12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454 |
- //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------===//
- //
- // This file implements the MemorySSAUpdater class.
- //
- //===----------------------------------------------------------------===//
- #include "llvm/Analysis/MemorySSAUpdater.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/Analysis/IteratedDominanceFrontier.h"
- #include "llvm/Analysis/MemorySSA.h"
- #include "llvm/IR/BasicBlock.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/GlobalVariable.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Metadata.h"
- #include "llvm/IR/Module.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/FormattedStream.h"
- #include <algorithm>
- #define DEBUG_TYPE "memoryssa"
- using namespace llvm;
- // This is the marker algorithm from "Simple and Efficient Construction of
- // Static Single Assignment Form"
- // The simple, non-marker algorithm places phi nodes at any join
- // Here, we place markers, and only place phi nodes if they end up necessary.
- // They are only necessary if they break a cycle (IE we recursively visit
- // ourselves again), or we discover, while getting the value of the operands,
- // that there are two or more definitions needing to be merged.
- // This still will leave non-minimal form in the case of irreducible control
- // flow, where phi nodes may be in cycles with themselves, but unnecessary.
- MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
- BasicBlock *BB,
- DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
- // First, do a cache lookup. Without this cache, certain CFG structures
- // (like a series of if statements) take exponential time to visit.
- auto Cached = CachedPreviousDef.find(BB);
- if (Cached != CachedPreviousDef.end())
- return Cached->second;
- // If this method is called from an unreachable block, return LoE.
- if (!MSSA->DT->isReachableFromEntry(BB))
- return MSSA->getLiveOnEntryDef();
- if (BasicBlock *Pred = BB->getUniquePredecessor()) {
- VisitedBlocks.insert(BB);
- // Single predecessor case, just recurse, we can only have one definition.
- MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
- CachedPreviousDef.insert({BB, Result});
- return Result;
- }
- if (VisitedBlocks.count(BB)) {
- // We hit our node again, meaning we had a cycle, we must insert a phi
- // node to break it so we have an operand. The only case this will
- // insert useless phis is if we have irreducible control flow.
- MemoryAccess *Result = MSSA->createMemoryPhi(BB);
- CachedPreviousDef.insert({BB, Result});
- return Result;
- }
- if (VisitedBlocks.insert(BB).second) {
- // Mark us visited so we can detect a cycle
- SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
- // Recurse to get the values in our predecessors for placement of a
- // potential phi node. This will insert phi nodes if we cycle in order to
- // break the cycle and have an operand.
- bool UniqueIncomingAccess = true;
- MemoryAccess *SingleAccess = nullptr;
- for (auto *Pred : predecessors(BB)) {
- if (MSSA->DT->isReachableFromEntry(Pred)) {
- auto *IncomingAccess = getPreviousDefFromEnd(Pred, CachedPreviousDef);
- if (!SingleAccess)
- SingleAccess = IncomingAccess;
- else if (IncomingAccess != SingleAccess)
- UniqueIncomingAccess = false;
- PhiOps.push_back(IncomingAccess);
- } else
- PhiOps.push_back(MSSA->getLiveOnEntryDef());
- }
- // Now try to simplify the ops to avoid placing a phi.
- // This may return null if we never created a phi yet, that's okay
- MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
- // See if we can avoid the phi by simplifying it.
- auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
- // If we couldn't simplify, we may have to create a phi
- if (Result == Phi && UniqueIncomingAccess && SingleAccess) {
- // A concrete Phi only exists if we created an empty one to break a cycle.
- if (Phi) {
- assert(Phi->operands().empty() && "Expected empty Phi");
- Phi->replaceAllUsesWith(SingleAccess);
- removeMemoryAccess(Phi);
- }
- Result = SingleAccess;
- } else if (Result == Phi && !(UniqueIncomingAccess && SingleAccess)) {
- if (!Phi)
- Phi = MSSA->createMemoryPhi(BB);
- // See if the existing phi operands match what we need.
- // Unlike normal SSA, we only allow one phi node per block, so we can't just
- // create a new one.
- if (Phi->getNumOperands() != 0) {
- // FIXME: Figure out whether this is dead code and if so remove it.
- if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
- // These will have been filled in by the recursive read we did above.
- llvm::copy(PhiOps, Phi->op_begin());
- std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
- }
- } else {
- unsigned i = 0;
- for (auto *Pred : predecessors(BB))
- Phi->addIncoming(&*PhiOps[i++], Pred);
- InsertedPHIs.push_back(Phi);
- }
- Result = Phi;
- }
- // Set ourselves up for the next variable by resetting visited state.
- VisitedBlocks.erase(BB);
- CachedPreviousDef.insert({BB, Result});
- return Result;
- }
- llvm_unreachable("Should have hit one of the three cases above");
- }
- // This starts at the memory access, and goes backwards in the block to find the
- // previous definition. If a definition is not found the block of the access,
- // it continues globally, creating phi nodes to ensure we have a single
- // definition.
- MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
- if (auto *LocalResult = getPreviousDefInBlock(MA))
- return LocalResult;
- DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
- return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
- }
- // This starts at the memory access, and goes backwards in the block to the find
- // the previous definition. If the definition is not found in the block of the
- // access, it returns nullptr.
- MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
- auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
- // It's possible there are no defs, or we got handed the first def to start.
- if (Defs) {
- // If this is a def, we can just use the def iterators.
- if (!isa<MemoryUse>(MA)) {
- auto Iter = MA->getReverseDefsIterator();
- ++Iter;
- if (Iter != Defs->rend())
- return &*Iter;
- } else {
- // Otherwise, have to walk the all access iterator.
- auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
- for (auto &U : make_range(++MA->getReverseIterator(), End))
- if (!isa<MemoryUse>(U))
- return cast<MemoryAccess>(&U);
- // Note that if MA comes before Defs->begin(), we won't hit a def.
