12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373 |
- // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
- #include <optional>
- using namespace clang;
- using namespace ento;
- namespace {
- class SimpleSValBuilder : public SValBuilder {
- // Query the constraint manager whether the SVal has only one possible
- // (integer) value. If that is the case, the value is returned. Otherwise,
- // returns NULL.
- // This is an implementation detail. Checkers should use `getKnownValue()`
- // instead.
- const llvm::APSInt *getConstValue(ProgramStateRef state, SVal V);
- // With one `simplifySValOnce` call, a compound symbols might collapse to
- // simpler symbol tree that is still possible to further simplify. Thus, we
- // do the simplification on a new symbol tree until we reach the simplest
- // form, i.e. the fixpoint.
- // Consider the following symbol `(b * b) * b * b` which has this tree:
- // *
- // / \
- // * b
- // / \
- // / b
- // (b * b)
- // Now, if the `b * b == 1` new constraint is added then during the first
- // iteration we have the following transformations:
- // * *
- // / \ / \
- // * b --> b b
- // / \
- // / b
- // 1
- // We need another iteration to reach the final result `1`.
- SVal simplifyUntilFixpoint(ProgramStateRef State, SVal Val);
- // Recursively descends into symbolic expressions and replaces symbols
- // with their known values (in the sense of the getConstValue() method).
- // We traverse the symbol tree and query the constraint values for the
- // sub-trees and if a value is a constant we do the constant folding.
- SVal simplifySValOnce(ProgramStateRef State, SVal V);
- public:
- SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
- ProgramStateManager &stateMgr)
- : SValBuilder(alloc, context, stateMgr) {}
- ~SimpleSValBuilder() override {}
- SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
- NonLoc lhs, NonLoc rhs, QualType resultTy) override;
- SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
- Loc lhs, Loc rhs, QualType resultTy) override;
- SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
- Loc lhs, NonLoc rhs, QualType resultTy) override;
- /// Evaluates a given SVal by recursively evaluating and
- /// simplifying the children SVals. If the SVal has only one possible
- /// (integer) value, that value is returned. Otherwise, returns NULL.
- const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
- SVal simplifySVal(ProgramStateRef State, SVal V) override;
- SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
- const llvm::APSInt &RHS, QualType resultTy);
- };
- } // end anonymous namespace
- SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
- ASTContext &context,
- ProgramStateManager &stateMgr) {
- return new SimpleSValBuilder(alloc, context, stateMgr);
- }
- // Checks if the negation the value and flipping sign preserve
- // the semantics on the operation in the resultType
- static bool isNegationValuePreserving(const llvm::APSInt &Value,
- APSIntType ResultType) {
- const unsigned ValueBits = Value.getSignificantBits();
- if (ValueBits == ResultType.getBitWidth()) {
- // The value is the lowest negative value that is representable
- // in signed integer with bitWith of result type. The
- // negation is representable if resultType is unsigned.
- return ResultType.isUnsigned();
- }
- // If resultType bitWith is higher that number of bits required
- // to represent RHS, the sign flip produce same value.
- return ValueBits < ResultType.getBitWidth();
- }
- //===----------------------------------------------------------------------===//
- // Transfer function for binary operators.
- //===----------------------------------------------------------------------===//
- SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
- BinaryOperator::Opcode op,
- const llvm::APSInt &RHS,
- QualType resultTy) {
- bool isIdempotent = false;
- // Check for a few special cases with known reductions first.
- switch (op) {
- default:
- // We can't reduce this case; just treat it normally.
- break;
- case BO_Mul:
- // a*0 and a*1
- if (RHS == 0)
- return makeIntVal(0, resultTy);
- else if (RHS == 1)
- isIdempotent = true;
- break;
- case BO_Div:
- // a/0 and a/1
- if (RHS == 0)
- // This is also handled elsewhere.
- return UndefinedVal();
- else if (RHS == 1)
- isIdempotent = true;
- break;
- case BO_Rem:
- // a%0 and a%1
- if (RHS == 0)
- // This is also handled elsewhere.
- return UndefinedVal();
- else if (RHS == 1)
- return makeIntVal(0, resultTy);
- break;
- case BO_Add:
- case BO_Sub:
- case BO_Shl:
- case BO_Shr:
- case BO_Xor:
- // a+0, a-0, a<<0, a>>0, a^0
- if (RHS == 0)
- isIdempotent = true;
- break;
- case BO_And:
- // a&0 and a&(~0)
- if (RHS == 0)
- return makeIntVal(0, resultTy);
- else if (RHS.isAllOnes())
- isIdempotent = true;
- break;
- case BO_Or:
- // a|0 and a|(~0)
- if (RHS == 0)
- isIdempotent = true;
- else if (RHS.isAllOnes()) {
- const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
- return nonloc::ConcreteInt(Result);
- }
- break;
- }
- // Idempotent ops (like a*1) can still change the type of an expression.
