123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661 |
- //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
- //
- // The LLVM Compiler Infrastructure
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- ///
- /// \file
- /// This file defines the implementation for the loop cache analysis.
- /// The implementation is largely based on the following paper:
- ///
- /// Compiler Optimizations for Improving Data Locality
- /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
- /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
- ///
- /// The general approach taken to estimate the number of cache lines used by the
- /// memory references in an inner loop is:
- /// 1. Partition memory references that exhibit temporal or spacial reuse
- /// into reference groups.
- /// 2. For each loop L in the a loop nest LN:
- /// a. Compute the cost of the reference group
- /// b. Compute the loop cost by summing up the reference groups costs
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/LoopCacheAnalysis.h"
- #include "llvm/ADT/BreadthFirstIterator.h"
- #include "llvm/ADT/Sequence.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/Delinearization.h"
- #include "llvm/Analysis/DependenceAnalysis.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- using namespace llvm;
- #define DEBUG_TYPE "loop-cache-cost"
- static cl::opt<unsigned> DefaultTripCount(
- "default-trip-count", cl::init(100), cl::Hidden,
- cl::desc("Use this to specify the default trip count of a loop"));
- // In this analysis two array references are considered to exhibit temporal
- // reuse if they access either the same memory location, or a memory location
- // with distance smaller than a configurable threshold.
- static cl::opt<unsigned> TemporalReuseThreshold(
- "temporal-reuse-threshold", cl::init(2), cl::Hidden,
- cl::desc("Use this to specify the max. distance between array elements "
- "accessed in a loop so that the elements are classified to have "
- "temporal reuse"));
- /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
- /// nullptr if any loops in the loop vector supplied has more than one sibling.
- /// The loop vector is expected to contain loops collected in breadth-first
- /// order.
- static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
- assert(!Loops.empty() && "Expecting a non-empy loop vector");
- Loop *LastLoop = Loops.back();
- Loop *ParentLoop = LastLoop->getParentLoop();
- if (ParentLoop == nullptr) {
- assert(Loops.size() == 1 && "Expecting a single loop");
- return LastLoop;
- }
- return (llvm::is_sorted(Loops,
- [](const Loop *L1, const Loop *L2) {
- return L1->getLoopDepth() < L2->getLoopDepth();
- }))
- ? LastLoop
- : nullptr;
- }
- static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
- const Loop &L, ScalarEvolution &SE) {
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
- if (!AR || !AR->isAffine())
- return false;
- assert(AR->getLoop() && "AR should have a loop");
- // Check that start and increment are not add recurrences.
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(SE);
- if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
- return false;
- // Check that start and increment are both invariant in the loop.
- if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
- return false;
- const SCEV *StepRec = AR->getStepRecurrence(SE);
- if (StepRec && SE.isKnownNegative(StepRec))
- StepRec = SE.getNegativeSCEV(StepRec);
- return StepRec == &ElemSize;
- }
- /// Compute the trip count for the given loop \p L. Return the SCEV expression
- /// for the trip count or nullptr if it cannot be computed.
- static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) {
- const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
- if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
- !isa<SCEVConstant>(BackedgeTakenCount))
- return nullptr;
- return SE.getTripCountFromExitCount(BackedgeTakenCount);
- }
- //===----------------------------------------------------------------------===//
- // IndexedReference implementation
- //
- raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
- if (!R.IsValid) {
- OS << R.StoreOrLoadInst;
- OS << ", IsValid=false.";
- return OS;
- }
- OS << *R.BasePointer;
- for (const SCEV *Subscript : R.Subscripts)
- OS << "[" << *Subscript << "]";
- OS << ", Sizes: ";
- for (const SCEV *Size : R.Sizes)
- OS << "[" << *Size << "]";
- return OS;
- }
- IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
- const LoopInfo &LI, ScalarEvolution &SE)
- : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
- assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
- "Expecting a load or store instruction");
- IsValid = delinearize(LI);
- if (IsValid)
- LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
- << "\n");
- }
- Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
- unsigned CLS,
- AAResults &AA) const {
- assert(IsValid && "Expecting a valid reference");
- if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
- LLVM_DEBUG(dbgs().indent(2)
- << "No spacial reuse: different base pointers\n");
- return false;
- }
- unsigned NumSubscripts = getNumSubscripts();
- if (NumSubscripts != Other.getNumSubscripts()) {
- LLVM_DEBUG(dbgs().indent(2)
- << "No spacial reuse: different number of subscripts\n");
- return false;
- }
- // all subscripts must be equal, except the leftmost one (the last one).