- return nullptr;
- }
- }
- return nullptr;
- }
- // This starts at the end of block
- MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
- BasicBlock *BB,
- DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
- auto *Defs = MSSA->getWritableBlockDefs(BB);
- if (Defs) {
- CachedPreviousDef.insert({BB, &*Defs->rbegin()});
- return &*Defs->rbegin();
- }
- return getPreviousDefRecursive(BB, CachedPreviousDef);
- }
- // Recurse over a set of phi uses to eliminate the trivial ones
- MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
- if (!Phi)
- return nullptr;
- TrackingVH<MemoryAccess> Res(Phi);
- SmallVector<TrackingVH<Value>, 8> Uses;
- std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
- for (auto &U : Uses)
- if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
- tryRemoveTrivialPhi(UsePhi);
- return Res;
- }
- // Eliminate trivial phis
- // Phis are trivial if they are defined either by themselves, or all the same
- // argument.
- // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
- // We recursively try to remove them.
- MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
- assert(Phi && "Can only remove concrete Phi.");
- auto OperRange = Phi->operands();
- return tryRemoveTrivialPhi(Phi, OperRange);
- }
- template <class RangeType>
- MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
- RangeType &Operands) {
- // Bail out on non-opt Phis.
- if (NonOptPhis.count(Phi))
- return Phi;
- // Detect equal or self arguments
- MemoryAccess *Same = nullptr;
- for (auto &Op : Operands) {
- // If the same or self, good so far
- if (Op == Phi || Op == Same)
- continue;
- // not the same, return the phi since it's not eliminatable by us
- if (Same)
- return Phi;
- Same = cast<MemoryAccess>(&*Op);
- }
- // Never found a non-self reference, the phi is undef
- if (Same == nullptr)
- return MSSA->getLiveOnEntryDef();
- if (Phi) {
- Phi->replaceAllUsesWith(Same);
- removeMemoryAccess(Phi);
- }
- // We should only end up recursing in case we replaced something, in which
- // case, we may have made other Phis trivial.
- return recursePhi(Same);
- }
- void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
- InsertedPHIs.clear();
- MU->setDefiningAccess(getPreviousDef(MU));
- // In cases without unreachable blocks, because uses do not create new
- // may-defs, there are only two cases:
- // 1. There was a def already below us, and therefore, we should not have
- // created a phi node because it was already needed for the def.
- //
- // 2. There is no def below us, and therefore, there is no extra renaming work
- // to do.
- // In cases with unreachable blocks, where the unnecessary Phis were
- // optimized out, adding the Use may re-insert those Phis. Hence, when
- // inserting Uses outside of the MSSA creation process, and new Phis were
- // added, rename all uses if we are asked.
- if (!RenameUses && !InsertedPHIs.empty()) {
- auto *Defs = MSSA->getBlockDefs(MU->getBlock());
- (void)Defs;
- assert((!Defs || (++Defs->begin() == Defs->end())) &&
- "Block may have only a Phi or no defs");
- }
- if (RenameUses && InsertedPHIs.size()) {
- SmallPtrSet<BasicBlock *, 16> Visited;
- BasicBlock *StartBlock = MU->getBlock();
- if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
- MemoryAccess *FirstDef = &*Defs->begin();
- // Convert to incoming value if it's a memorydef. A phi *is* already an
- // incoming value.
- if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
- FirstDef = MD->getDefiningAccess();
- MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
- }
- // We just inserted a phi into this block, so the incoming value will
- // become the phi anyway, so it does not matter what we pass.
- for (auto &MP : InsertedPHIs)
- if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
- MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
- }
- }
- // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
- static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
- MemoryAccess *NewDef) {
- // Replace any operand with us an incoming block with the new defining
- // access.
- int i = MP->getBasicBlockIndex(BB);
- assert(i != -1 && "Should have found the basic block in the phi");
- // We can't just compare i against getNumOperands since one is signed and the
- // other not. So use it to index into the block iterator.
- for (const BasicBlock *BlockBB : llvm::drop_begin(MP->blocks(), i)) {
- if (BlockBB != BB)
- break;
- MP->setIncomingValue(i, NewDef);
- ++i;
- }
- }
- // A brief description of the algorithm:
- // First, we compute what should define the new def, using the SSA
- // construction algorithm.
- // Then, we update the defs below us (and any new phi nodes) in the graph to
- // point to the correct new defs, to ensure we only have one variable, and no
- // disconnected stores.
- void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
- InsertedPHIs.clear();
- // See if we had a local def, and if not, go hunting.
- MemoryAccess *DefBefore = getPreviousDef(MD);
- bool DefBeforeSameBlock = false;
- if (DefBefore->getBlock() == MD->getBlock() &&
- !(isa<MemoryPhi>(DefBefore) &&
- llvm::is_contained(InsertedPHIs, DefBefore)))
- DefBeforeSameBlock = true;
- // There is a def before us, which means we can replace any store/phi uses
- // of that thing with us, since we are in the way of whatever was there
- // before.
- // We now define that def's memorydefs and memoryphis
- if (DefBeforeSameBlock) {
- DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
- // Leave the MemoryUses alone.
- // Also make sure we skip ourselves to avoid self references.
- User *Usr = U.getUser();
- return !isa<MemoryUse>(Usr) && Usr != MD;
- // Defs are automatically unoptimized when the user is set to MD below,
- // because the isOptimized() call will fail to find the same ID.
- });
- }
- // and that def is now our defining access.
- MD->setDefiningAccess(DefBefore);
- SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
- SmallSet<WeakVH, 8> ExistingPhis;
- // Remember the index where we may insert new phis.
- unsigned NewPhiIndex = InsertedPHIs.size();
- if (!DefBeforeSameBlock) {
- // If there was a local def before us, we must have the same effect it
- // did. Because every may-def is the same, any phis/etc we would create, it
- // would also have created. If there was no local def before us, we
- // performed a global update, and have to search all successors and make
- // sure we update the first def in each of them (following all paths until
- // we hit the first def along each path). This may also insert phi nodes.
- // TODO: There are other cases we can skip this work, such as when we have a
- // single successor, and only used a straight line of single pred blocks
- // backwards to find the def. To make that work, we'd have to track whether
- // getDefRecursive only ever used the single predecessor case. These types
- // of paths also only exist in between CFG simplifications.
