvm/CodeGen/TargetLowering.h"
- #include "llvm/CodeGen/TargetRegisterInfo.h"
- #include "llvm/CodeGen/TargetSubtargetInfo.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/InitializePasses.h"
- #include "llvm/MC/MCAsmInfo.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetMachine.h"
- #include <cassert>
- #include <cstdint>
- #include <memory>
- using namespace llvm;
- #define DEBUG_TYPE "shrink-wrap"
- STATISTIC(NumFunc, "Number of functions");
- STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
- STATISTIC(NumCandidatesDropped,
- "Number of shrink-wrapping candidates dropped because of frequency");
- static cl::opt<cl::boolOrDefault>
- EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
- cl::desc("enable the shrink-wrapping pass"));
- namespace {
- /// Class to determine where the safe point to insert the
- /// prologue and epilogue are.
- /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
- /// shrink-wrapping term for prologue/epilogue placement, this pass
- /// does not rely on expensive data-flow analysis. Instead we use the
- /// dominance properties and loop information to decide which point
- /// are safe for such insertion.
- class ShrinkWrap : public MachineFunctionPass {
- /// Hold callee-saved information.
- RegisterClassInfo RCI;
- MachineDominatorTree *MDT;
- MachinePostDominatorTree *MPDT;
- /// Current safe point found for the prologue.
- /// The prologue will be inserted before the first instruction
- /// in this basic block.
- MachineBasicBlock *Save;
- /// Current safe point found for the epilogue.
- /// The epilogue will be inserted before the first terminator instruction
- /// in this basic block.
- MachineBasicBlock *Restore;
- /// Hold the information of the basic block frequency.
- /// Use to check the profitability of the new points.
- MachineBlockFrequencyInfo *MBFI;
- /// Hold the loop information. Used to determine if Save and Restore
- /// are in the same loop.
- MachineLoopInfo *MLI;
- // Emit remarks.
- MachineOptimizationRemarkEmitter *ORE = nullptr;
- /// Frequency of the Entry block.
- uint64_t EntryFreq;
- /// Current opcode for frame setup.
- unsigned FrameSetupOpcode;
- /// Current opcode for frame destroy.
- unsigned FrameDestroyOpcode;
- /// Stack pointer register, used by llvm.{savestack,restorestack}
- Register SP;
- /// Entry block.
- const MachineBasicBlock *Entry;
- using SetOfRegs = SmallSetVector<unsigned, 16>;
- /// Registers that need to be saved for the current function.
- mutable SetOfRegs CurrentCSRs;
- /// Current MachineFunction.
- MachineFunction *MachineFunc;
- /// Check if \p MI uses or defines a callee-saved register or
- /// a frame index. If this is the case, this means \p MI must happen
- /// after Save and before Restore.
- bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
- const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
- if (CurrentCSRs.empty()) {
- BitVector SavedRegs;
- const TargetFrameLowering *TFI =
- MachineFunc->getSubtarget().getFrameLowering();
- TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
- for (int Reg = SavedRegs.find_first(); Reg != -1;
- Reg = SavedRegs.find_next(Reg))
- CurrentCSRs.insert((unsigned)Reg);
- }
- return CurrentCSRs;
- }
- /// Update the Save and Restore points such that \p MBB is in
- /// the region that is dominated by Save and post-dominated by Restore
- /// and Save and Restore still match the safe point definition.
- /// Such point may not exist and Save and/or Restore may be null after
- /// this call.
- void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
- /// Initialize the pass for \p MF.
- void init(MachineFunction &MF) {
- RCI.runOnMachineFunction(MF);
- MDT = &getAnalysis<MachineDominatorTree>();
- MPDT = &getAnalysis<MachinePostDominatorTree>();
- Save = nullptr;
- Restore = nullptr;
- MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
- MLI = &getAnalysis<MachineLoopInfo>();
- ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
- EntryFreq = MBFI->getEntryFreq();
- const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
- const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
- FrameSetupOpcode = TII.getCallFrameSetupOpcode();
- FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
- SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
- Entry = &MF.front();
- CurrentCSRs.clear();
- MachineFunc = &MF;
- ++NumFunc;
- }
- /// Check whether or not Save and Restore points are still interesting for
- /// shrink-wrapping.
- bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
- /// Check if shrink wrapping is enabled for this target and function.
- static bool isShrinkWrapEnabled(const MachineFunction &MF);
- public:
- static char ID;
- ShrinkWrap() : MachineFunctionPass(ID) {
- initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
- }
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.setPreservesAll();
- AU.addRequired<MachineBlockFrequencyInfo>();
- AU.addRequired<MachineDominatorTree>();
- AU.addRequired<MachinePostDominatorTree>();
- AU.addRequired<MachineLoopInfo>();
- AU.addRequired<MachineOptimizationRemarkEmitterPass>();
- MachineFunctionPass::getAnalysisUsage(AU);
- }
- MachineFunctionProperties getRequiredProperties() const override {
- return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::NoVRegs);
- }
- StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
- /// Perform the shrink-wrapping analysis and update
- /// the MachineFrameInfo attached to \p MF with the results.
- bool runOnMachineFunction(MachineFunction &MF) override;
- };
- } // end anonymous namespace
- char ShrinkWrap::ID = 0;
- char &llvm::ShrinkWrapID = ShrinkWrap::ID;
- INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
- INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
- INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
- INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
- INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
- bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
- RegScavenger *RS) const {
- // This prevents premature stack popping when occurs a indirect stack
- // access. It is overly aggressive for the moment.
- // TODO: - Obvious non-stack loads and store, such as global values,
- // are known to not access the stack.
- // - Further, data dependency and alias analysis can validate
- // that load and stores never derive from the stack pointer.
- if (MI.mayLoadOrStore())
- return true;
- if (MI.getOpcode() == FrameSetupOpcode ||
- MI.getOpcode() == FrameDestroyOpcode) {
- LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
- return true;
- }
- const MachineFunction *MF = MI.getParent()->getParent();
- const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
- for (const MachineOperand &MO : MI.operands()) {
- bool UseOrDefCSR = false;
- if (MO.isReg()) {
- // Ignore instructions like DBG_VALUE which don't read/def the register.
- if (!MO.isDef() && !MO.readsReg())
- continue;
- Register PhysReg = MO.getReg();
- if (!PhysReg)
- continue;
- assert(Register::isPhysicalRegister(PhysReg) && "Unallocated register?!");
- // The stack pointer is not normally described as a callee-saved register
- // in calling convention definitions, so we need to watch for it
- // separately. An SP mentioned by a call instruction, we can ignore,
- // though, as it's harmless and we do not want to effectively disable tail
- // calls by forcing the restore point to post-dominate them.
- // PPC's LR is also not normally described as a callee-saved register in
- // calling convention definitions, so we need to watch for it, too. An LR
- // mentioned implicitly by a return (or "branch to link register")
- // instruction we can ignore, otherwise we may pessimize shrinkwrapping.
- UseOrDefCSR =
- (!MI.isCall() && PhysReg == SP) ||
- RCI.getLastCalleeSavedAlias(PhysReg) ||
- (!MI.isReturn() && TRI->isNonallocatableRegisterCalleeSave(PhysReg));
- } else if (MO.isRegMask()) {
- // Check if this regmask clobbers any of the CSRs.
- for (unsigned Reg : getCurrentCSRs(RS)) {
- if (MO.clobbersPhysReg(Reg)) {
- UseOrDefCSR = true;
- break;
- }
- }
- }
- // Skip FrameIndex operands in DBG_VALUE instructions.
- if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
- LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
- << MO.isFI() << "): " << MI << '\n');
- return true;
- }
- }
- return false;
- }
- /// Helper function to find the immediate (post) dominator.
- template <typename ListOfBBs, typename DominanceAnalysis>
- static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
- DominanceAnalysis &Dom) {
- MachineBasicBlock *IDom = &Block;
- for (MachineBasicBlock *BB : BBs) {
- IDom = Dom.findNearestCommonDominator(IDom, BB);
- if (!IDom)
- break;
- }
- if (IDom == &Block)
- return nullptr;
- return IDom;
- }
- void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
- RegScavenger *RS) {
- // Get rid of the easy cases first.