- // Wrap the LHS up in a NonLoc again and let evalCast do the
- // dirty work.
- if (isIdempotent)
- return evalCast(nonloc::SymbolVal(LHS), resultTy, QualType{});
- // If we reach this point, the expression cannot be simplified.
- // Make a SymbolVal for the entire expression, after converting the RHS.
- const llvm::APSInt *ConvertedRHS = &RHS;
- if (BinaryOperator::isComparisonOp(op)) {
- // We're looking for a type big enough to compare the symbolic value
- // with the given constant.
- // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
- ASTContext &Ctx = getContext();
- QualType SymbolType = LHS->getType();
- uint64_t ValWidth = RHS.getBitWidth();
- uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
- if (ValWidth < TypeWidth) {
- // If the value is too small, extend it.
- ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
- } else if (ValWidth == TypeWidth) {
- // If the value is signed but the symbol is unsigned, do the comparison
- // in unsigned space. [C99 6.3.1.8]
- // (For the opposite case, the value is already unsigned.)
- if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
- ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
- }
- } else if (BinaryOperator::isAdditiveOp(op) && RHS.isNegative()) {
- // Change a+(-N) into a-N, and a-(-N) into a+N
- // Adjust addition/subtraction of negative value, to
- // subtraction/addition of the negated value.
- APSIntType resultIntTy = BasicVals.getAPSIntType(resultTy);
- if (isNegationValuePreserving(RHS, resultIntTy)) {
- ConvertedRHS = &BasicVals.getValue(-resultIntTy.convert(RHS));
- op = (op == BO_Add) ? BO_Sub : BO_Add;
- } else {
- ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
- }
- } else
- ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
- return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
- }
- // See if Sym is known to be a relation Rel with Bound.
- static bool isInRelation(BinaryOperator::Opcode Rel, SymbolRef Sym,
- llvm::APSInt Bound, ProgramStateRef State) {
- SValBuilder &SVB = State->getStateManager().getSValBuilder();
- SVal Result =
- SVB.evalBinOpNN(State, Rel, nonloc::SymbolVal(Sym),
- nonloc::ConcreteInt(Bound), SVB.getConditionType());
- if (auto DV = Result.getAs<DefinedSVal>()) {
- return !State->assume(*DV, false);
- }
- return false;
- }
- // See if Sym is known to be within [min/4, max/4], where min and max
- // are the bounds of the symbol's integral type. With such symbols,
- // some manipulations can be performed without the risk of overflow.
- // assume() doesn't cause infinite recursion because we should be dealing
- // with simpler symbols on every recursive call.
- static bool isWithinConstantOverflowBounds(SymbolRef Sym,
- ProgramStateRef State) {
- SValBuilder &SVB = State->getStateManager().getSValBuilder();
- BasicValueFactory &BV = SVB.getBasicValueFactory();
- QualType T = Sym->getType();
- assert(T->isSignedIntegerOrEnumerationType() &&
- "This only works with signed integers!");
- APSIntType AT = BV.getAPSIntType(T);
- llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
- return isInRelation(BO_LE, Sym, Max, State) &&
- isInRelation(BO_GE, Sym, Min, State);
- }
- // Same for the concrete integers: see if I is within [min/4, max/4].
- static bool isWithinConstantOverflowBounds(llvm::APSInt I) {
- APSIntType AT(I);
- assert(!AT.isUnsigned() &&
- "This only works with signed integers!");
- llvm::APSInt Max = AT.getMaxValue() / AT.getValue(4), Min = -Max;
- return (I <= Max) && (I >= -Max);
- }
- static std::pair<SymbolRef, llvm::APSInt>
- decomposeSymbol(SymbolRef Sym, BasicValueFactory &BV) {
- if (const auto *SymInt = dyn_cast<SymIntExpr>(Sym))
- if (BinaryOperator::isAdditiveOp(SymInt->getOpcode()))
- return std::make_pair(SymInt->getLHS(),
- (SymInt->getOpcode() == BO_Add) ?
- (SymInt->getRHS()) :
- (-SymInt->getRHS()));
- // Fail to decompose: "reduce" the problem to the "$x + 0" case.
- return std::make_pair(Sym, BV.getValue(0, Sym->getType()));
- }
- // Simplify "(LSym + LInt) Op (RSym + RInt)" assuming all values are of the
- // same signed integral type and no overflows occur (which should be checked
- // by the caller).
