1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447 |
- //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file "describes" induction and recurrence variables.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Analysis/IVDescriptors.h"
- #include "llvm/ADT/ScopeExit.h"
- #include "llvm/Analysis/BasicAliasAnalysis.h"
- #include "llvm/Analysis/DemandedBits.h"
- #include "llvm/Analysis/DomTreeUpdater.h"
- #include "llvm/Analysis/GlobalsModRef.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/MustExecute.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/IR/ValueHandle.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/KnownBits.h"
- #include <set>
- using namespace llvm;
- using namespace llvm::PatternMatch;
- #define DEBUG_TYPE "iv-descriptors"
- bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
- SmallPtrSetImpl<Instruction *> &Set) {
- for (const Use &Use : I->operands())
- if (!Set.count(dyn_cast<Instruction>(Use)))
- return false;
- return true;
- }
- bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) {
- switch (Kind) {
- default:
- break;
- case RecurKind::Add:
- case RecurKind::Mul:
- case RecurKind::Or:
- case RecurKind::And:
- case RecurKind::Xor:
- case RecurKind::SMax:
- case RecurKind::SMin:
- case RecurKind::UMax:
- case RecurKind::UMin:
- case RecurKind::SelectICmp:
- case RecurKind::SelectFCmp:
- return true;
- }
- return false;
- }
- bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) {
- return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind);
- }
- bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurKind Kind) {
- switch (Kind) {
- default:
- break;
- case RecurKind::Add:
- case RecurKind::Mul:
- case RecurKind::FAdd:
- case RecurKind::FMul:
- case RecurKind::FMulAdd:
- return true;
- }
- return false;
- }
- /// Determines if Phi may have been type-promoted. If Phi has a single user
- /// that ANDs the Phi with a type mask, return the user. RT is updated to
- /// account for the narrower bit width represented by the mask, and the AND
- /// instruction is added to CI.
- static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
- SmallPtrSetImpl<Instruction *> &Visited,
- SmallPtrSetImpl<Instruction *> &CI) {
- if (!Phi->hasOneUse())
- return Phi;
- const APInt *M = nullptr;
- Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
- // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
- // with a new integer type of the corresponding bit width.
- if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
- int32_t Bits = (*M + 1).exactLogBase2();
- if (Bits > 0) {
- RT = IntegerType::get(Phi->getContext(), Bits);
- Visited.insert(Phi);
- CI.insert(J);
- return J;
- }
- }
- return Phi;
- }
- /// Compute the minimal bit width needed to represent a reduction whose exit
- /// instruction is given by Exit.
- static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
- DemandedBits *DB,
- AssumptionCache *AC,
- DominatorTree *DT) {
- bool IsSigned = false;
- const DataLayout &DL = Exit->getModule()->getDataLayout();
- uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
- if (DB) {
- // Use the demanded bits analysis to determine the bits that are live out
- // of the exit instruction, rounding up to the nearest power of two. If the
- // use of demanded bits results in a smaller bit width, we know the value
- // must be positive (i.e., IsSigned = false), because if this were not the
- // case, the sign bit would have been demanded.
- auto Mask = DB->getDemandedBits(Exit);
- MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
- }
- if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
- // If demanded bits wasn't able to limit the bit width, we can try to use
- // value tracking instead. This can be the case, for example, if the value
- // may be negative.
- auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
- auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
- MaxBitWidth = NumTypeBits - NumSignBits;
- KnownBits Bits = computeKnownBits(Exit, DL);
- if (!Bits.isNonNegative()) {
- // If the value is not known to be non-negative, we set IsSigned to true,
- // meaning that we will use sext instructions instead of zext
- // instructions to restore the original type.
- IsSigned = true;
- // Make sure at at least one sign bit is included in the result, so it
- // will get properly sign-extended.
- ++MaxBitWidth;
- }
- }
- if (!isPowerOf2_64(MaxBitWidth))
- MaxBitWidth = NextPowerOf2(MaxBitWidth);
- return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
- IsSigned);
- }
- /// Collect cast instructions that can be ignored in the vectorizer's cost
- /// model, given a reduction exit value and the minimal type in which the
- // reduction can be represented. Also search casts to the recurrence type
- // to find the minimum width used by the recurrence.
- static void collectCastInstrs(Loop *TheLoop, Instruction *Exit,
- Type *RecurrenceType,
- SmallPtrSetImpl<Instruction *> &Casts,
- unsigned &MinWidthCastToRecurTy) {
- SmallVector<Instruction *, 8> Worklist;
- SmallPtrSet<Instruction *, 8> Visited;
- Worklist.push_back(Exit);
- MinWidthCastToRecurTy = -1U;
- while (!Worklist.empty()) {
- Instruction *Val = Worklist.pop_back_val();
- Visited.insert(Val);
- if (auto *Cast = dyn_cast<CastInst>(Val)) {
- if (Cast->getSrcTy() == RecurrenceType) {
- // If the source type of a cast instruction is equal to the recurrence
- // type, it will be eliminated, and should be ignored in the vectorizer
- // cost model.
- Casts.insert(Cast);
- continue;
- }
- if (Cast->getDestTy() == RecurrenceType) {
- // The minimum width used by the recurrence is found by checking for
- // casts on its operands. The minimum width is used by the vectorizer
- // when finding the widest type for in-loop reductions without any
- // loads/stores.
- MinWidthCastToRecurTy = std::min<unsigned>(
- MinWidthCastToRecurTy, Cast->getSrcTy()->getScalarSizeInBits());
- continue;
- }
- }
- // Add all operands to the work list if they are loop-varying values that
- // we haven't yet visited.
- for (Value *O : cast<User>(Val)->operands())
- if (auto *I = dyn_cast<Instruction>(O))
- if (TheLoop->contains(I) && !Visited.count(I))
- Worklist.push_back(I);
- }
- }
- // Check if a given Phi node can be recognized as an ordered reduction for
- // vectorizing floating point operations without unsafe math.