- // If this is the first def in the block and this insert is in an arbitrary
- // place, compute IDF and place phis.
- SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
- // If this is the last Def in the block, we may need additional Phis.
- // Compute IDF in all cases, as renaming needs to be done even when MD is
- // not the last access, because it can introduce a new access past which a
- // previous access was optimized; that access needs to be reoptimized.
- DefiningBlocks.insert(MD->getBlock());
- for (const auto &VH : InsertedPHIs)
- if (const auto *RealPHI = cast_or_null<MemoryPhi>(VH))
- DefiningBlocks.insert(RealPHI->getBlock());
- ForwardIDFCalculator IDFs(*MSSA->DT);
- SmallVector<BasicBlock *, 32> IDFBlocks;
- IDFs.setDefiningBlocks(DefiningBlocks);
- IDFs.calculate(IDFBlocks);
- SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
- for (auto *BBIDF : IDFBlocks) {
- auto *MPhi = MSSA->getMemoryAccess(BBIDF);
- if (!MPhi) {
- MPhi = MSSA->createMemoryPhi(BBIDF);
- NewInsertedPHIs.push_back(MPhi);
- } else {
- ExistingPhis.insert(MPhi);
- }
- // Add the phis created into the IDF blocks to NonOptPhis, so they are not
- // optimized out as trivial by the call to getPreviousDefFromEnd below.
- // Once they are complete, all these Phis are added to the FixupList, and
- // removed from NonOptPhis inside fixupDefs(). Existing Phis in IDF may
- // need fixing as well, and potentially be trivial before this insertion,
- // hence add all IDF Phis. See PR43044.
- NonOptPhis.insert(MPhi);
- }
- for (auto &MPhi : NewInsertedPHIs) {
- auto *BBIDF = MPhi->getBlock();
- for (auto *Pred : predecessors(BBIDF)) {
- DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
- MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred);
- }
- }
- // Re-take the index where we're adding the new phis, because the above call
- // to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
- NewPhiIndex = InsertedPHIs.size();
- for (auto &MPhi : NewInsertedPHIs) {
- InsertedPHIs.push_back(&*MPhi);
- FixupList.push_back(&*MPhi);
- }
- FixupList.push_back(MD);
- }
- // Remember the index where we stopped inserting new phis above, since the
- // fixupDefs call in the loop below may insert more, that are already minimal.
- unsigned NewPhiIndexEnd = InsertedPHIs.size();
- while (!FixupList.empty()) {
- unsigned StartingPHISize = InsertedPHIs.size();
- fixupDefs(FixupList);
- FixupList.clear();
- // Put any new phis on the fixup list, and process them
- FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
- }
- // Optimize potentially non-minimal phis added in this method.
- unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
- if (NewPhiSize)
- tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
- // Now that all fixups are done, rename all uses if we are asked. Skip
- // renaming for defs in unreachable blocks.
- BasicBlock *StartBlock = MD->getBlock();
- if (RenameUses && MSSA->getDomTree().getNode(StartBlock)) {
- SmallPtrSet<BasicBlock *, 16> Visited;
- // We are guaranteed there is a def in the block, because we just got it
- // handed to us in this function.
- MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
- // Convert to incoming value if it's a memorydef. A phi *is* already an
- // incoming value.
- if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
- FirstDef = MD->getDefiningAccess();
- MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
- // We just inserted a phi into this block, so the incoming value will become
- // the phi anyway, so it does not matter what we pass.
- for (auto &MP : InsertedPHIs) {
- MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
- if (Phi)
- MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
- }
- // Existing Phi blocks may need renaming too, if an access was previously
- // optimized and the inserted Defs "covers" the Optimized value.
- for (auto &MP : ExistingPhis) {
- MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
- if (Phi)
- MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
- }
- }
- }
- void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
- SmallPtrSet<const BasicBlock *, 8> Seen;
- SmallVector<const BasicBlock *, 16> Worklist;
- for (auto &Var : Vars) {
- MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
- if (!NewDef)
- continue;
- // First, see if there is a local def after the operand.
- auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
- auto DefIter = NewDef->getDefsIterator();
- // The temporary Phi is being fixed, unmark it for not to optimize.
- if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
- NonOptPhis.erase(Phi);
- // If there is a local def after us, we only have to rename that.
- if (++DefIter != Defs->end()) {
- cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
- continue;
- }
- // Otherwise, we need to search down through the CFG.
- // For each of our successors, handle it directly if their is a phi, or
- // place on the fixup worklist.
- for (const auto *S : successors(NewDef->getBlock())) {
- if (auto *MP = MSSA->getMemoryAccess(S))
- setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
- else
- Worklist.push_back(S);
- }
- while (!Worklist.empty()) {
- const BasicBlock *FixupBlock = Worklist.pop_back_val();
- // Get the first def in the block that isn't a phi node.
- if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
- auto *FirstDef = &*Defs->begin();
- // The loop above and below should have taken care of phi nodes
- assert(!isa<MemoryPhi>(FirstDef) &&
- "Should have already handled phi nodes!");
- // We are now this def's defining access, make sure we actually dominate
- // it
- assert(MSSA->dominates(NewDef, FirstDef) &&
- "Should have dominated the new access");
- // This may insert new phi nodes, because we are not guaranteed the
- // block we are processing has a single pred, and depending where the
- // store was inserted, it may require phi nodes below it.
- cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
- return;
- }
- // We didn't find a def, so we must continue.
- for (const auto *S : successors(FixupBlock)) {
- // If there is a phi node, handle it.
- // Otherwise, put the block on the worklist
- if (auto *MP = MSSA->getMemoryAccess(S))
- setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
- else {
- // If we cycle, we should have ended up at a phi node that we already
- // processed. FIXME: Double check this
- if (!Seen.insert(S).second)
- continue;
- Worklist.push_back(S);
- }
- }
- }
- }
- }
- void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
- MPhi->unorderedDeleteIncomingBlock(From);
- tryRemoveTrivialPhi(MPhi);
- }
- }
- void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
- const BasicBlock *To) {
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
- bool Found = false;
- MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
- if (From != B)
- return false;
- if (Found)
- return true;
- Found = true;
- return false;
- });
- tryRemoveTrivialPhi(MPhi);
- }
- }
- /// If all arguments of a MemoryPHI are defined by the same incoming
- /// argument, return that argument.