- static NonLoc doRearrangeUnchecked(ProgramStateRef State,
- BinaryOperator::Opcode Op,
- SymbolRef LSym, llvm::APSInt LInt,
- SymbolRef RSym, llvm::APSInt RInt) {
- SValBuilder &SVB = State->getStateManager().getSValBuilder();
- BasicValueFactory &BV = SVB.getBasicValueFactory();
- SymbolManager &SymMgr = SVB.getSymbolManager();
- QualType SymTy = LSym->getType();
- assert(SymTy == RSym->getType() &&
- "Symbols are not of the same type!");
- assert(APSIntType(LInt) == BV.getAPSIntType(SymTy) &&
- "Integers are not of the same type as symbols!");
- assert(APSIntType(RInt) == BV.getAPSIntType(SymTy) &&
- "Integers are not of the same type as symbols!");
- QualType ResultTy;
- if (BinaryOperator::isComparisonOp(Op))
- ResultTy = SVB.getConditionType();
- else if (BinaryOperator::isAdditiveOp(Op))
- ResultTy = SymTy;
- else
- llvm_unreachable("Operation not suitable for unchecked rearrangement!");
- if (LSym == RSym)
- return SVB.evalBinOpNN(State, Op, nonloc::ConcreteInt(LInt),
- nonloc::ConcreteInt(RInt), ResultTy)
- .castAs<NonLoc>();
- SymbolRef ResultSym = nullptr;
- BinaryOperator::Opcode ResultOp;
- llvm::APSInt ResultInt;
- if (BinaryOperator::isComparisonOp(Op)) {
- // Prefer comparing to a non-negative number.
- // FIXME: Maybe it'd be better to have consistency in
- // "$x - $y" vs. "$y - $x" because those are solver's keys.
- if (LInt > RInt) {
- ResultSym = SymMgr.getSymSymExpr(RSym, BO_Sub, LSym, SymTy);
- ResultOp = BinaryOperator::reverseComparisonOp(Op);
- ResultInt = LInt - RInt; // Opposite order!
- } else {
- ResultSym = SymMgr.getSymSymExpr(LSym, BO_Sub, RSym, SymTy);
- ResultOp = Op;
- ResultInt = RInt - LInt; // Opposite order!
- }
- } else {
- ResultSym = SymMgr.getSymSymExpr(LSym, Op, RSym, SymTy);
- ResultInt = (Op == BO_Add) ? (LInt + RInt) : (LInt - RInt);
- ResultOp = BO_Add;
- // Bring back the cosmetic difference.
- if (ResultInt < 0) {
- ResultInt = -ResultInt;
- ResultOp = BO_Sub;
- } else if (ResultInt == 0) {
- // Shortcut: Simplify "$x + 0" to "$x".
- return nonloc::SymbolVal(ResultSym);
- }
- }
- const llvm::APSInt &PersistentResultInt = BV.getValue(ResultInt);
- return nonloc::SymbolVal(
- SymMgr.getSymIntExpr(ResultSym, ResultOp, PersistentResultInt, ResultTy));
- }
- // Rearrange if symbol type matches the result type and if the operator is a
- // comparison operator, both symbol and constant must be within constant
- // overflow bounds.
- static bool shouldRearrange(ProgramStateRef State, BinaryOperator::Opcode Op,
- SymbolRef Sym, llvm::APSInt Int, QualType Ty) {
- return Sym->getType() == Ty &&
- (!BinaryOperator::isComparisonOp(Op) ||
- (isWithinConstantOverflowBounds(Sym, State) &&
- isWithinConstantOverflowBounds(Int)));
- }
- static std::optional<NonLoc> tryRearrange(ProgramStateRef State,
- BinaryOperator::Opcode Op, NonLoc Lhs,
- NonLoc Rhs, QualType ResultTy) {
- ProgramStateManager &StateMgr = State->getStateManager();
- SValBuilder &SVB = StateMgr.getSValBuilder();
- // We expect everything to be of the same type - this type.
- QualType SingleTy;
- // FIXME: After putting complexity threshold to the symbols we can always
- // rearrange additive operations but rearrange comparisons only if
- // option is set.
- if (!SVB.getAnalyzerOptions().ShouldAggressivelySimplifyBinaryOperation)
- return std::nullopt;
- SymbolRef LSym = Lhs.getAsSymbol();
- if (!LSym)
- return std::nullopt;
- if (BinaryOperator::isComparisonOp(Op)) {
- SingleTy = LSym->getType();
- if (ResultTy != SVB.getConditionType())
- return std::nullopt;
- // Initialize SingleTy later with a symbol's type.
- } else if (BinaryOperator::isAdditiveOp(Op)) {
- SingleTy = ResultTy;
- if (LSym->getType() != SingleTy)
- return std::nullopt;
- } else {
- // Don't rearrange other operations.