- for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
- if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
- LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
- << "\n\t" << *getSubscript(SubNum) << "\n\t"
- << *Other.getSubscript(SubNum) << "\n");
- return false;
- }
- }
- // the difference between the last subscripts must be less than the cache line
- // size.
- const SCEV *LastSubscript = getLastSubscript();
- const SCEV *OtherLastSubscript = Other.getLastSubscript();
- const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
- SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
- if (Diff == nullptr) {
- LLVM_DEBUG(dbgs().indent(2)
- << "No spacial reuse, difference between subscript:\n\t"
- << *LastSubscript << "\n\t" << OtherLastSubscript
- << "\nis not constant.\n");
- return None;
- }
- bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
- LLVM_DEBUG({
- if (InSameCacheLine)
- dbgs().indent(2) << "Found spacial reuse.\n";
- else
- dbgs().indent(2) << "No spacial reuse.\n";
- });
- return InSameCacheLine;
- }
- Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
- unsigned MaxDistance,
- const Loop &L,
- DependenceInfo &DI,
- AAResults &AA) const {
- assert(IsValid && "Expecting a valid reference");
- if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
- LLVM_DEBUG(dbgs().indent(2)
- << "No temporal reuse: different base pointer\n");
- return false;
- }
- std::unique_ptr<Dependence> D =
- DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
- if (D == nullptr) {
- LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
- return false;
- }
- if (D->isLoopIndependent()) {
- LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
- return true;
- }
- // Check the dependence distance at every loop level. There is temporal reuse
- // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
- // it is zero at every other loop level.
- int LoopDepth = L.getLoopDepth();
- int Levels = D->getLevels();
- for (int Level = 1; Level <= Levels; ++Level) {
- const SCEV *Distance = D->getDistance(Level);
- const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
- if (SCEVConst == nullptr) {
- LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
- return None;
- }
- const ConstantInt &CI = *SCEVConst->getValue();
- if (Level != LoopDepth && !CI.isZero()) {
- LLVM_DEBUG(dbgs().indent(2)
- << "No temporal reuse: distance is not zero at depth=" << Level
- << "\n");
- return false;
- } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
- LLVM_DEBUG(
- dbgs().indent(2)
- << "No temporal reuse: distance is greater than MaxDistance at depth="
- << Level << "\n");
- return false;
- }
- }
- LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
- return true;
- }
- CacheCostTy IndexedReference::computeRefCost(const Loop &L,
- unsigned CLS) const {
- assert(IsValid && "Expecting a valid reference");
- LLVM_DEBUG({
- dbgs().indent(2) << "Computing cache cost for:\n";
- dbgs().indent(4) << *this << "\n";
- });
- // If the indexed reference is loop invariant the cost is one.
- if (isLoopInvariant(L)) {
- LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
- return 1;
- }
- const SCEV *TripCount = computeTripCount(L, SE);
- if (!TripCount) {
- LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
- << " could not be computed, using DefaultTripCount\n");
- const SCEV *ElemSize = Sizes.back();
- TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount);
- }
- LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
- // If the indexed reference is 'consecutive' the cost is
- // (TripCount*Stride)/CLS, otherwise the cost is TripCount.
- const SCEV *RefCost = TripCount;
- if (isConsecutive(L, CLS)) {
- const SCEV *Coeff = getLastCoefficient();
- const SCEV *ElemSize = Sizes.back();
- const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
- Type *WiderType = SE.getWiderType(Stride->getType(), TripCount->getType());
- const SCEV *CacheLineSize = SE.getConstant(WiderType, CLS);
- if (SE.isKnownNegative(Stride))
- Stride = SE.getNegativeSCEV(Stride);
- Stride = SE.getNoopOrAnyExtend(Stride, WiderType);
- TripCount = SE.getNoopOrAnyExtend(TripCount, WiderType);
- const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
- RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
- LLVM_DEBUG(dbgs().indent(4)
- << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
- << *RefCost << "\n");
- } else
- LLVM_DEBUG(dbgs().indent(4)
- << "Access is not consecutive: RefCost=TripCount=" << *RefCost
- << "\n");
- // Attempt to fold RefCost into a constant.