- static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst,
- Instruction *Exit, PHINode *Phi) {
- // Currently only FAdd and FMulAdd are supported.
- if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd)
- return false;
- if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd)
- return false;
- if (Kind == RecurKind::FMulAdd &&
- !RecurrenceDescriptor::isFMulAddIntrinsic(Exit))
- return false;
- // Ensure the exit instruction has only one user other than the reduction PHI
- if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(3))
- return false;
- // The only pattern accepted is the one in which the reduction PHI
- // is used as one of the operands of the exit instruction
- auto *Op0 = Exit->getOperand(0);
- auto *Op1 = Exit->getOperand(1);
- if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi)
- return false;
- if (Kind == RecurKind::FMulAdd && Exit->getOperand(2) != Phi)
- return false;
- LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi
- << ", ExitInst: " << *Exit << "\n");
- return true;
- }
- bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurKind Kind,
- Loop *TheLoop, FastMathFlags FuncFMF,
- RecurrenceDescriptor &RedDes,
- DemandedBits *DB,
- AssumptionCache *AC,
- DominatorTree *DT) {
- if (Phi->getNumIncomingValues() != 2)
- return false;
- // Reduction variables are only found in the loop header block.
- if (Phi->getParent() != TheLoop->getHeader())
- return false;
- // Obtain the reduction start value from the value that comes from the loop
- // preheader.
- Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
- // ExitInstruction is the single value which is used outside the loop.
- // We only allow for a single reduction value to be used outside the loop.
- // This includes users of the reduction, variables (which form a cycle
- // which ends in the phi node).
- Instruction *ExitInstruction = nullptr;
- // Indicates that we found a reduction operation in our scan.
- bool FoundReduxOp = false;
- // We start with the PHI node and scan for all of the users of this
- // instruction. All users must be instructions that can be used as reduction
- // variables (such as ADD). We must have a single out-of-block user. The cycle
- // must include the original PHI.
- bool FoundStartPHI = false;
- // To recognize min/max patterns formed by a icmp select sequence, we store
- // the number of instruction we saw from the recognized min/max pattern,
- // to make sure we only see exactly the two instructions.
- unsigned NumCmpSelectPatternInst = 0;
- InstDesc ReduxDesc(false, nullptr);
- // Data used for determining if the recurrence has been type-promoted.
- Type *RecurrenceType = Phi->getType();
- SmallPtrSet<Instruction *, 4> CastInsts;
- unsigned MinWidthCastToRecurrenceType;
- Instruction *Start = Phi;
- bool IsSigned = false;
- SmallPtrSet<Instruction *, 8> VisitedInsts;
- SmallVector<Instruction *, 8> Worklist;
- // Return early if the recurrence kind does not match the type of Phi. If the
- // recurrence kind is arithmetic, we attempt to look through AND operations
- // resulting from the type promotion performed by InstCombine. Vector
- // operations are not limited to the legal integer widths, so we may be able
- // to evaluate the reduction in the narrower width.
- if (RecurrenceType->isFloatingPointTy()) {
- if (!isFloatingPointRecurrenceKind(Kind))
- return false;
- } else if (RecurrenceType->isIntegerTy()) {
- if (!isIntegerRecurrenceKind(Kind))
- return false;
- if (!isMinMaxRecurrenceKind(Kind))
- Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
- } else {
- // Pointer min/max may exist, but it is not supported as a reduction op.
- return false;
- }
- Worklist.push_back(Start);
- VisitedInsts.insert(Start);
- // Start with all flags set because we will intersect this with the reduction
- // flags from all the reduction operations.
- FastMathFlags FMF = FastMathFlags::getFast();
- // The first instruction in the use-def chain of the Phi node that requires
- // exact floating point operations.
- Instruction *ExactFPMathInst = nullptr;
- // A value in the reduction can be used:
- // - By the reduction:
- // - Reduction operation:
- // - One use of reduction value (safe).
- // - Multiple use of reduction value (not safe).
- // - PHI:
- // - All uses of the PHI must be the reduction (safe).
- // - Otherwise, not safe.
- // - By instructions outside of the loop (safe).
- // * One value may have several outside users, but all outside
- // uses must be of the same value.
- // - By an instruction that is not part of the reduction (not safe).
- // This is either:
- // * An instruction type other than PHI or the reduction operation.
- // * A PHI in the header other than the initial PHI.
- while (!Worklist.empty()) {
- Instruction *Cur = Worklist.pop_back_val();
- // No Users.
- // If the instruction has no users then this is a broken chain and can't be
- // a reduction variable.
- if (Cur->use_empty())
- return false;
- bool IsAPhi = isa<PHINode>(Cur);
- // A header PHI use other than the original PHI.
- if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
- return false;
- // Reductions of instructions such as Div, and Sub is only possible if the
- // LHS is the reduction variable.
- if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
- !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
- !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
- return false;
- // Any reduction instruction must be of one of the allowed kinds. We ignore
- // the starting value (the Phi or an AND instruction if the Phi has been
- // type-promoted).
- if (Cur != Start) {
- ReduxDesc =
- isRecurrenceInstr(TheLoop, Phi, Cur, Kind, ReduxDesc, FuncFMF);
- ExactFPMathInst = ExactFPMathInst == nullptr
- ? ReduxDesc.getExactFPMathInst()
- : ExactFPMathInst;
- if (!ReduxDesc.isRecurrence())
- return false;
- // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
- if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi) {
- FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags();
- if (auto *Sel = dyn_cast<SelectInst>(ReduxDesc.getPatternInst())) {
- // Accept FMF on either fcmp or select of a min/max idiom.
- // TODO: This is a hack to work-around the fact that FMF may not be
- // assigned/propagated correctly. If that problem is fixed or we
- // standardize on fmin/fmax via intrinsics, this can be removed.