- return std::nullopt;
- }
- assert(!SingleTy.isNull() && "We should have figured out the type by now!");
- // Rearrange signed symbolic expressions only
- if (!SingleTy->isSignedIntegerOrEnumerationType())
- return std::nullopt;
- SymbolRef RSym = Rhs.getAsSymbol();
- if (!RSym || RSym->getType() != SingleTy)
- return std::nullopt;
- BasicValueFactory &BV = State->getBasicVals();
- llvm::APSInt LInt, RInt;
- std::tie(LSym, LInt) = decomposeSymbol(LSym, BV);
- std::tie(RSym, RInt) = decomposeSymbol(RSym, BV);
- if (!shouldRearrange(State, Op, LSym, LInt, SingleTy) ||
- !shouldRearrange(State, Op, RSym, RInt, SingleTy))
- return std::nullopt;
- // We know that no overflows can occur anymore.
- return doRearrangeUnchecked(State, Op, LSym, LInt, RSym, RInt);
- }
- SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
- BinaryOperator::Opcode op,
- NonLoc lhs, NonLoc rhs,
- QualType resultTy) {
- NonLoc InputLHS = lhs;
- NonLoc InputRHS = rhs;
- // Constraints may have changed since the creation of a bound SVal. Check if
- // the values can be simplified based on those new constraints.
- SVal simplifiedLhs = simplifySVal(state, lhs);
- SVal simplifiedRhs = simplifySVal(state, rhs);
- if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>())
- lhs = *simplifiedLhsAsNonLoc;
- if (auto simplifiedRhsAsNonLoc = simplifiedRhs.getAs<NonLoc>())
- rhs = *simplifiedRhsAsNonLoc;
- // Handle trivial case where left-side and right-side are the same.
- if (lhs == rhs)
- switch (op) {
- default:
- break;
- case BO_EQ:
- case BO_LE:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- case BO_LT:
- case BO_GT:
- case BO_NE:
- return makeTruthVal(false, resultTy);
- case BO_Xor:
- case BO_Sub:
- if (resultTy->isIntegralOrEnumerationType())
- return makeIntVal(0, resultTy);
- return evalCast(makeIntVal(0, /*isUnsigned=*/false), resultTy,
- QualType{});
- case BO_Or:
- case BO_And:
- return evalCast(lhs, resultTy, QualType{});
- }
- while (true) {
- switch (lhs.getSubKind()) {
- default:
- return makeSymExprValNN(op, lhs, rhs, resultTy);
- case nonloc::PointerToMemberKind: {
- assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
- "Both SVals should have pointer-to-member-type");
- auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
- RPTM = rhs.castAs<nonloc::PointerToMember>();
- auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
- switch (op) {
- case BO_EQ:
- return makeTruthVal(LPTMD == RPTMD, resultTy);
- case BO_NE:
- return makeTruthVal(LPTMD != RPTMD, resultTy);
- default:
- return UnknownVal();
- }
- }
- case nonloc::LocAsIntegerKind: {
- Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
- switch (rhs.getSubKind()) {
- case nonloc::LocAsIntegerKind:
- // FIXME: at the moment the implementation
- // of modeling "pointers as integers" is not complete.
- if (!BinaryOperator::isComparisonOp(op))
- return UnknownVal();
- return evalBinOpLL(state, op, lhsL,
- rhs.castAs<nonloc::LocAsInteger>().getLoc(),
- resultTy);
- case nonloc::ConcreteIntKind: {
- // FIXME: at the moment the implementation
- // of modeling "pointers as integers" is not complete.
- if (!BinaryOperator::isComparisonOp(op))
- return UnknownVal();
- // Transform the integer into a location and compare.
- // FIXME: This only makes sense for comparisons. If we want to, say,
- // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
- // then pack it back into a LocAsInteger.
- llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
- // If the region has a symbolic base, pay attention to the type; it
- // might be coming from a non-default address space. For non-symbolic
- // regions it doesn't matter that much because such comparisons would
- // most likely evaluate to concrete false anyway. FIXME: We might
- // still need to handle the non-comparison case.
- if (SymbolRef lSym = lhs.getAsLocSymbol(true))
- BasicVals.getAPSIntType(lSym->getType()).apply(i);
- else
- BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
- return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
- }
- default:
- switch (op) {
- case BO_EQ:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- return makeTruthVal(true, resultTy);
- default:
- // This case also handles pointer arithmetic.
- return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
- }
- }
- }
- case nonloc::ConcreteIntKind: {
- llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
- // If we're dealing with two known constants, just perform the operation.
- if (const llvm::APSInt *KnownRHSValue = getConstValue(state, rhs)) {
- llvm::APSInt RHSValue = *KnownRHSValue;
- if (BinaryOperator::isComparisonOp(op)) {
- // We're looking for a type big enough to compare the two values.