- static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
- MemoryAccess *MA = nullptr;
- for (auto &Arg : MP->operands()) {
- if (!MA)
- MA = cast<MemoryAccess>(Arg);
- else if (MA != Arg)
- return nullptr;
- }
- return MA;
- }
- static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
- const ValueToValueMapTy &VMap,
- PhiToDefMap &MPhiMap,
- bool CloneWasSimplified,
- MemorySSA *MSSA) {
- MemoryAccess *InsnDefining = MA;
- if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
- if (!MSSA->isLiveOnEntryDef(DefMUD)) {
- Instruction *DefMUDI = DefMUD->getMemoryInst();
- assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
- if (Instruction *NewDefMUDI =
- cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
- InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
- if (!CloneWasSimplified)
- assert(InsnDefining && "Defining instruction cannot be nullptr.");
- else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
- // The clone was simplified, it's no longer a MemoryDef, look up.
- auto DefIt = DefMUD->getDefsIterator();
- // Since simplified clones only occur in single block cloning, a
- // previous definition must exist, otherwise NewDefMUDI would not
- // have been found in VMap.
- assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
- "Previous def must exist");
- InsnDefining = getNewDefiningAccessForClone(
- &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
- }
- }
- }
- } else {
- MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
- if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
- InsnDefining = NewDefPhi;
- }
- assert(InsnDefining && "Defining instruction cannot be nullptr.");
- return InsnDefining;
- }
- void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
- const ValueToValueMapTy &VMap,
- PhiToDefMap &MPhiMap,
- bool CloneWasSimplified) {
- const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
- if (!Acc)
- return;
- for (const MemoryAccess &MA : *Acc) {
- if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
- Instruction *Insn = MUD->getMemoryInst();
- // Entry does not exist if the clone of the block did not clone all
- // instructions. This occurs in LoopRotate when cloning instructions
- // from the old header to the old preheader. The cloned instruction may
- // also be a simplified Value, not an Instruction (see LoopRotate).
- // Also in LoopRotate, even when it's an instruction, due to it being
- // simplified, it may be a Use rather than a Def, so we cannot use MUD as
- // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
- if (Instruction *NewInsn =
- dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
- MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
- NewInsn,
- getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
- MPhiMap, CloneWasSimplified, MSSA),
- /*Template=*/CloneWasSimplified ? nullptr : MUD,
- /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
- if (NewUseOrDef)
- MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
- }
- }
- }
- }
- void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
- BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
- auto *MPhi = MSSA->getMemoryAccess(Header);
- if (!MPhi)
- return;
- // Create phi node in the backedge block and populate it with the same
- // incoming values as MPhi. Skip incoming values coming from Preheader.
- auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
- bool HasUniqueIncomingValue = true;
- MemoryAccess *UniqueValue = nullptr;
- for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
- BasicBlock *IBB = MPhi->getIncomingBlock(I);
- MemoryAccess *IV = MPhi->getIncomingValue(I);
- if (IBB != Preheader) {
- NewMPhi->addIncoming(IV, IBB);
- if (HasUniqueIncomingValue) {
- if (!UniqueValue)
- UniqueValue = IV;
- else if (UniqueValue != IV)
- HasUniqueIncomingValue = false;
- }
- }
- }
- // Update incoming edges into MPhi. Remove all but the incoming edge from
- // Preheader. Add an edge from NewMPhi
- auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
- MPhi->setIncomingValue(0, AccFromPreheader);
- MPhi->setIncomingBlock(0, Preheader);
- for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
- MPhi->unorderedDeleteIncoming(I);
- MPhi->addIncoming(NewMPhi, BEBlock);
- // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
- // replaced with the unique value.
- tryRemoveTrivialPhi(NewMPhi);
- }
- void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
- ArrayRef<BasicBlock *> ExitBlocks,
- const ValueToValueMapTy &VMap,
- bool IgnoreIncomingWithNoClones) {
- PhiToDefMap MPhiMap;
- auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
- assert(Phi && NewPhi && "Invalid Phi nodes.");
- BasicBlock *NewPhiBB = NewPhi->getBlock();
- SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
- pred_end(NewPhiBB));
- for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
- MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
- BasicBlock *IncBB = Phi->getIncomingBlock(It);
- if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
- IncBB = NewIncBB;
- else if (IgnoreIncomingWithNoClones)
- continue;
- // Now we have IncBB, and will need to add incoming from it to NewPhi.
- // If IncBB is not a predecessor of NewPhiBB, then do not add it.
- // NewPhiBB was cloned without that edge.
- if (!NewPhiBBPreds.count(IncBB))
- continue;
- // Determine incoming value and add it as incoming from IncBB.
- if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
- if (!MSSA->isLiveOnEntryDef(IncMUD)) {
- Instruction *IncI = IncMUD->getMemoryInst();
- assert(IncI && "Found MemoryUseOrDef with no Instruction.");
- if (Instruction *NewIncI =
- cast_or_null<Instruction>(VMap.lookup(IncI))) {
- IncMUD = MSSA->getMemoryAccess(NewIncI);
- assert(IncMUD &&
- "MemoryUseOrDef cannot be null, all preds processed.");
- }
- }
- NewPhi->addIncoming(IncMUD, IncBB);
- } else {
- MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
- if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
- NewPhi->addIncoming(NewDefPhi, IncBB);
- else
- NewPhi->addIncoming(IncPhi, IncBB);
- }
- }
- if (auto *SingleAccess = onlySingleValue(NewPhi)) {
- MPhiMap[Phi] = SingleAccess;
- removeMemoryAccess(NewPhi);
- }
- };
- auto ProcessBlock = [&](BasicBlock *BB) {
- BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
- if (!NewBlock)
- return;
- assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
- "Cloned block should have no accesses");
- // Add MemoryPhi.