- if (auto *FCmp = dyn_cast<FCmpInst>(Sel->getCondition()))
- CurFMF |= FCmp->getFastMathFlags();
- }
- FMF &= CurFMF;
- }
- // Update this reduction kind if we matched a new instruction.
- // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind'
- // state accurate while processing the worklist?
- if (ReduxDesc.getRecKind() != RecurKind::None)
- Kind = ReduxDesc.getRecKind();
- }
- bool IsASelect = isa<SelectInst>(Cur);
- // A conditional reduction operation must only have 2 or less uses in
- // VisitedInsts.
- if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) &&
- hasMultipleUsesOf(Cur, VisitedInsts, 2))
- return false;
- // A reduction operation must only have one use of the reduction value.
- if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) &&
- !isSelectCmpRecurrenceKind(Kind) &&
- hasMultipleUsesOf(Cur, VisitedInsts, 1))
- return false;
- // All inputs to a PHI node must be a reduction value.
- if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
- return false;
- if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectICmp) &&
- (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
- ++NumCmpSelectPatternInst;
- if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::SelectFCmp) &&
- (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
- ++NumCmpSelectPatternInst;
- // Check whether we found a reduction operator.
- FoundReduxOp |= !IsAPhi && Cur != Start;
- // Process users of current instruction. Push non-PHI nodes after PHI nodes
- // onto the stack. This way we are going to have seen all inputs to PHI
- // nodes once we get to them.
- SmallVector<Instruction *, 8> NonPHIs;
- SmallVector<Instruction *, 8> PHIs;
- for (User *U : Cur->users()) {
- Instruction *UI = cast<Instruction>(U);
- // If the user is a call to llvm.fmuladd then the instruction can only be
- // the final operand.
- if (isFMulAddIntrinsic(UI))
- if (Cur == UI->getOperand(0) || Cur == UI->getOperand(1))
- return false;
- // Check if we found the exit user.
- BasicBlock *Parent = UI->getParent();
- if (!TheLoop->contains(Parent)) {
- // If we already know this instruction is used externally, move on to
- // the next user.
- if (ExitInstruction == Cur)
- continue;
- // Exit if you find multiple values used outside or if the header phi
- // node is being used. In this case the user uses the value of the
- // previous iteration, in which case we would loose "VF-1" iterations of
- // the reduction operation if we vectorize.
- if (ExitInstruction != nullptr || Cur == Phi)
- return false;
- // The instruction used by an outside user must be the last instruction
- // before we feed back to the reduction phi. Otherwise, we loose VF-1
- // operations on the value.
- if (!is_contained(Phi->operands(), Cur))
- return false;
- ExitInstruction = Cur;
- continue;
- }
- // Process instructions only once (termination). Each reduction cycle
- // value must only be used once, except by phi nodes and min/max
- // reductions which are represented as a cmp followed by a select.
- InstDesc IgnoredVal(false, nullptr);
- if (VisitedInsts.insert(UI).second) {
- if (isa<PHINode>(UI))
- PHIs.push_back(UI);
- else
- NonPHIs.push_back(UI);
- } else if (!isa<PHINode>(UI) &&
- ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
- !isa<SelectInst>(UI)) ||
- (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
- !isSelectCmpPattern(TheLoop, Phi, UI, IgnoredVal)
- .isRecurrence() &&
- !isMinMaxPattern(UI, Kind, IgnoredVal).isRecurrence())))
- return false;
- // Remember that we completed the cycle.
- if (UI == Phi)
- FoundStartPHI = true;
- }
- Worklist.append(PHIs.begin(), PHIs.end());
- Worklist.append(NonPHIs.begin(), NonPHIs.end());
- }
- // This means we have seen one but not the other instruction of the
- // pattern or more than just a select and cmp. Zero implies that we saw a
- // llvm.min/max instrinsic, which is always OK.
- if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 &&
- NumCmpSelectPatternInst != 0)
- return false;
- if (isSelectCmpRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1)
- return false;
- if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
- return false;
- const bool IsOrdered =
- checkOrderedReduction(Kind, ExactFPMathInst, ExitInstruction, Phi);
- if (Start != Phi) {
- // If the starting value is not the same as the phi node, we speculatively
- // looked through an 'and' instruction when evaluating a potential
- // arithmetic reduction to determine if it may have been type-promoted.
- //
- // We now compute the minimal bit width that is required to represent the
- // reduction. If this is the same width that was indicated by the 'and', we
- // can represent the reduction in the smaller type. The 'and' instruction
- // will be eliminated since it will essentially be a cast instruction that
- // can be ignore in the cost model. If we compute a different type than we
- // did when evaluating the 'and', the 'and' will not be eliminated, and we
- // will end up with different kinds of operations in the recurrence
- // expression (e.g., IntegerAND, IntegerADD). We give up if this is
- // the case.
- //
- // The vectorizer relies on InstCombine to perform the actual
- // type-shrinking. It does this by inserting instructions to truncate the
- // exit value of the reduction to the width indicated by RecurrenceType and
- // then extend this value back to the original width. If IsSigned is false,
- // a 'zext' instruction will be generated; otherwise, a 'sext' will be
- // used.
- //
- // TODO: We should not rely on InstCombine to rewrite the reduction in the
- // smaller type. We should just generate a correctly typed expression
- // to begin with.
- Type *ComputedType;
- std::tie(ComputedType, IsSigned) =
- computeRecurrenceType(ExitInstruction, DB, AC, DT);
- if (ComputedType != RecurrenceType)
- return false;
- }
- // Collect cast instructions and the minimum width used by the recurrence.
- // If the starting value is not the same as the phi node and the computed
- // recurrence type is equal to the recurrence type, the recurrence expression
- // will be represented in a narrower or wider type. If there are any cast
- // instructions that will be unnecessary, collect them in CastsFromRecurTy.