- // FIXME: This is not correct. char + short will result in a promotion
- // to int. Unfortunately we have lost types by this point.
- APSIntType CompareType = std::max(APSIntType(LHSValue),
- APSIntType(RHSValue));
- CompareType.apply(LHSValue);
- CompareType.apply(RHSValue);
- } else if (!BinaryOperator::isShiftOp(op)) {
- APSIntType IntType = BasicVals.getAPSIntType(resultTy);
- IntType.apply(LHSValue);
- IntType.apply(RHSValue);
- }
- const llvm::APSInt *Result =
- BasicVals.evalAPSInt(op, LHSValue, RHSValue);
- if (!Result)
- return UndefinedVal();
- return nonloc::ConcreteInt(*Result);
- }
- // Swap the left and right sides and flip the operator if doing so
- // allows us to better reason about the expression (this is a form
- // of expression canonicalization).
- // While we're at it, catch some special cases for non-commutative ops.
- switch (op) {
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- op = BinaryOperator::reverseComparisonOp(op);
- [[fallthrough]];
- case BO_EQ:
- case BO_NE:
- case BO_Add:
- case BO_Mul:
- case BO_And:
- case BO_Xor:
- case BO_Or:
- std::swap(lhs, rhs);
- continue;
- case BO_Shr:
- // (~0)>>a
- if (LHSValue.isAllOnes() && LHSValue.isSigned())
- return evalCast(lhs, resultTy, QualType{});
- [[fallthrough]];
- case BO_Shl:
- // 0<<a and 0>>a
- if (LHSValue == 0)
- return evalCast(lhs, resultTy, QualType{});
- return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
- case BO_Div:
- // 0 / x == 0
- case BO_Rem:
- // 0 % x == 0
- if (LHSValue == 0)
- return makeZeroVal(resultTy);
- [[fallthrough]];
- default:
- return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
- }
- }
- case nonloc::SymbolValKind: {
- // We only handle LHS as simple symbols or SymIntExprs.
- SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
- // LHS is a symbolic expression.
- if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
- // Is this a logical not? (!x is represented as x == 0.)
- if (op == BO_EQ && rhs.isZeroConstant()) {
- // We know how to negate certain expressions. Simplify them here.
- BinaryOperator::Opcode opc = symIntExpr->getOpcode();
- switch (opc) {
- default:
- // We don't know how to negate this operation.
- // Just handle it as if it were a normal comparison to 0.
- break;
- case BO_LAnd:
- case BO_LOr:
- llvm_unreachable("Logical operators handled by branching logic.");
- case BO_Assign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- case BO_Comma:
- llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
- case BO_PtrMemD:
- case BO_PtrMemI:
- llvm_unreachable("Pointer arithmetic not handled here.");
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- assert(resultTy->isBooleanType() ||
- resultTy == getConditionType());
- assert(symIntExpr->getType()->isBooleanType() ||
- getContext().hasSameUnqualifiedType(symIntExpr->getType(),
- getConditionType()));
- // Negate the comparison and make a value.
- opc = BinaryOperator::negateComparisonOp(opc);
- return makeNonLoc(symIntExpr->getLHS(), opc,
- symIntExpr->getRHS(), resultTy);
- }
- }
- // For now, only handle expressions whose RHS is a constant.
- if (const llvm::APSInt *RHSValue = getConstValue(state, rhs)) {
- // If both the LHS and the current expression are additive,
- // fold their constants and try again.
- if (BinaryOperator::isAdditiveOp(op)) {
- BinaryOperator::Opcode lop = symIntExpr->getOpcode();
- if (BinaryOperator::isAdditiveOp(lop)) {
- // Convert the two constants to a common type, then combine them.
- // resultTy may not be the best type to convert to, but it's
- // probably the best choice in expressions with mixed type
- // (such as x+1U+2LL). The rules for implicit conversions should
- // choose a reasonable type to preserve the expression, and will
- // at least match how the value is going to be used.
- APSIntType IntType = BasicVals.getAPSIntType(resultTy);
- const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
- const llvm::APSInt &second = IntType.convert(*RHSValue);
- // If the op and lop agrees, then we just need to
- // sum the constants. Otherwise, we change to operation
- // type if substraction would produce negative value
- // (and cause overflow for unsigned integers),
- // as consequence x+1U-10 produces x-9U, instead
- // of x+4294967287U, that would be produced without this
- // additional check.
- const llvm::APSInt *newRHS;
- if (lop == op) {
- newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
- } else if (first >= second) {
- newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
- op = lop;
- } else {
- newRHS = BasicVals.evalAPSInt(BO_Sub, second, first);
- }
- assert(newRHS && "Invalid operation despite common type!");
- rhs = nonloc::ConcreteInt(*newRHS);
- lhs = nonloc::SymbolVal(symIntExpr->getLHS());
- continue;
- }
- }
- // Otherwise, make a SymIntExpr out of the expression.