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
- MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
- MPhiMap[MPhi] = NewPhi;
- }
- // Update Uses and Defs.
- cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
- };
- for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
- ProcessBlock(BB);
- for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
- if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
- FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
- }
- void MemorySSAUpdater::updateForClonedBlockIntoPred(
- BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
- // All defs/phis from outside BB that are used in BB, are valid uses in P1.
- // Since those defs/phis must have dominated BB, and also dominate P1.
- // Defs from BB being used in BB will be replaced with the cloned defs from
- // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
- // incoming def into the Phi from P1.
- // Instructions cloned into the predecessor are in practice sometimes
- // simplified, so disable the use of the template, and create an access from
- // scratch.
- PhiToDefMap MPhiMap;
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
- MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
- cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
- }
- template <typename Iter>
- void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
- ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
- DominatorTree &DT) {
- SmallVector<CFGUpdate, 4> Updates;
- // Update/insert phis in all successors of exit blocks.
- for (auto *Exit : ExitBlocks)
- for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
- if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
- BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
- Updates.push_back({DT.Insert, NewExit, ExitSucc});
- }
- applyInsertUpdates(Updates, DT);
- }
- void MemorySSAUpdater::updateExitBlocksForClonedLoop(
- ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
- DominatorTree &DT) {
- const ValueToValueMapTy *const Arr[] = {&VMap};
- privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
- std::end(Arr), DT);
- }
- void MemorySSAUpdater::updateExitBlocksForClonedLoop(
- ArrayRef<BasicBlock *> ExitBlocks,
- ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
- auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
- return I.get();
- };
- using MappedIteratorType =
- mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
- decltype(GetPtr)>;
- auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
- auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
- privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
- }
- void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
- DominatorTree &DT, bool UpdateDT) {
- SmallVector<CFGUpdate, 4> DeleteUpdates;
- SmallVector<CFGUpdate, 4> RevDeleteUpdates;
- SmallVector<CFGUpdate, 4> InsertUpdates;
- for (auto &Update : Updates) {
- if (Update.getKind() == DT.Insert)
- InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
- else {
- DeleteUpdates.push_back({DT.Delete, Update.getFrom(), Update.getTo()});
- RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
- }
- }
- if (!DeleteUpdates.empty()) {
- if (!InsertUpdates.empty()) {
- if (!UpdateDT) {
- SmallVector<CFGUpdate, 0> Empty;
- // Deletes are reversed applied, because this CFGView is pretending the
- // deletes did not happen yet, hence the edges still exist.
- DT.applyUpdates(Empty, RevDeleteUpdates);
- } else {
- // Apply all updates, with the RevDeleteUpdates as PostCFGView.
- DT.applyUpdates(Updates, RevDeleteUpdates);
- }
- // Note: the MSSA update below doesn't distinguish between a GD with
- // (RevDelete,false) and (Delete, true), but this matters for the DT
- // updates above; for "children" purposes they are equivalent; but the
- // updates themselves convey the desired update, used inside DT only.
- GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
- applyInsertUpdates(InsertUpdates, DT, &GD);
- // Update DT to redelete edges; this matches the real CFG so we can
- // perform the standard update without a postview of the CFG.
- DT.applyUpdates(DeleteUpdates);
- } else {
- if (UpdateDT)
- DT.applyUpdates(DeleteUpdates);
- }
- } else {
- if (UpdateDT)
- DT.applyUpdates(Updates);
- GraphDiff<BasicBlock *> GD;
- applyInsertUpdates(InsertUpdates, DT, &GD);
- }
- // Update for deleted edges
- for (auto &Update : DeleteUpdates)
- removeEdge(Update.getFrom(), Update.getTo());
- }
- void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
- DominatorTree &DT) {
- GraphDiff<BasicBlock *> GD;
- applyInsertUpdates(Updates, DT, &GD);
- }
- void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
- DominatorTree &DT,
- const GraphDiff<BasicBlock *> *GD) {
- // Get recursive last Def, assuming well formed MSSA and updated DT.
- auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
- while (true) {
- MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
- // Return last Def or Phi in BB, if it exists.
- if (Defs)
- return &*(--Defs->end());
- // Check number of predecessors, we only care if there's more than one.
- unsigned Count = 0;
- BasicBlock *Pred = nullptr;
- for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
- Pred = Pi;
- Count++;
- if (Count == 2)
- break;
- }
- // If BB has multiple predecessors, get last definition from IDom.
- if (Count != 1) {
- // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
- // DT is invalidated. Return LoE as its last def. This will be added to
- // MemoryPhi node, and later deleted when the block is deleted.
- if (!DT.getNode(BB))
- return MSSA->getLiveOnEntryDef();
- if (auto *IDom = DT.getNode(BB)->getIDom())
- if (IDom->getBlock() != BB) {
- BB = IDom->getBlock();
- continue;
- }
- return MSSA->getLiveOnEntryDef();
- } else {
- // Single predecessor, BB cannot be dead. GetLastDef of Pred.
- assert(Count == 1 && Pred && "Single predecessor expected.");
- // BB can be unreachable though, return LoE if that is the case.
- if (!DT.getNode(BB))
- return MSSA->getLiveOnEntryDef();
- BB = Pred;
- }
- };
- llvm_unreachable("Unable to get last definition.");
- };
- // Get nearest IDom given a set of blocks.
- // TODO: this can be optimized by starting the search at the node with the
- // lowest level (highest in the tree).
- auto FindNearestCommonDominator =
- [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
- BasicBlock *PrevIDom = *BBSet.begin();
- for (auto *BB : BBSet)
- PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
- return PrevIDom;
- };
- // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
- // include CurrIDom.