- if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
- return ConstantCost->getValue()->getSExtValue();
- LLVM_DEBUG(dbgs().indent(4)
- << "RefCost is not a constant! Setting to RefCost=InvalidCost "
- "(invalid value).\n");
- return CacheCost::InvalidCost;
- }
- bool IndexedReference::delinearize(const LoopInfo &LI) {
- assert(Subscripts.empty() && "Subscripts should be empty");
- assert(Sizes.empty() && "Sizes should be empty");
- assert(!IsValid && "Should be called once from the constructor");
- LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
- const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
- const BasicBlock *BB = StoreOrLoadInst.getParent();
- if (Loop *L = LI.getLoopFor(BB)) {
- const SCEV *AccessFn =
- SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
- BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
- if (BasePointer == nullptr) {
- LLVM_DEBUG(
- dbgs().indent(2)
- << "ERROR: failed to delinearize, can't identify base pointer\n");
- return false;
- }
- AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
- LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
- << "', AccessFn: " << *AccessFn << "\n");
- llvm::delinearize(SE, AccessFn, Subscripts, Sizes,
- SE.getElementSize(&StoreOrLoadInst));
- if (Subscripts.empty() || Sizes.empty() ||
- Subscripts.size() != Sizes.size()) {
- // Attempt to determine whether we have a single dimensional array access.
- // before giving up.
- if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
- LLVM_DEBUG(dbgs().indent(2)
- << "ERROR: failed to delinearize reference\n");
- Subscripts.clear();
- Sizes.clear();
- return false;
- }
- // The array may be accessed in reverse, for example:
- // for (i = N; i > 0; i--)
- // A[i] = 0;
- // In this case, reconstruct the access function using the absolute value
- // of the step recurrence.
- const SCEVAddRecExpr *AccessFnAR = dyn_cast<SCEVAddRecExpr>(AccessFn);
- const SCEV *StepRec = AccessFnAR ? AccessFnAR->getStepRecurrence(SE) : nullptr;
- if (StepRec && SE.isKnownNegative(StepRec))
- AccessFn = SE.getAddRecExpr(AccessFnAR->getStart(),
- SE.getNegativeSCEV(StepRec),
- AccessFnAR->getLoop(),
- AccessFnAR->getNoWrapFlags());
- const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
- Subscripts.push_back(Div);
- Sizes.push_back(ElemSize);
- }
- return all_of(Subscripts, [&](const SCEV *Subscript) {
- return isSimpleAddRecurrence(*Subscript, *L);
- });
- }
- return false;
- }
- bool IndexedReference::isLoopInvariant(const Loop &L) const {
- Value *Addr = getPointerOperand(&StoreOrLoadInst);
- assert(Addr != nullptr && "Expecting either a load or a store instruction");
- assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
- if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
- return true;
- // The indexed reference is loop invariant if none of the coefficients use
- // the loop induction variable.
- bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
- return isCoeffForLoopZeroOrInvariant(*Subscript, L);
- });
- return allCoeffForLoopAreZero;
- }
- bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const {
- // The indexed reference is 'consecutive' if the only coefficient that uses
- // the loop induction variable is the last one...
- const SCEV *LastSubscript = Subscripts.back();
- for (const SCEV *Subscript : Subscripts) {
- if (Subscript == LastSubscript)
- continue;
- if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
- return false;
- }
- // ...and the access stride is less than the cache line size.
- const SCEV *Coeff = getLastCoefficient();
- const SCEV *ElemSize = Sizes.back();
- const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
- const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
- Stride = SE.isKnownNegative(Stride) ? SE.getNegativeSCEV(Stride) : Stride;
- return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
- }
- const SCEV *IndexedReference::getLastCoefficient() const {
- const SCEV *LastSubscript = getLastSubscript();
- auto *AR = cast<SCEVAddRecExpr>(LastSubscript);
- return AR->getStepRecurrence(SE);
- }
- bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
- const Loop &L) const {
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
- return (AR != nullptr) ? AR->getLoop() != &L
- : SE.isLoopInvariant(&Subscript, &L);
- }
- bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
- const Loop &L) const {
- if (!isa<SCEVAddRecExpr>(Subscript))
- return false;
- const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
- assert(AR->getLoop() && "AR should have a loop");
- if (!AR->isAffine())
- return false;
- const SCEV *Start = AR->getStart();
- const SCEV *Step = AR->getStepRecurrence(SE);
- if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
- return false;
- return true;
- }
- bool IndexedReference::isAliased(const IndexedReference &Other,
- AAResults &AA) const {
- const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
- const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
- return AA.isMustAlias(Loc1, Loc2);
- }
- //===----------------------------------------------------------------------===//
- // CacheCost implementation
- //
- raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
- for (const auto &LC : CC.LoopCosts) {
- const Loop *L = LC.first;
- OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
- }