- if (!Save)
- Save = &MBB;
- else
- Save = MDT->findNearestCommonDominator(Save, &MBB);
- assert(Save);
- if (!Restore)
- Restore = &MBB;
- else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
- // means the block never returns. If that's the
- // case, we don't want to call
- // `findNearestCommonDominator`, which will
- // return `Restore`.
- Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
- else
- Restore = nullptr; // Abort, we can't find a restore point in this case.
- // Make sure we would be able to insert the restore code before the
- // terminator.
- if (Restore == &MBB) {
- for (const MachineInstr &Terminator : MBB.terminators()) {
- if (!useOrDefCSROrFI(Terminator, RS))
- continue;
- // One of the terminator needs to happen before the restore point.
- if (MBB.succ_empty()) {
- Restore = nullptr; // Abort, we can't find a restore point in this case.
- break;
- }
- // Look for a restore point that post-dominates all the successors.
- // The immediate post-dominator is what we are looking for.
- Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
- break;
- }
- }
- if (!Restore) {
- LLVM_DEBUG(
- dbgs() << "Restore point needs to be spanned on several blocks\n");
- return;
- }
- // Make sure Save and Restore are suitable for shrink-wrapping:
- // 1. all path from Save needs to lead to Restore before exiting.
- // 2. all path to Restore needs to go through Save from Entry.
- // We achieve that by making sure that:
- // A. Save dominates Restore.
- // B. Restore post-dominates Save.
- // C. Save and Restore are in the same loop.
- bool SaveDominatesRestore = false;
- bool RestorePostDominatesSave = false;
- while (Restore &&
- (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
- !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
- // Post-dominance is not enough in loops to ensure that all uses/defs
- // are after the prologue and before the epilogue at runtime.
- // E.g.,
- // while(1) {
- // Save
- // Restore
- // if (...)
- // break;
- // use/def CSRs
- // }
- // All the uses/defs of CSRs are dominated by Save and post-dominated
- // by Restore. However, the CSRs uses are still reachable after
- // Restore and before Save are executed.
- //
- // For now, just push the restore/save points outside of loops.
- // FIXME: Refine the criteria to still find interesting cases
- // for loops.
- MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
- // Fix (A).
- if (!SaveDominatesRestore) {
- Save = MDT->findNearestCommonDominator(Save, Restore);
- continue;
- }
- // Fix (B).
- if (!RestorePostDominatesSave)
- Restore = MPDT->findNearestCommonDominator(Restore, Save);
- // Fix (C).
- if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
- if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
- // Push Save outside of this loop if immediate dominator is different
- // from save block. If immediate dominator is not different, bail out.
- Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
- if (!Save)
- break;
- } else {
- // If the loop does not exit, there is no point in looking
- // for a post-dominator outside the loop.
- SmallVector<MachineBasicBlock*, 4> ExitBlocks;
- MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
- // Push Restore outside of this loop.
- // Look for the immediate post-dominator of the loop exits.
- MachineBasicBlock *IPdom = Restore;
- for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
- IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
- if (!IPdom)
- break;
- }
- // If the immediate post-dominator is not in a less nested loop,
- // then we are stuck in a program with an infinite loop.
- // In that case, we will not find a safe point, hence, bail out.
- if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
- Restore = IPdom;
- else {
- Restore = nullptr;
- break;
- }
- }
- }
- }
- }
- static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
- StringRef RemarkName, StringRef RemarkMessage,
- const DiagnosticLocation &Loc,
- const MachineBasicBlock *MBB) {
- ORE->emit([&]() {
- return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
- << RemarkMessage;
- });
- LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
- return false;
- }
- bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
- if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
- return false;
- LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
- init(MF);
- ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
- if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
- // If MF is irreducible, a block may be in a loop without
- // MachineLoopInfo reporting it. I.e., we may use the
- // post-dominance property in loops, which lead to incorrect
- // results. Moreover, we may miss that the prologue and
- // epilogue are not in the same loop, leading to unbalanced
- // construction/deconstruction of the stack frame.