- auto GetNoLongerDomBlocks =
- [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
- SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
- if (PrevIDom == CurrIDom)
- return;
- BlocksPrevDom.push_back(PrevIDom);
- BasicBlock *NextIDom = PrevIDom;
- while (BasicBlock *UpIDom =
- DT.getNode(NextIDom)->getIDom()->getBlock()) {
- if (UpIDom == CurrIDom)
- break;
- BlocksPrevDom.push_back(UpIDom);
- NextIDom = UpIDom;
- }
- };
- // Map a BB to its predecessors: added + previously existing. To get a
- // deterministic order, store predecessors as SetVectors. The order in each
- // will be defined by the order in Updates (fixed) and the order given by
- // children<> (also fixed). Since we further iterate over these ordered sets,
- // we lose the information of multiple edges possibly existing between two
- // blocks, so we'll keep and EdgeCount map for that.
- // An alternate implementation could keep unordered set for the predecessors,
- // traverse either Updates or children<> each time to get the deterministic
- // order, and drop the usage of EdgeCount. This alternate approach would still
- // require querying the maps for each predecessor, and children<> call has
- // additional computation inside for creating the snapshot-graph predecessors.
- // As such, we favor using a little additional storage and less compute time.
- // This decision can be revisited if we find the alternative more favorable.
- struct PredInfo {
- SmallSetVector<BasicBlock *, 2> Added;
- SmallSetVector<BasicBlock *, 2> Prev;
- };
- SmallDenseMap<BasicBlock *, PredInfo> PredMap;
- for (auto &Edge : Updates) {
- BasicBlock *BB = Edge.getTo();
- auto &AddedBlockSet = PredMap[BB].Added;
- AddedBlockSet.insert(Edge.getFrom());
- }
- // Store all existing predecessor for each BB, at least one must exist.
- SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
- SmallPtrSet<BasicBlock *, 2> NewBlocks;
- for (auto &BBPredPair : PredMap) {
- auto *BB = BBPredPair.first;
- const auto &AddedBlockSet = BBPredPair.second.Added;
- auto &PrevBlockSet = BBPredPair.second.Prev;
- for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BB)) {
- if (!AddedBlockSet.count(Pi))
- PrevBlockSet.insert(Pi);
- EdgeCountMap[{Pi, BB}]++;
- }
- if (PrevBlockSet.empty()) {
- assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
- LLVM_DEBUG(
- dbgs()
- << "Adding a predecessor to a block with no predecessors. "
- "This must be an edge added to a new, likely cloned, block. "
- "Its memory accesses must be already correct, assuming completed "
- "via the updateExitBlocksForClonedLoop API. "
- "Assert a single such edge is added so no phi addition or "
- "additional processing is required.\n");
- assert(AddedBlockSet.size() == 1 &&
- "Can only handle adding one predecessor to a new block.");
- // Need to remove new blocks from PredMap. Remove below to not invalidate
- // iterator here.
- NewBlocks.insert(BB);
- }
- }
- // Nothing to process for new/cloned blocks.
- for (auto *BB : NewBlocks)
- PredMap.erase(BB);
- SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
- SmallVector<WeakVH, 8> InsertedPhis;
- // First create MemoryPhis in all blocks that don't have one. Create in the
- // order found in Updates, not in PredMap, to get deterministic numbering.
- for (auto &Edge : Updates) {
- BasicBlock *BB = Edge.getTo();
- if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
- InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
- }
- // Now we'll fill in the MemoryPhis with the right incoming values.
- for (auto &BBPredPair : PredMap) {
- auto *BB = BBPredPair.first;
- const auto &PrevBlockSet = BBPredPair.second.Prev;
- const auto &AddedBlockSet = BBPredPair.second.Added;
- assert(!PrevBlockSet.empty() &&
- "At least one previous predecessor must exist.");
- // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
- // keeping this map before the loop. We can reuse already populated entries
- // if an edge is added from the same predecessor to two different blocks,
- // and this does happen in rotate. Note that the map needs to be updated
- // when deleting non-necessary phis below, if the phi is in the map by
- // replacing the value with DefP1.
- SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
- for (auto *AddedPred : AddedBlockSet) {
- auto *DefPn = GetLastDef(AddedPred);
- assert(DefPn != nullptr && "Unable to find last definition.");
- LastDefAddedPred[AddedPred] = DefPn;
- }
- MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
- // If Phi is not empty, add an incoming edge from each added pred. Must
- // still compute blocks with defs to replace for this block below.
- if (NewPhi->getNumOperands()) {
- for (auto *Pred : AddedBlockSet) {
- auto *LastDefForPred = LastDefAddedPred[Pred];
- for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
- NewPhi->addIncoming(LastDefForPred, Pred);
- }
- } else {
- // Pick any existing predecessor and get its definition. All other
- // existing predecessors should have the same one, since no phi existed.
- auto *P1 = *PrevBlockSet.begin();
- MemoryAccess *DefP1 = GetLastDef(P1);
- // Check DefP1 against all Defs in LastDefPredPair. If all the same,
- // nothing to add.
- bool InsertPhi = false;
- for (auto LastDefPredPair : LastDefAddedPred)
- if (DefP1 != LastDefPredPair.second) {
- InsertPhi = true;
- break;
- }
- if (!InsertPhi) {
- // Since NewPhi may be used in other newly added Phis, replace all uses
- // of NewPhi with the definition coming from all predecessors (DefP1),
- // before deleting it.
- NewPhi->replaceAllUsesWith(DefP1);
- removeMemoryAccess(NewPhi);
- continue;
- }
- // Update Phi with new values for new predecessors and old value for all
- // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
- // sets, the order of entries in NewPhi is deterministic.
- for (auto *Pred : AddedBlockSet) {
- auto *LastDefForPred = LastDefAddedPred[Pred];
- for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
- NewPhi->addIncoming(LastDefForPred, Pred);
- }
- for (auto *Pred : PrevBlockSet)
- for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
- NewPhi->addIncoming(DefP1, Pred);
- }
- // Get all blocks that used to dominate BB and no longer do after adding
- // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
- assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
- BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
- assert(PrevIDom && "Previous IDom should exists");
- BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
- assert(NewIDom && "BB should have a new valid idom");
- assert(DT.dominates(NewIDom, PrevIDom) &&
- "New idom should dominate old idom");
- GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
- }
- tryRemoveTrivialPhis(InsertedPhis);
- // Create the set of blocks that now have a definition. We'll use this to
- // compute IDF and add Phis there next.