- return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
- }
- }
- // Is the RHS a constant?
- if (const llvm::APSInt *RHSValue = getConstValue(state, rhs))
- return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
- if (std::optional<NonLoc> V = tryRearrange(state, op, lhs, rhs, resultTy))
- return *V;
- // Give up -- this is not a symbolic expression we can handle.
- return makeSymExprValNN(op, InputLHS, InputRHS, resultTy);
- }
- }
- }
- }
- static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
- const FieldRegion *RightFR,
- BinaryOperator::Opcode op,
- QualType resultTy,
- SimpleSValBuilder &SVB) {
- // Only comparisons are meaningful here!
- if (!BinaryOperator::isComparisonOp(op))
- return UnknownVal();
- // Next, see if the two FRs have the same super-region.
- // FIXME: This doesn't handle casts yet, and simply stripping the casts
- // doesn't help.
- if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
- return UnknownVal();
- const FieldDecl *LeftFD = LeftFR->getDecl();
- const FieldDecl *RightFD = RightFR->getDecl();
- const RecordDecl *RD = LeftFD->getParent();
- // Make sure the two FRs are from the same kind of record. Just in case!
- // FIXME: This is probably where inheritance would be a problem.
- if (RD != RightFD->getParent())
- return UnknownVal();
- // We know for sure that the two fields are not the same, since that
- // would have given us the same SVal.
- if (op == BO_EQ)
- return SVB.makeTruthVal(false, resultTy);
- if (op == BO_NE)
- return SVB.makeTruthVal(true, resultTy);
- // Iterate through the fields and see which one comes first.
- // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
- // members and the units in which bit-fields reside have addresses that
- // increase in the order in which they are declared."
- bool leftFirst = (op == BO_LT || op == BO_LE);
- for (const auto *I : RD->fields()) {
- if (I == LeftFD)
- return SVB.makeTruthVal(leftFirst, resultTy);
- if (I == RightFD)
- return SVB.makeTruthVal(!leftFirst, resultTy);
- }
- llvm_unreachable("Fields not found in parent record's definition");
- }
- // This is used in debug builds only for now because some downstream users
- // may hit this assert in their subsequent merges.
- // There are still places in the analyzer where equal bitwidth Locs
- // are compared, and need to be found and corrected. Recent previous fixes have
- // addressed the known problems of making NULLs with specific bitwidths
- // for Loc comparisons along with deprecation of APIs for the same purpose.
- //
- static void assertEqualBitWidths(ProgramStateRef State, Loc RhsLoc,
- Loc LhsLoc) {
- // Implements a "best effort" check for RhsLoc and LhsLoc bit widths
- ASTContext &Ctx = State->getStateManager().getContext();
- uint64_t RhsBitwidth =
- RhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(RhsLoc.getType(Ctx));
- uint64_t LhsBitwidth =
- LhsLoc.getType(Ctx).isNull() ? 0 : Ctx.getTypeSize(LhsLoc.getType(Ctx));
- if (RhsBitwidth && LhsBitwidth &&
- (LhsLoc.getSubKind() == RhsLoc.getSubKind())) {
- assert(RhsBitwidth == LhsBitwidth &&
- "RhsLoc and LhsLoc bitwidth must be same!");
- }
- }
- // FIXME: all this logic will change if/when we have MemRegion::getLocation().
- SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
- BinaryOperator::Opcode op,
- Loc lhs, Loc rhs,
- QualType resultTy) {
- // Assert that bitwidth of lhs and rhs are the same.
- // This can happen if two different address spaces are used,
- // and the bitwidths of the address spaces are different.
- // See LIT case clang/test/Analysis/cstring-checker-addressspace.c
- // FIXME: See comment above in the function assertEqualBitWidths
- assertEqualBitWidths(state, rhs, lhs);
- // Only comparisons and subtractions are valid operations on two pointers.
- // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
- // However, if a pointer is casted to an integer, evalBinOpNN may end up
- // calling this function with another operation (PR7527). We don't attempt to
- // model this for now, but it could be useful, particularly when the
- // "location" is actually an integer value that's been passed through a void*.
- if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
- return UnknownVal();
- // Special cases for when both sides are identical.
- if (lhs == rhs) {
- switch (op) {
- default:
- llvm_unreachable("Unimplemented operation for two identical values");
- case BO_Sub:
- return makeZeroVal(resultTy);
- case BO_EQ:
- case BO_LE:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- case BO_NE:
- case BO_LT:
- case BO_GT:
- return makeTruthVal(false, resultTy);
- }
- }
- switch (lhs.getSubKind()) {
- default:
- llvm_unreachable("Ordering not implemented for this Loc.");
- case loc::GotoLabelKind:
- // The only thing we know about labels is that they're non-null.