- return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
- "Irreducible CFGs are not supported yet.",
- MF.getFunction().getSubprogram(), &MF.front());
- }
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- std::unique_ptr<RegScavenger> RS(
- TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
- for (MachineBasicBlock &MBB : MF) {
- LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
- << MBB.getName() << '\n');
- if (MBB.isEHFuncletEntry())
- return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
- "EH Funclets are not supported yet.",
- MBB.front().getDebugLoc(), &MBB);
- if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) {
- // Push the prologue and epilogue outside of the region that may throw (or
- // jump out via inlineasm_br), by making sure that all the landing pads
- // are at least at the boundary of the save and restore points. The
- // problem is that a basic block can jump out from the middle in these
- // cases, which we do not handle.
- updateSaveRestorePoints(MBB, RS.get());
- if (!ArePointsInteresting()) {
- LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n");
- return false;
- }
- continue;
- }
- for (const MachineInstr &MI : MBB) {
- if (!useOrDefCSROrFI(MI, RS.get()))
- continue;
- // Save (resp. restore) point must dominate (resp. post dominate)
- // MI. Look for the proper basic block for those.
- updateSaveRestorePoints(MBB, RS.get());
- // If we are at a point where we cannot improve the placement of
- // save/restore instructions, just give up.
- if (!ArePointsInteresting()) {
- LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
- return false;
- }
- // No need to look for other instructions, this basic block
- // will already be part of the handled region.
- break;
- }
- }
- if (!ArePointsInteresting()) {
- // If the points are not interesting at this point, then they must be null
- // because it means we did not encounter any frame/CSR related code.
- // Otherwise, we would have returned from the previous loop.
- assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
- LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
- return false;
- }
- LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
- << '\n');
- const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
- do {
- LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
- << Save->getNumber() << ' ' << Save->getName() << ' '
- << MBFI->getBlockFreq(Save).getFrequency()
- << "\nRestore: " << Restore->getNumber() << ' '
- << Restore->getName() << ' '
- << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
- bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
- if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
- EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
- ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
- TFI->canUseAsEpilogue(*Restore)))
- break;
- LLVM_DEBUG(
- dbgs() << "New points are too expensive or invalid for the target\n");
- MachineBasicBlock *NewBB;
- if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
- Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
- if (!Save)
- break;
- NewBB = Save;
- } else {
- // Restore is expensive.
- Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
- if (!Restore)
- break;
- NewBB = Restore;
- }
- updateSaveRestorePoints(*NewBB, RS.get());
- } while (Save && Restore);
- if (!ArePointsInteresting()) {
- ++NumCandidatesDropped;
- return false;
- }
- LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
- << Save->getNumber() << ' ' << Save->getName()
- << "\nRestore: " << Restore->getNumber() << ' '
- << Restore->getName() << '\n');
- MachineFrameInfo &MFI = MF.getFrameInfo();
- MFI.setSavePoint(Save);
- MFI.setRestorePoint(Restore);
- ++NumCandidates;
- return false;
- }
- bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
- const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
- switch (EnableShrinkWrapOpt) {
- case cl::BOU_UNSET:
- return TFI->enableShrinkWrapping(MF) &&
- // Windows with CFI has some limitations that make it impossible
- // to use shrink-wrapping.
- !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
- // Sanitizers look at the value of the stack at the location
- // of the crash. Since a crash can happen anywhere, the
- // frame must be lowered before anything else happen for the
- // sanitizers to be able to get a correct stack frame.
- !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
- MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
- MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
- MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
- // If EnableShrinkWrap is set, it takes precedence on whatever the
- // target sets. The rational is that we assume we want to test
- // something related to shrink-wrapping.
- case cl::BOU_TRUE:
- return true;
- case cl::BOU_FALSE:
- return false;
- }
- llvm_unreachable("Invalid shrink-wrapping state");
- }
|