- SmallVector<BasicBlock *, 8> BlocksToProcess;
- for (auto &VH : InsertedPhis)
- if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
- BlocksToProcess.push_back(MPhi->getBlock());
- // Compute IDF and add Phis in all IDF blocks that do not have one.
- SmallVector<BasicBlock *, 32> IDFBlocks;
- if (!BlocksToProcess.empty()) {
- ForwardIDFCalculator IDFs(DT, GD);
- SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
- BlocksToProcess.end());
- IDFs.setDefiningBlocks(DefiningBlocks);
- IDFs.calculate(IDFBlocks);
- SmallSetVector<MemoryPhi *, 4> PhisToFill;
- // First create all needed Phis.
- for (auto *BBIDF : IDFBlocks)
- if (!MSSA->getMemoryAccess(BBIDF)) {
- auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
- InsertedPhis.push_back(IDFPhi);
- PhisToFill.insert(IDFPhi);
- }
- // Then update or insert their correct incoming values.
- for (auto *BBIDF : IDFBlocks) {
- auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
- assert(IDFPhi && "Phi must exist");
- if (!PhisToFill.count(IDFPhi)) {
- // Update existing Phi.
- // FIXME: some updates may be redundant, try to optimize and skip some.
- for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
- IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
- } else {
- for (auto *Pi : GD->template getChildren</*InverseEdge=*/true>(BBIDF))
- IDFPhi->addIncoming(GetLastDef(Pi), Pi);
- }
- }
- }
- // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
- // longer dominate, replace those with the closest dominating def.
- // This will also update optimized accesses, as they're also uses.
- for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
- if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
- for (auto &DefToReplaceUses : *DefsList) {
- BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
- for (Use &U : llvm::make_early_inc_range(DefToReplaceUses.uses())) {
- MemoryAccess *Usr = cast<MemoryAccess>(U.getUser());
- if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
- BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
- if (!DT.dominates(DominatingBlock, DominatedBlock))
- U.set(GetLastDef(DominatedBlock));
- } else {
- BasicBlock *DominatedBlock = Usr->getBlock();
- if (!DT.dominates(DominatingBlock, DominatedBlock)) {
- if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
- U.set(DomBlPhi);
- else {
- auto *IDom = DT.getNode(DominatedBlock)->getIDom();
- assert(IDom && "Block must have a valid IDom.");
- U.set(GetLastDef(IDom->getBlock()));
- }
- cast<MemoryUseOrDef>(Usr)->resetOptimized();
- }
- }
- }
- }
- }
- }
- tryRemoveTrivialPhis(InsertedPhis);
- }
- // Move What before Where in the MemorySSA IR.
- template <class WhereType>
- void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
- WhereType Where) {
- // Mark MemoryPhi users of What not to be optimized.
- for (auto *U : What->users())
- if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
- NonOptPhis.insert(PhiUser);
- // Replace all our users with our defining access.
- What->replaceAllUsesWith(What->getDefiningAccess());
- // Let MemorySSA take care of moving it around in the lists.
- MSSA->moveTo(What, BB, Where);
- // Now reinsert it into the IR and do whatever fixups needed.
- if (auto *MD = dyn_cast<MemoryDef>(What))
- insertDef(MD, /*RenameUses=*/true);
- else
- insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
- // Clear dangling pointers. We added all MemoryPhi users, but not all
- // of them are removed by fixupDefs().
- NonOptPhis.clear();
- }
- // Move What before Where in the MemorySSA IR.
- void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
- moveTo(What, Where->getBlock(), Where->getIterator());
- }
- // Move What after Where in the MemorySSA IR.
- void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
- moveTo(What, Where->getBlock(), ++Where->getIterator());
- }
- void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
- MemorySSA::InsertionPlace Where) {
- if (Where != MemorySSA::InsertionPlace::BeforeTerminator)
- return moveTo(What, BB, Where);
- if (auto *Where = MSSA->getMemoryAccess(BB->getTerminator()))
- return moveBefore(What, Where);
- else
- return moveTo(What, BB, MemorySSA::InsertionPlace::End);
- }
- // All accesses in To used to be in From. Move to end and update access lists.
- void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
- Instruction *Start) {
- MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
- if (!Accs)
- return;
- assert(Start->getParent() == To && "Incorrect Start instruction");
- MemoryAccess *FirstInNew = nullptr;
- for (Instruction &I : make_range(Start->getIterator(), To->end()))
- if ((FirstInNew = MSSA->getMemoryAccess(&I)))
- break;
- if (FirstInNew) {
- auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
- do {
- auto NextIt = ++MUD->getIterator();
- MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
- ? nullptr
- : cast<MemoryUseOrDef>(&*NextIt);
- MSSA->moveTo(MUD, To, MemorySSA::End);
- // Moving MUD from Accs in the moveTo above, may delete Accs, so we need
- // to retrieve it again.
- Accs = MSSA->getWritableBlockAccesses(From);
- MUD = NextMUD;
- } while (MUD);
- }
- // If all accesses were moved and only a trivial Phi remains, we try to remove
- // that Phi. This is needed when From is going to be deleted.
- auto *Defs = MSSA->getWritableBlockDefs(From);
- if (Defs && !Defs->empty())
- if (auto *Phi = dyn_cast<MemoryPhi>(&*Defs->begin()))
- tryRemoveTrivialPhi(Phi);
- }
- void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
- BasicBlock *To,
- Instruction *Start) {
- assert(MSSA->getBlockAccesses(To) == nullptr &&
- "To block is expected to be free of MemoryAccesses.");
- moveAllAccesses(From, To, Start);
- for (BasicBlock *Succ : successors(To))
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
- MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
- }
- void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
- Instruction *Start) {
- assert(From->getUniquePredecessor() == To &&
- "From block is expected to have a single predecessor (To).");
- moveAllAccesses(From, To, Start);
- for (BasicBlock *Succ : successors(From))
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
- MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
- }
- void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
- BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
- bool IdenticalEdgesWereMerged) {
- assert(!MSSA->getWritableBlockAccesses(New) &&
- "Access list should be null for a new block.");
- MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
- if (!Phi)
- return;
- if (Old->hasNPredecessors(1)) {
- assert(pred_size(New) == Preds.size() &&
- "Should have moved all predecessors.");
- MSSA->moveTo(Phi, New, MemorySSA::Beginning);
- } else {
- assert(!Preds.empty() && "Must be moving at least one predecessor to the "
- "new immediate predecessor.");
- MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
- SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
- // Currently only support the case of removing a single incoming edge when
- // identical edges were not merged.