- // Note that the 'and' instruction was already included in this list.
- //
- // TODO: A better way to represent this may be to tag in some way all the
- // instructions that are a part of the reduction. The vectorizer cost
- // model could then apply the recurrence type to these instructions,
- // without needing a white list of instructions to ignore.
- // This may also be useful for the inloop reductions, if it can be
- // kept simple enough.
- collectCastInstrs(TheLoop, ExitInstruction, RecurrenceType, CastInsts,
- MinWidthCastToRecurrenceType);
- // We found a reduction var if we have reached the original phi node and we
- // only have a single instruction with out-of-loop users.
- // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
- // is saved as part of the RecurrenceDescriptor.
- // Save the description of this reduction variable.
- RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind, FMF, ExactFPMathInst,
- RecurrenceType, IsSigned, IsOrdered, CastInsts,
- MinWidthCastToRecurrenceType);
- RedDes = RD;
- return true;
- }
- // We are looking for loops that do something like this:
- // int r = 0;
- // for (int i = 0; i < n; i++) {
- // if (src[i] > 3)
- // r = 3;
- // }
- // where the reduction value (r) only has two states, in this example 0 or 3.
- // The generated LLVM IR for this type of loop will be like this:
- // for.body:
- // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ]
- // ...
- // %cmp = icmp sgt i32 %5, 3
- // %spec.select = select i1 %cmp, i32 3, i32 %r
- // ...
- // In general we can support vectorization of loops where 'r' flips between
- // any two non-constants, provided they are loop invariant. The only thing
- // we actually care about at the end of the loop is whether or not any lane
- // in the selected vector is different from the start value. The final
- // across-vector reduction after the loop simply involves choosing the start
- // value if nothing changed (0 in the example above) or the other selected
- // value (3 in the example above).
- RecurrenceDescriptor::InstDesc
- RecurrenceDescriptor::isSelectCmpPattern(Loop *Loop, PHINode *OrigPhi,
- Instruction *I, InstDesc &Prev) {
- // We must handle the select(cmp(),x,y) as a single instruction. Advance to
- // the select.
- CmpInst::Predicate Pred;
- if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
- if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
- return InstDesc(Select, Prev.getRecKind());
- }
- // Only match select with single use cmp condition.
- if (!match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
- m_Value())))
- return InstDesc(false, I);
- SelectInst *SI = cast<SelectInst>(I);
- Value *NonPhi = nullptr;
- if (OrigPhi == dyn_cast<PHINode>(SI->getTrueValue()))
- NonPhi = SI->getFalseValue();
- else if (OrigPhi == dyn_cast<PHINode>(SI->getFalseValue()))
- NonPhi = SI->getTrueValue();
- else
- return InstDesc(false, I);
- // We are looking for selects of the form:
- // select(cmp(), phi, loop_invariant) or
- // select(cmp(), loop_invariant, phi)
- if (!Loop->isLoopInvariant(NonPhi))
- return InstDesc(false, I);
- return InstDesc(I, isa<ICmpInst>(I->getOperand(0)) ? RecurKind::SelectICmp
- : RecurKind::SelectFCmp);
- }
- RecurrenceDescriptor::InstDesc
- RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind,
- const InstDesc &Prev) {
- assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) &&
- "Expected a cmp or select or call instruction");
- if (!isMinMaxRecurrenceKind(Kind))
- return InstDesc(false, I);
- // We must handle the select(cmp()) as a single instruction. Advance to the
- // select.
- CmpInst::Predicate Pred;
- if (match(I, m_OneUse(m_Cmp(Pred, m_Value(), m_Value())))) {
- if (auto *Select = dyn_cast<SelectInst>(*I->user_begin()))
- return InstDesc(Select, Prev.getRecKind());
- }
- // Only match select with single use cmp condition, or a min/max intrinsic.
- if (!isa<IntrinsicInst>(I) &&
- !match(I, m_Select(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), m_Value(),
- m_Value())))
- return InstDesc(false, I);
- // Look for a min/max pattern.
- if (match(I, m_UMin(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::UMin, I);
- if (match(I, m_UMax(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::UMax, I);
- if (match(I, m_SMax(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::SMax, I);
- if (match(I, m_SMin(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::SMin, I);
- if (match(I, m_OrdFMin(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::FMin, I);
- if (match(I, m_OrdFMax(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::FMax, I);
- if (match(I, m_UnordFMin(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::FMin, I);
- if (match(I, m_UnordFMax(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::FMax, I);
- if (match(I, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::FMin, I);
- if (match(I, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_Value())))
- return InstDesc(Kind == RecurKind::FMax, I);
- return InstDesc(false, I);
- }
- /// Returns true if the select instruction has users in the compare-and-add
- /// reduction pattern below. The select instruction argument is the last one
- /// in the sequence.
- ///
- /// %sum.1 = phi ...
- /// ...
- /// %cmp = fcmp pred %0, %CFP
- /// %add = fadd %0, %sum.1
- /// %sum.2 = select %cmp, %add, %sum.1
- RecurrenceDescriptor::InstDesc
- RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) {
- SelectInst *SI = dyn_cast<SelectInst>(I);
- if (!SI)
- return InstDesc(false, I);
- CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
- // Only handle single use cases for now.
- if (!CI || !CI->hasOneUse())
- return InstDesc(false, I);
- Value *TrueVal = SI->getTrueValue();
- Value *FalseVal = SI->getFalseValue();
- // Handle only when either of operands of select instruction is a PHI
- // node for now.