- if (rhs.isZeroConstant()) {
- switch (op) {
- default:
- break;
- case BO_Sub:
- return evalCast(lhs, resultTy, QualType{});
- case BO_EQ:
- case BO_LE:
- case BO_LT:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- case BO_GT:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- }
- }
- // There may be two labels for the same location, and a function region may
- // have the same address as a label at the start of the function (depending
- // on the ABI).
- // FIXME: we can probably do a comparison against other MemRegions, though.
- // FIXME: is there a way to tell if two labels refer to the same location?
- return UnknownVal();
- case loc::ConcreteIntKind: {
- auto L = lhs.castAs<loc::ConcreteInt>();
- // If one of the operands is a symbol and the other is a constant,
- // build an expression for use by the constraint manager.
- if (SymbolRef rSym = rhs.getAsLocSymbol()) {
- // We can only build expressions with symbols on the left,
- // so we need a reversible operator.
- if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
- return UnknownVal();
- op = BinaryOperator::reverseComparisonOp(op);
- return makeNonLoc(rSym, op, L.getValue(), resultTy);
- }
- // If both operands are constants, just perform the operation.
- if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
- assert(BinaryOperator::isComparisonOp(op) || op == BO_Sub);
- if (const auto *ResultInt =
- BasicVals.evalAPSInt(op, L.getValue(), rInt->getValue()))
- return evalCast(nonloc::ConcreteInt(*ResultInt), resultTy, QualType{});
- return UnknownVal();
- }
- // Special case comparisons against NULL.
- // This must come after the test if the RHS is a symbol, which is used to
- // build constraints. The address of any non-symbolic region is guaranteed
- // to be non-NULL, as is any label.
- assert((isa<loc::MemRegionVal, loc::GotoLabel>(rhs)));
- if (lhs.isZeroConstant()) {
- switch (op) {
- default:
- break;
- case BO_EQ:
- case BO_GT:
- case BO_GE:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- case BO_LT:
- case BO_LE:
- return makeTruthVal(true, resultTy);
- }
- }
- // Comparing an arbitrary integer to a region or label address is
- // completely unknowable.
- return UnknownVal();
- }
- case loc::MemRegionValKind: {
- if (std::optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
- // If one of the operands is a symbol and the other is a constant,
- // build an expression for use by the constraint manager.
- if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
- if (BinaryOperator::isComparisonOp(op))
- return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
- return UnknownVal();
- }
- // Special case comparisons to NULL.
- // This must come after the test if the LHS is a symbol, which is used to
- // build constraints. The address of any non-symbolic region is guaranteed
- // to be non-NULL.
- if (rInt->isZeroConstant()) {
- if (op == BO_Sub)
- return evalCast(lhs, resultTy, QualType{});
- if (BinaryOperator::isComparisonOp(op)) {
- QualType boolType = getContext().BoolTy;
- NonLoc l = evalCast(lhs, boolType, QualType{}).castAs<NonLoc>();
- NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
- return evalBinOpNN(state, op, l, r, resultTy);
- }
- }
- // Comparing a region to an arbitrary integer is completely unknowable.
- return UnknownVal();
- }
- // Get both values as regions, if possible.
- const MemRegion *LeftMR = lhs.getAsRegion();
- assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
- const MemRegion *RightMR = rhs.getAsRegion();
- if (!RightMR)
- // The RHS is probably a label, which in theory could address a region.
- // FIXME: we can probably make a more useful statement about non-code
- // regions, though.
- return UnknownVal();
- const MemRegion *LeftBase = LeftMR->getBaseRegion();
- const MemRegion *RightBase = RightMR->getBaseRegion();
- const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
- const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
- const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
- // If the two regions are from different known memory spaces they cannot be
- // equal. Also, assume that no symbolic region (whose memory space is
- // unknown) is on the stack.
- if (LeftMS != RightMS &&
- ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
- (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
- switch (op) {
- default:
- return UnknownVal();
- case BO_EQ:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- return makeTruthVal(true, resultTy);
- }
- }
- // If both values wrap regions, see if they're from different base regions.
- // Note, heap base symbolic regions are assumed to not alias with
- // each other; for example, we assume that malloc returns different address
- // on each invocation.
- // FIXME: ObjC object pointers always reside on the heap, but currently
- // we treat their memory space as unknown, because symbolic pointers
- // to ObjC objects may alias. There should be a way to construct
- // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
- // guesses memory space for ObjC object pointers manually instead of
- // relying on us.
- if (LeftBase != RightBase &&
- ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
- (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
- switch (op) {
- default:
- return UnknownVal();
- case BO_EQ:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- return makeTruthVal(true, resultTy);
- }
- }
- // Handle special cases for when both regions are element regions.