- if (!IdenticalEdgesWereMerged)
- assert(PredsSet.size() == Preds.size() &&
- "If identical edges were not merged, we cannot have duplicate "
- "blocks in the predecessors");
- Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
- if (PredsSet.count(B)) {
- NewPhi->addIncoming(MA, B);
- if (!IdenticalEdgesWereMerged)
- PredsSet.erase(B);
- return true;
- }
- return false;
- });
- Phi->addIncoming(NewPhi, New);
- tryRemoveTrivialPhi(NewPhi);
- }
- }
- void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
- assert(!MSSA->isLiveOnEntryDef(MA) &&
- "Trying to remove the live on entry def");
- // We can only delete phi nodes if they have no uses, or we can replace all
- // uses with a single definition.
- MemoryAccess *NewDefTarget = nullptr;
- if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
- // Note that it is sufficient to know that all edges of the phi node have
- // the same argument. If they do, by the definition of dominance frontiers
- // (which we used to place this phi), that argument must dominate this phi,
- // and thus, must dominate the phi's uses, and so we will not hit the assert
- // below.
- NewDefTarget = onlySingleValue(MP);
- assert((NewDefTarget || MP->use_empty()) &&
- "We can't delete this memory phi");
- } else {
- NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
- }
- SmallSetVector<MemoryPhi *, 4> PhisToCheck;
- // Re-point the uses at our defining access
- if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
- // Reset optimized on users of this store, and reset the uses.
- // A few notes:
- // 1. This is a slightly modified version of RAUW to avoid walking the
- // uses twice here.
- // 2. If we wanted to be complete, we would have to reset the optimized
- // flags on users of phi nodes if doing the below makes a phi node have all
- // the same arguments. Instead, we prefer users to removeMemoryAccess those
- // phi nodes, because doing it here would be N^3.
- if (MA->hasValueHandle())
- ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
- // Note: We assume MemorySSA is not used in metadata since it's not really
- // part of the IR.
- assert(NewDefTarget != MA && "Going into an infinite loop");
- while (!MA->use_empty()) {
- Use &U = *MA->use_begin();
- if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
- MUD->resetOptimized();
- if (OptimizePhis)
- if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
- PhisToCheck.insert(MP);
- U.set(NewDefTarget);
- }
- }
- // The call below to erase will destroy MA, so we can't change the order we
- // are doing things here
- MSSA->removeFromLookups(MA);
- MSSA->removeFromLists(MA);
- // Optionally optimize Phi uses. This will recursively remove trivial phis.
- if (!PhisToCheck.empty()) {
- SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
- PhisToCheck.end()};
- PhisToCheck.clear();
- unsigned PhisSize = PhisToOptimize.size();
- while (PhisSize-- > 0)
- if (MemoryPhi *MP =
- cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
- tryRemoveTrivialPhi(MP);
- }
- }
- void MemorySSAUpdater::removeBlocks(
- const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
- // First delete all uses of BB in MemoryPhis.
- for (BasicBlock *BB : DeadBlocks) {
- Instruction *TI = BB->getTerminator();
- assert(TI && "Basic block expected to have a terminator instruction");
- for (BasicBlock *Succ : successors(TI))
- if (!DeadBlocks.count(Succ))
- if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
- MP->unorderedDeleteIncomingBlock(BB);
- tryRemoveTrivialPhi(MP);
- }
- // Drop all references of all accesses in BB
- if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
- for (MemoryAccess &MA : *Acc)
- MA.dropAllReferences();
- }
- // Next, delete all memory accesses in each block
- for (BasicBlock *BB : DeadBlocks) {
- MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
- if (!Acc)
- continue;
- for (MemoryAccess &MA : llvm::make_early_inc_range(*Acc)) {
- MSSA->removeFromLookups(&MA);
- MSSA->removeFromLists(&MA);
- }
- }
- }
- void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
- for (auto &VH : UpdatedPHIs)
- if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
- tryRemoveTrivialPhi(MPhi);
- }
- void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
- const BasicBlock *BB = I->getParent();
- // Remove memory accesses in BB for I and all following instructions.
- auto BBI = I->getIterator(), BBE = BB->end();
- // FIXME: If this becomes too expensive, iterate until the first instruction
- // with a memory access, then iterate over MemoryAccesses.
- while (BBI != BBE)
- removeMemoryAccess(&*(BBI++));
- // Update phis in BB's successors to remove BB.
- SmallVector<WeakVH, 16> UpdatedPHIs;
- for (const BasicBlock *Successor : successors(BB)) {
- removeDuplicatePhiEdgesBetween(BB, Successor);
- if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
- MPhi->unorderedDeleteIncomingBlock(BB);
- UpdatedPHIs.push_back(MPhi);
- }
- }
- // Optimize trivial phis.
- tryRemoveTrivialPhis(UpdatedPHIs);
- }
- MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
- Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
- MemorySSA::InsertionPlace Point) {
- MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
- MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
- return NewAccess;
- }
- MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
- Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
- assert(I->getParent() == InsertPt->getBlock() &&
- "New and old access must be in the same block");
- MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
- MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
- InsertPt->getIterator());
- return NewAccess;
- }
- MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
- Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
- assert(I->getParent() == InsertPt->getBlock() &&
- "New and old access must be in the same block");
- MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
- MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
- ++InsertPt->getIterator());
- return NewAccess;
- }
|