- if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
- (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
- return InstDesc(false, I);
- Instruction *I1 =
- isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
- : dyn_cast<Instruction>(TrueVal);
- if (!I1 || !I1->isBinaryOp())
- return InstDesc(false, I);
- Value *Op1, *Op2;
- if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
- m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
- I1->isFast())
- return InstDesc(Kind == RecurKind::FAdd, SI);
- if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
- return InstDesc(Kind == RecurKind::FMul, SI);
- return InstDesc(false, I);
- }
- RecurrenceDescriptor::InstDesc
- RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi,
- Instruction *I, RecurKind Kind,
- InstDesc &Prev, FastMathFlags FuncFMF) {
- assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind);
- switch (I->getOpcode()) {
- default:
- return InstDesc(false, I);
- case Instruction::PHI:
- return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst());
- case Instruction::Sub:
- case Instruction::Add:
- return InstDesc(Kind == RecurKind::Add, I);
- case Instruction::Mul:
- return InstDesc(Kind == RecurKind::Mul, I);
- case Instruction::And:
- return InstDesc(Kind == RecurKind::And, I);
- case Instruction::Or:
- return InstDesc(Kind == RecurKind::Or, I);
- case Instruction::Xor:
- return InstDesc(Kind == RecurKind::Xor, I);
- case Instruction::FDiv:
- case Instruction::FMul:
- return InstDesc(Kind == RecurKind::FMul, I,
- I->hasAllowReassoc() ? nullptr : I);
- case Instruction::FSub:
- case Instruction::FAdd:
- return InstDesc(Kind == RecurKind::FAdd, I,
- I->hasAllowReassoc() ? nullptr : I);
- case Instruction::Select:
- if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul)
- return isConditionalRdxPattern(Kind, I);
- LLVM_FALLTHROUGH;
- case Instruction::FCmp:
- case Instruction::ICmp:
- case Instruction::Call:
- if (isSelectCmpRecurrenceKind(Kind))
- return isSelectCmpPattern(L, OrigPhi, I, Prev);
- if (isIntMinMaxRecurrenceKind(Kind) ||
- (((FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) ||
- (isa<FPMathOperator>(I) && I->hasNoNaNs() &&
- I->hasNoSignedZeros())) &&
- isFPMinMaxRecurrenceKind(Kind)))
- return isMinMaxPattern(I, Kind, Prev);
- else if (isFMulAddIntrinsic(I))
- return InstDesc(Kind == RecurKind::FMulAdd, I,
- I->hasAllowReassoc() ? nullptr : I);
- return InstDesc(false, I);
- }
- }
- bool RecurrenceDescriptor::hasMultipleUsesOf(
- Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
- unsigned MaxNumUses) {
- unsigned NumUses = 0;
- for (const Use &U : I->operands()) {
- if (Insts.count(dyn_cast<Instruction>(U)))
- ++NumUses;
- if (NumUses > MaxNumUses)
- return true;
- }
- return false;
- }
- bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
- RecurrenceDescriptor &RedDes,
- DemandedBits *DB, AssumptionCache *AC,
- DominatorTree *DT) {
- BasicBlock *Header = TheLoop->getHeader();
- Function &F = *Header->getParent();
- FastMathFlags FMF;
- FMF.setNoNaNs(
- F.getFnAttribute("no-nans-fp-math").getValueAsBool());
- FMF.setNoSignedZeros(
- F.getFnAttribute("no-signed-zeros-fp-math").getValueAsBool());
- if (AddReductionVar(Phi, RecurKind::Add, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::Mul, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::Or, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::And, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::Xor, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::SMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::SMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::UMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::UMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::SelectICmp, TheLoop, FMF, RedDes, DB, AC,
- DT)) {
- LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI."
- << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::FMul, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::FAdd, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::FMax, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::FMin, TheLoop, FMF, RedDes, DB, AC, DT)) {
- LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::SelectFCmp, TheLoop, FMF, RedDes, DB, AC,
- DT)) {
- LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI."
- << " PHI." << *Phi << "\n");
- return true;
- }
- if (AddReductionVar(Phi, RecurKind::FMulAdd, TheLoop, FMF, RedDes, DB, AC,
- DT)) {
- LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n");
- return true;
- }
- // Not a reduction of known type.
- return false;
- }
- bool RecurrenceDescriptor::isFirstOrderRecurrence(
- PHINode *Phi, Loop *TheLoop,
- MapVector<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
- // Ensure the phi node is in the loop header and has two incoming values.
- if (Phi->getParent() != TheLoop->getHeader() ||
- Phi->getNumIncomingValues() != 2)
- return false;
- // Ensure the loop has a preheader and a single latch block. The loop
- // vectorizer will need the latch to set up the next iteration of the loop.
- auto *Preheader = TheLoop->getLoopPreheader();
- auto *Latch = TheLoop->getLoopLatch();
- if (!Preheader || !Latch)
- return false;
- // Ensure the phi node's incoming blocks are the loop preheader and latch.
- if (Phi->getBasicBlockIndex(Preheader) < 0 ||
- Phi->getBasicBlockIndex(Latch) < 0)
- return false;
- // Get the previous value. The previous value comes from the latch edge while
- // the initial value comes form the preheader edge.
- auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
- if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
- SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
- return false;
- // Ensure every user of the phi node (recursively) is dominated by the
- // previous value. The dominance requirement ensures the loop vectorizer will
- // not need to vectorize the initial value prior to the first iteration of the
- // loop.
- // TODO: Consider extending this sinking to handle memory instructions.
- // We optimistically assume we can sink all users after Previous. Keep a set
- // of instructions to sink after Previous ordered by dominance in the common
- // basic block. It will be applied to SinkAfter if all users can be sunk.
- auto CompareByComesBefore = [](const Instruction *A, const Instruction *B) {
- return A->comesBefore(B);
- };
- std::set<Instruction *, decltype(CompareByComesBefore)> InstrsToSink(
- CompareByComesBefore);
- BasicBlock *PhiBB = Phi->getParent();
- SmallVector<Instruction *, 8> WorkList;
- auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) {
- // Already sunk SinkCandidate.