- return OS;
- }
- CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
- ScalarEvolution &SE, TargetTransformInfo &TTI,
- AAResults &AA, DependenceInfo &DI, Optional<unsigned> TRT)
- : Loops(Loops),
- TRT((TRT == None) ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
- LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
- assert(!Loops.empty() && "Expecting a non-empty loop vector.");
- for (const Loop *L : Loops) {
- unsigned TripCount = SE.getSmallConstantTripCount(L);
- TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
- TripCounts.push_back({L, TripCount});
- }
- calculateCacheFootprint();
- }
- std::unique_ptr<CacheCost>
- CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
- DependenceInfo &DI, Optional<unsigned> TRT) {
- if (!Root.isOutermost()) {
- LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
- return nullptr;
- }
- LoopVectorTy Loops;
- append_range(Loops, breadth_first(&Root));
- if (!getInnerMostLoop(Loops)) {
- LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
- "than one innermost loop\n");
- return nullptr;
- }
- return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
- }
- void CacheCost::calculateCacheFootprint() {
- LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
- ReferenceGroupsTy RefGroups;
- if (!populateReferenceGroups(RefGroups))
- return;
- LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
- for (const Loop *L : Loops) {
- assert(llvm::none_of(
- LoopCosts,
- [L](const LoopCacheCostTy &LCC) { return LCC.first == L; }) &&
- "Should not add duplicate element");
- CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
- LoopCosts.push_back(std::make_pair(L, LoopCost));
- }
- sortLoopCosts();
- RefGroups.clear();
- }
- bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
- assert(RefGroups.empty() && "Reference groups should be empty");
- unsigned CLS = TTI.getCacheLineSize();
- Loop *InnerMostLoop = getInnerMostLoop(Loops);
- assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
- for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
- for (Instruction &I : *BB) {
- if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
- continue;
- std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
- if (!R->isValid())
- continue;
- bool Added = false;
- for (ReferenceGroupTy &RefGroup : RefGroups) {
- const IndexedReference &Representative = *RefGroup.front().get();
- LLVM_DEBUG({
- dbgs() << "References:\n";
- dbgs().indent(2) << *R << "\n";
- dbgs().indent(2) << Representative << "\n";
- });
- // FIXME: Both positive and negative access functions will be placed
- // into the same reference group, resulting in a bi-directional array
- // access such as:
- // for (i = N; i > 0; i--)
- // A[i] = A[N - i];
- // having the same cost calculation as a single dimention access pattern
- // for (i = 0; i < N; i++)
- // A[i] = A[i];
- // when in actuality, depending on the array size, the first example
- // should have a cost closer to 2x the second due to the two cache
- // access per iteration from opposite ends of the array
- Optional<bool> HasTemporalReuse =
- R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
- Optional<bool> HasSpacialReuse =
- R->hasSpacialReuse(Representative, CLS, AA);
- if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) ||
- (HasSpacialReuse.hasValue() && *HasSpacialReuse)) {
- RefGroup.push_back(std::move(R));
- Added = true;
- break;
- }
- }
- if (!Added) {
- ReferenceGroupTy RG;
- RG.push_back(std::move(R));
- RefGroups.push_back(std::move(RG));
- }
- }
- }
- if (RefGroups.empty())
- return false;
- LLVM_DEBUG({
- dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
- int n = 1;
- for (const ReferenceGroupTy &RG : RefGroups) {
- dbgs().indent(2) << "RefGroup " << n << ":\n";
- for (const auto &IR : RG)
- dbgs().indent(4) << *IR << "\n";
- n++;
- }
- dbgs() << "\n";
- });
- return true;
- }
- CacheCostTy
- CacheCost::computeLoopCacheCost(const Loop &L,
- const ReferenceGroupsTy &RefGroups) const {
- if (!L.isLoopSimplifyForm())
- return InvalidCost;
- LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
- << "' as innermost loop.\n");
- // Compute the product of the trip counts of each other loop in the nest.
- CacheCostTy TripCountsProduct = 1;
- for (const auto &TC : TripCounts) {
- if (TC.first == &L)
- continue;
- TripCountsProduct *= TC.second;
- }
- CacheCostTy LoopCost = 0;
- for (const ReferenceGroupTy &RG : RefGroups) {
- CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
- LoopCost += RefGroupCost * TripCountsProduct;
- }
- LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
- << "' has cost=" << LoopCost << "\n");
- return LoopCost;
- }
- CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
- const Loop &L) const {
- assert(!RG.empty() && "Reference group should have at least one member.");
- const IndexedReference *Representative = RG.front().get();
- return Representative->computeRefCost(L, TTI.getCacheLineSize());
- }
- //===----------------------------------------------------------------------===//
- // LoopCachePrinterPass implementation
- //
- PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &U) {
- Function *F = L.getHeader()->getParent();
- DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
- if (auto CC = CacheCost::getCacheCost(L, AR, DI))
- OS << *CC;
- return PreservedAnalyses::all();
- }
|