123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements UnrolledInstAnalyzer class. It's used for predicting
- // potential effects that loop unrolling might have, such as enabling constant
- // propagation and other optimizations.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LoopUnrollAnalyzer.h"
- #include "llvm/Analysis/LoopInfo.h"
- using namespace llvm;
- /// Try to simplify instruction \param I using its SCEV expression.
- ///
- /// The idea is that some AddRec expressions become constants, which then
- /// could trigger folding of other instructions. However, that only happens
- /// for expressions whose start value is also constant, which isn't always the
- /// case. In another common and important case the start value is just some
- /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
- /// it along with the base address instead.
- bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) {
- if (!SE.isSCEVable(I->getType()))
- return false;
- const SCEV *S = SE.getSCEV(I);
- if (auto *SC = dyn_cast<SCEVConstant>(S)) {
- SimplifiedValues[I] = SC->getValue();
- return true;
- }
- // If we have a loop invariant computation, we only need to compute it once.
- // Given that, all but the first occurance are free.
- if (!IterationNumber->isZero() && SE.isLoopInvariant(S, L))
- return true;
- auto *AR = dyn_cast<SCEVAddRecExpr>(S);
- if (!AR || AR->getLoop() != L)
- return false;
- const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
- // Check if the AddRec expression becomes a constant.
- if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
- SimplifiedValues[I] = SC->getValue();
- return true;
- }
- // Check if the offset from the base address becomes a constant.
- auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
- if (!Base)
- return false;
- auto *Offset =
- dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
- if (!Offset)
- return false;
- SimplifiedAddress Address;
- Address.Base = Base->getValue();
- Address.Offset = Offset->getValue();
- SimplifiedAddresses[I] = Address;
- return false;
- }
- /// Try to simplify binary operator I.
- ///
- /// TODO: Probably it's worth to hoist the code for estimating the
- /// simplifications effects to a separate class, since we have a very similar
- /// code in InlineCost already.
- bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- if (!isa<Constant>(LHS))
- if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
- LHS = SimpleLHS;
- if (!isa<Constant>(RHS))
- if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
- RHS = SimpleRHS;
- Value *SimpleV = nullptr;
- const DataLayout &DL = I.getModule()->getDataLayout();
- if (auto FI = dyn_cast<FPMathOperator>(&I))
- SimpleV =
- SimplifyBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
- else
- SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
- if (SimpleV) {
- SimplifiedValues[&I] = SimpleV;
- return true;
- }
- return Base::visitBinaryOperator(I);
- }
- /// Try to fold load I.
- bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) {
- Value *AddrOp = I.getPointerOperand();
- auto AddressIt = SimplifiedAddresses.find(AddrOp);
- if (AddressIt == SimplifiedAddresses.end())
- return false;
- ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
- auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
- // We're only interested in loads that can be completely folded to a
- // constant.
- if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
- return false;
- ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(GV->getInitializer());
- if (!CDS)
- return false;
- // We might have a vector load from an array. FIXME: for now we just bail
- // out in this case, but we should be able to resolve and simplify such
- // loads.
- if (CDS->getElementType() != I.getType())
- return false;
- unsigned ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
- if (SimplifiedAddrOp->getValue().getActiveBits() > 64)
- return false;
- int64_t SimplifiedAddrOpV = SimplifiedAddrOp->getSExtValue();
- if (SimplifiedAddrOpV < 0) {
- // FIXME: For now we conservatively ignore out of bound accesses, but
- // we're allowed to perform the optimization in this case.
- return false;
- }
- uint64_t Index = static_cast<uint64_t>(SimplifiedAddrOpV) / ElemSize;
- if (Index >= CDS->getNumElements()) {
- // FIXME: For now we conservatively ignore out of bound accesses, but
- // we're allowed to perform the optimization in this case.
- return false;
- }
- Constant *CV = CDS->getElementAsConstant(Index);
- assert(CV && "Constant expected.");
- SimplifiedValues[&I] = CV;
- return true;
- }
- /// Try to simplify cast instruction.
- bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) {
- Value *Op = I.getOperand(0);
- if (Value *Simplified = SimplifiedValues.lookup(Op))
- Op = Simplified;
- // The cast can be invalid, because SimplifiedValues contains results of SCEV
- // analysis, which operates on integers (and, e.g., might convert i8* null to
- // i32 0).
- if (CastInst::castIsValid(I.getOpcode(), Op, I.getType())) {
- const DataLayout &DL = I.getModule()->getDataLayout();
- if (Value *V = SimplifyCastInst(I.getOpcode(), Op, I.getType(), DL)) {
- SimplifiedValues[&I] = V;
- return true;
- }
- }
- return Base::visitCastInst(I);
- }
- /// Try to simplify cmp instruction.
- bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) {
- Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
- // First try to handle simplified comparisons.
- if (!isa<Constant>(LHS))
- if (Value *SimpleLHS = SimplifiedValues.lookup(LHS))
- LHS = SimpleLHS;
- if (!isa<Constant>(RHS))
- if (Value *SimpleRHS = SimplifiedValues.lookup(RHS))
- RHS = SimpleRHS;
- if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
- auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
- if (SimplifiedLHS != SimplifiedAddresses.end()) {
- auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
- if (SimplifiedRHS != SimplifiedAddresses.end()) {
- SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
- SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
- if (LHSAddr.Base == RHSAddr.Base) {
- LHS = LHSAddr.Offset;
- RHS = RHSAddr.Offset;
- }
- }
- }
- }
- const DataLayout &DL = I.getModule()->getDataLayout();
- if (Value *V = SimplifyCmpInst(I.getPredicate(), LHS, RHS, DL)) {
- SimplifiedValues[&I] = V;
- return true;
- }
- return Base::visitCmpInst(I);
- }
- bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) {
- // Run base visitor first. This way we can gather some useful for later
- // analysis information.
- if (Base::visitPHINode(PN))
- return true;
- // The loop induction PHI nodes are definitionally free.
- return PN.getParent() == L->getHeader();
- }
- bool UnrolledInstAnalyzer::visitInstruction(Instruction &I) {
- return simplifyInstWithSCEV(&I);
- }
|