- if (SinkCandidate->getParent() == PhiBB &&
- InstrsToSink.find(SinkCandidate) != InstrsToSink.end())
- return true;
- // Cyclic dependence.
- if (Previous == SinkCandidate)
- return false;
- if (DT->dominates(Previous,
- SinkCandidate)) // We already are good w/o sinking.
- return true;
- if (SinkCandidate->getParent() != PhiBB ||
- SinkCandidate->mayHaveSideEffects() ||
- SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator())
- return false;
- // Do not try to sink an instruction multiple times (if multiple operands
- // are first order recurrences).
- // TODO: We can support this case, by sinking the instruction after the
- // 'deepest' previous instruction.
- if (SinkAfter.find(SinkCandidate) != SinkAfter.end())
- return false;
- // If we reach a PHI node that is not dominated by Previous, we reached a
- // header PHI. No need for sinking.
- if (isa<PHINode>(SinkCandidate))
- return true;
- // Sink User tentatively and check its users
- InstrsToSink.insert(SinkCandidate);
- WorkList.push_back(SinkCandidate);
- return true;
- };
- WorkList.push_back(Phi);
- // Try to recursively sink instructions and their users after Previous.
- while (!WorkList.empty()) {
- Instruction *Current = WorkList.pop_back_val();
- for (User *User : Current->users()) {
- if (!TryToPushSinkCandidate(cast<Instruction>(User)))
- return false;
- }
- }
- // We can sink all users of Phi. Update the mapping.
- for (Instruction *I : InstrsToSink) {
- SinkAfter[I] = Previous;
- Previous = I;
- }
- return true;
- }
- /// This function returns the identity element (or neutral element) for
- /// the operation K.
- Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp,
- FastMathFlags FMF) const {
- switch (K) {
- case RecurKind::Xor:
- case RecurKind::Add:
- case RecurKind::Or:
- // Adding, Xoring, Oring zero to a number does not change it.
- return ConstantInt::get(Tp, 0);
- case RecurKind::Mul:
- // Multiplying a number by 1 does not change it.
- return ConstantInt::get(Tp, 1);
- case RecurKind::And:
- // AND-ing a number with an all-1 value does not change it.
- return ConstantInt::get(Tp, -1, true);
- case RecurKind::FMul:
- // Multiplying a number by 1 does not change it.
- return ConstantFP::get(Tp, 1.0L);
- case RecurKind::FMulAdd:
- case RecurKind::FAdd:
- // Adding zero to a number does not change it.
- // FIXME: Ideally we should not need to check FMF for FAdd and should always
- // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0.
- // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI
- // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would
- // mean we can then remove the check for noSignedZeros() below (see D98963).
- if (FMF.noSignedZeros())
- return ConstantFP::get(Tp, 0.0L);
- return ConstantFP::get(Tp, -0.0L);
- case RecurKind::UMin:
- return ConstantInt::get(Tp, -1);
- case RecurKind::UMax:
- return ConstantInt::get(Tp, 0);
- case RecurKind::SMin:
- return ConstantInt::get(Tp,
- APInt::getSignedMaxValue(Tp->getIntegerBitWidth()));
- case RecurKind::SMax:
- return ConstantInt::get(Tp,
- APInt::getSignedMinValue(Tp->getIntegerBitWidth()));
- case RecurKind::FMin:
- return ConstantFP::getInfinity(Tp, true);
- case RecurKind::FMax:
- return ConstantFP::getInfinity(Tp, false);
- case RecurKind::SelectICmp:
- case RecurKind::SelectFCmp:
- return getRecurrenceStartValue();
- break;
- default:
- llvm_unreachable("Unknown recurrence kind");
- }
- }
- unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) {
- switch (Kind) {
- case RecurKind::Add:
- return Instruction::Add;
- case RecurKind::Mul:
- return Instruction::Mul;
- case RecurKind::Or:
- return Instruction::Or;
- case RecurKind::And:
- return Instruction::And;
- case RecurKind::Xor:
- return Instruction::Xor;
- case RecurKind::FMul:
- return Instruction::FMul;
- case RecurKind::FMulAdd:
- case RecurKind::FAdd:
- return Instruction::FAdd;
- case RecurKind::SMax:
- case RecurKind::SMin:
- case RecurKind::UMax:
- case RecurKind::UMin:
- case RecurKind::SelectICmp:
- return Instruction::ICmp;
- case RecurKind::FMax:
- case RecurKind::FMin:
- case RecurKind::SelectFCmp:
- return Instruction::FCmp;
- default:
- llvm_unreachable("Unknown recurrence operation");
- }
- }
- SmallVector<Instruction *, 4>
- RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const {
- SmallVector<Instruction *, 4> ReductionOperations;
- unsigned RedOp = getOpcode(Kind);
- // Search down from the Phi to the LoopExitInstr, looking for instructions
- // with a single user of the correct type for the reduction.
- // Note that we check that the type of the operand is correct for each item in
- // the chain, including the last (the loop exit value). This can come up from
- // sub, which would otherwise be treated as an add reduction. MinMax also need
- // to check for a pair of icmp/select, for which we use getNextInstruction and
- // isCorrectOpcode functions to step the right number of instruction, and
- // check the icmp/select pair.
- // FIXME: We also do not attempt to look through Phi/Select's yet, which might
- // be part of the reduction chain, or attempt to looks through And's to find a
- // smaller bitwidth. Subs are also currently not allowed (which are usually
- // treated as part of a add reduction) as they are expected to generally be
- // more expensive than out-of-loop reductions, and need to be costed more
- // carefully.
- unsigned ExpectedUses = 1;
- if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp)
- ExpectedUses = 2;
- auto getNextInstruction = [&](Instruction *Cur) {
- if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
- // We are expecting a icmp/select pair, which we go to the next select
- // instruction if we can. We already know that Cur has 2 uses.
- if (isa<SelectInst>(*Cur->user_begin()))
- return cast<Instruction>(*Cur->user_begin());
- else
- return cast<Instruction>(*std::next(Cur->user_begin()));
- }
- return cast<Instruction>(*Cur->user_begin());
- };
- auto isCorrectOpcode = [&](Instruction *Cur) {
- if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) {
- Value *LHS, *RHS;
- return SelectPatternResult::isMinOrMax(
- matchSelectPattern(Cur, LHS, RHS).Flavor);
- }
- // Recognize a call to the llvm.fmuladd intrinsic.
- if (isFMulAddIntrinsic(Cur))
- return true;
- return Cur->getOpcode() == RedOp;
- };
- // The loop exit instruction we check first (as a quick test) but add last. We
- // check the opcode is correct (and dont allow them to be Subs) and that they
- // have expected to have the expected number of uses. They will have one use
- // from the phi and one from a LCSSA value, no matter the type.
- if (!isCorrectOpcode(LoopExitInstr) || !LoopExitInstr->hasNUses(2))
- return {};
- // Check that the Phi has one (or two for min/max) uses.
- if (!Phi->hasNUses(ExpectedUses))
- return {};
- Instruction *Cur = getNextInstruction(Phi);
- // Each other instruction in the chain should have the expected number of uses
- // and be the correct opcode.
- while (Cur != LoopExitInstr) {
- if (!isCorrectOpcode(Cur) || !Cur->hasNUses(ExpectedUses))
- return {};
- ReductionOperations.push_back(Cur);
- Cur = getNextInstruction(Cur);
- }
- ReductionOperations.push_back(Cur);
- return ReductionOperations;
- }
- InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
- const SCEV *Step, BinaryOperator *BOp,
- Type *ElementType,
- SmallVectorImpl<Instruction *> *Casts)
- : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp),
- ElementType(ElementType) {
- assert(IK != IK_NoInduction && "Not an induction");
- // Start value type should match the induction kind and the value
- // itself should not be null.
- assert(StartValue && "StartValue is null");
- assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
- "StartValue is not a pointer for pointer induction");
- assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
- "StartValue is not an integer for integer induction");
- // Check the Step Value. It should be non-zero integer value.
- assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
- "Step value is zero");
- assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
- "Step value should be constant for pointer induction");
- assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
- "StepValue is not an integer");
- assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
- "StepValue is not FP for FpInduction");
- assert((IK != IK_FpInduction ||
- (InductionBinOp &&
- (InductionBinOp->getOpcode() == Instruction::FAdd ||
- InductionBinOp->getOpcode() == Instruction::FSub))) &&
- "Binary opcode should be specified for FP induction");
- if (IK == IK_PtrInduction)
- assert(ElementType && "Pointer induction must have element type");
- else
- assert(!ElementType && "Non-pointer induction cannot have element type");
- if (Casts) {
- for (auto &Inst : *Casts) {
- RedundantCasts.push_back(Inst);
- }
- }
- }
- ConstantInt *InductionDescriptor::getConstIntStepValue() const {
- if (isa<SCEVConstant>(Step))
- return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
- return nullptr;
- }
- bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
- ScalarEvolution *SE,
- InductionDescriptor &D) {
- // Here we only handle FP induction variables.
- assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
- if (TheLoop->getHeader() != Phi->getParent())
- return false;
- // The loop may have multiple entrances or multiple exits; we can analyze
- // this phi if it has a unique entry value and a unique backedge value.
- if (Phi->getNumIncomingValues() != 2)
- return false;
- Value *BEValue = nullptr, *StartValue = nullptr;
- if (TheLoop->contains(Phi->getIncomingBlock(0))) {
- BEValue = Phi->getIncomingValue(0);
- StartValue = Phi->getIncomingValue(1);
- } else {
- assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
- "Unexpected Phi node in the loop");
- BEValue = Phi->getIncomingValue(1);
- StartValue = Phi->getIncomingValue(0);
- }
- BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
- if (!BOp)
- return false;
- Value *Addend = nullptr;
- if (BOp->getOpcode() == Instruction::FAdd) {
- if (BOp->getOperand(0) == Phi)
- Addend = BOp->getOperand(1);
- else if (BOp->getOperand(1) == Phi)
- Addend = BOp->getOperand(0);
- } else if (BOp->getOpcode() == Instruction::FSub)
- if (BOp->getOperand(0) == Phi)
- Addend = BOp->getOperand(1);
- if (!Addend)
- return false;
- // The addend should be loop invariant
- if (auto *I = dyn_cast<Instruction>(Addend))
- if (TheLoop->contains(I))
- return false;
- // FP Step has unknown SCEV
- const SCEV *Step = SE->getUnknown(Addend);
- D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
- return true;
- }
- /// This function is called when we suspect that the update-chain of a phi node
- /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
- /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
- /// predicate P under which the SCEV expression for the phi can be the
- /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
- /// cast instructions that are involved in the update-chain of this induction.
- /// A caller that adds the required runtime predicate can be free to drop these
- /// cast instructions, and compute the phi using \p AR (instead of some scev
- /// expression with casts).
- ///
- /// For example, without a predicate the scev expression can take the following
- /// form:
- /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
- ///
- /// It corresponds to the following IR sequence:
- /// %for.body:
- /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
- /// %casted_phi = "ExtTrunc i64 %x"
- /// %add = add i64 %casted_phi, %step
- ///
- /// where %x is given in \p PN,
- /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
- /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
- /// several forms, for example, such as:
- /// ExtTrunc1: %casted_phi = and %x, 2^n-1
- /// or:
- /// ExtTrunc2: %t = shl %x, m
- /// %casted_phi = ashr %t, m
- ///
- /// If we are able to find such sequence, we return the instructions
- /// we found, namely %casted_phi and the instructions on its use-def chain up
- /// to the phi (not including the phi).
- static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
- const SCEVUnknown *PhiScev,
- const SCEVAddRecExpr *AR,
- SmallVectorImpl<Instruction *> &CastInsts) {
- assert(CastInsts.empty() && "CastInsts is expected to be empty.");
- auto *PN = cast<PHINode>(PhiScev->getValue());
- assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
- const Loop *L = AR->getLoop();
- // Find any cast instructions that participate in the def-use chain of
- // PhiScev in the loop.
- // FORNOW/TODO: We currently expect the def-use chain to include only
- // two-operand instructions, where one of the operands is an invariant.
- // createAddRecFromPHIWithCasts() currently does not support anything more
- // involved than that, so we keep the search simple. This can be
- // extended/generalized as needed.
- auto getDef = [&](const Value *Val) -> Value * {
- const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
- if (!BinOp)
- return nullptr;
- Value *Op0 = BinOp->getOperand(0);
- Value *Op1 = BinOp->getOperand(1);
- Value *Def = nullptr;
- if (L->isLoopInvariant(Op0))
- Def = Op1;
- else if (L->isLoopInvariant(Op1))
- Def = Op0;
- return Def;
- };
- // Look for the instruction that defines the induction via the
- // loop backedge.
- BasicBlock *Latch = L->getLoopLatch();
- if (!Latch)
- return false;
- Value *Val = PN->getIncomingValueForBlock(Latch);
- if (!Val)
- return false;
- // Follow the def-use chain until the induction phi is reached.
- // If on the way we encounter a Value that has the same SCEV Expr as the
- // phi node, we can consider the instructions we visit from that point
- // as part of the cast-sequence that can be ignored.
- bool InCastSequence = false;
- auto *Inst = dyn_cast<Instruction>(Val);
- while (Val != PN) {
- // If we encountered a phi node other than PN, or if we left the loop,
- // we bail out.
- if (!Inst || !L->contains(Inst)) {
- return false;
- }
- auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
- if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
- InCastSequence = true;
- if (InCastSequence) {
- // Only the last instruction in the cast sequence is expected to have
- // uses outside the induction def-use chain.
- if (!CastInsts.empty())
- if (!Inst->hasOneUse())
- return false;
- CastInsts.push_back(Inst);
- }
- Val = getDef(Val);
- if (!Val)
- return false;
- Inst = dyn_cast<Instruction>(Val);
- }
- return InCastSequence;
- }
- bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
- PredicatedScalarEvolution &PSE,
- InductionDescriptor &D, bool Assume) {
- Type *PhiTy = Phi->getType();
- // Handle integer and pointer inductions variables.
- // Now we handle also FP induction but not trying to make a
- // recurrent expression from the PHI node in-place.
- if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
- !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
- return false;
- if (PhiTy->isFloatingPointTy())
- return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
- const SCEV *PhiScev = PSE.getSCEV(Phi);
- const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
- // We need this expression to be an AddRecExpr.
- if (Assume && !AR)
- AR = PSE.getAsAddRec(Phi);
- if (!AR) {
- LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
- return false;
- }
- // Record any Cast instructions that participate in the induction update
- const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
- // If we started from an UnknownSCEV, and managed to build an addRecurrence
- // only after enabling Assume with PSCEV, this means we may have encountered
- // cast instructions that required adding a runtime check in order to
- // guarantee the correctness of the AddRecurrence respresentation of the
- // induction.
- if (PhiScev != AR && SymbolicPhi) {
- SmallVector<Instruction *, 2> Casts;
- if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
- return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
- }
- return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
- }
- bool InductionDescriptor::isInductionPHI(
- PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
- InductionDescriptor &D, const SCEV *Expr,
- SmallVectorImpl<Instruction *> *CastsToIgnore) {
- Type *PhiTy = Phi->getType();
- // We only handle integer and pointer inductions variables.
- if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
- return false;
- // Check that the PHI is consecutive.
- const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
- if (!AR) {
- LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
- return false;
- }
- if (AR->getLoop() != TheLoop) {
- // FIXME: We should treat this as a uniform. Unfortunately, we
- // don't currently know how to handled uniform PHIs.
- LLVM_DEBUG(
- dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
- return false;
- }
- Value *StartValue =
- Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
- BasicBlock *Latch = AR->getLoop()->getLoopLatch();
- if (!Latch)
- return false;
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // Calculate the pointer stride and check if it is consecutive.
- // The stride may be a constant or a loop invariant integer value.
- const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
- if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
- return false;
- if (PhiTy->isIntegerTy()) {
- BinaryOperator *BOp =
- dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
- D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
- /* ElementType */ nullptr, CastsToIgnore);
- return true;
- }
- assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
- // Pointer induction should be a constant.
- if (!ConstStep)
- return false;
- // Always use i8 element type for opaque pointer inductions.
- PointerType *PtrTy = cast<PointerType>(PhiTy);
- Type *ElementType = PtrTy->isOpaque()
- ? Type::getInt8Ty(PtrTy->getContext())
- : PtrTy->getNonOpaquePointerElementType();
- if (!ElementType->isSized())
- return false;
- ConstantInt *CV = ConstStep->getValue();
- const DataLayout &DL = Phi->getModule()->getDataLayout();
- TypeSize TySize = DL.getTypeAllocSize(ElementType);
- // TODO: We could potentially support this for scalable vectors if we can
- // prove at compile time that the constant step is always a multiple of
- // the scalable type.
- if (TySize.isZero() || TySize.isScalable())
- return false;
- int64_t Size = static_cast<int64_t>(TySize.getFixedSize());
- int64_t CVSize = CV->getSExtValue();
- if (CVSize % Size)
- return false;
- auto *StepValue =
- SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
- D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue,
- /* BinOp */ nullptr, ElementType);
- return true;
- }
|