- const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
- const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
- if (RightER && LeftER) {
- // Next, see if the two ERs have the same super-region and matching types.
- // FIXME: This should do something useful even if the types don't match,
- // though if both indexes are constant the RegionRawOffset path will
- // give the correct answer.
- if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
- LeftER->getElementType() == RightER->getElementType()) {
- // Get the left index and cast it to the correct type.
- // If the index is unknown or undefined, bail out here.
- SVal LeftIndexVal = LeftER->getIndex();
- std::optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
- if (!LeftIndex)
- return UnknownVal();
- LeftIndexVal = evalCast(*LeftIndex, ArrayIndexTy, QualType{});
- LeftIndex = LeftIndexVal.getAs<NonLoc>();
- if (!LeftIndex)
- return UnknownVal();
- // Do the same for the right index.
- SVal RightIndexVal = RightER->getIndex();
- std::optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
- if (!RightIndex)
- return UnknownVal();
- RightIndexVal = evalCast(*RightIndex, ArrayIndexTy, QualType{});
- RightIndex = RightIndexVal.getAs<NonLoc>();
- if (!RightIndex)
- return UnknownVal();
- // Actually perform the operation.
- // evalBinOpNN expects the two indexes to already be the right type.
- return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
- }
- }
- // Special handling of the FieldRegions, even with symbolic offsets.
- const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
- const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
- if (RightFR && LeftFR) {
- SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
- *this);
- if (!R.isUnknown())
- return R;
- }
- // Compare the regions using the raw offsets.
- RegionOffset LeftOffset = LeftMR->getAsOffset();
- RegionOffset RightOffset = RightMR->getAsOffset();
- if (LeftOffset.getRegion() != nullptr &&
- LeftOffset.getRegion() == RightOffset.getRegion() &&
- !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
- int64_t left = LeftOffset.getOffset();
- int64_t right = RightOffset.getOffset();
- switch (op) {
- default:
- return UnknownVal();
- case BO_LT:
- return makeTruthVal(left < right, resultTy);
- case BO_GT:
- return makeTruthVal(left > right, resultTy);
- case BO_LE:
- return makeTruthVal(left <= right, resultTy);
- case BO_GE:
- return makeTruthVal(left >= right, resultTy);
- case BO_EQ:
- return makeTruthVal(left == right, resultTy);
- case BO_NE:
- return makeTruthVal(left != right, resultTy);
- }
- }
- // At this point we're not going to get a good answer, but we can try
- // conjuring an expression instead.
- SymbolRef LHSSym = lhs.getAsLocSymbol();
- SymbolRef RHSSym = rhs.getAsLocSymbol();
- if (LHSSym && RHSSym)
- return makeNonLoc(LHSSym, op, RHSSym, resultTy);
- // If we get here, we have no way of comparing the regions.
- return UnknownVal();
- }
- }
- }
- SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
- BinaryOperator::Opcode op, Loc lhs,
- NonLoc rhs, QualType resultTy) {
- if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
- if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
- if (PTMSV->isNullMemberPointer())
- return UndefinedVal();
- auto getFieldLValue = [&](const auto *FD) -> SVal {
- SVal Result = lhs;
- for (const auto &I : *PTMSV)
- Result = StateMgr.getStoreManager().evalDerivedToBase(
- Result, I->getType(), I->isVirtual());
- return state->getLValue(FD, Result);
- };
- if (const auto *FD = PTMSV->getDeclAs<FieldDecl>()) {
- return getFieldLValue(FD);
- }
- if (const auto *FD = PTMSV->getDeclAs<IndirectFieldDecl>()) {
- return getFieldLValue(FD);
- }
- }
- return rhs;
- }
- assert(!BinaryOperator::isComparisonOp(op) &&
- "arguments to comparison ops must be of the same type");
- // Special case: rhs is a zero constant.
- if (rhs.isZeroConstant())
- return lhs;
- // Perserve the null pointer so that it can be found by the DerefChecker.
- if (lhs.isZeroConstant())
- return lhs;
- // We are dealing with pointer arithmetic.
- // Handle pointer arithmetic on constant values.
- if (std::optional<nonloc::ConcreteInt> rhsInt =
- rhs.getAs<nonloc::ConcreteInt>()) {
- if (std::optional<loc::ConcreteInt> lhsInt =
- lhs.getAs<loc::ConcreteInt>()) {
- const llvm::APSInt &leftI = lhsInt->getValue();
- assert(leftI.isUnsigned());
- llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
- // Convert the bitwidth of rightI. This should deal with overflow
- // since we are dealing with concrete values.
- rightI = rightI.extOrTrunc(leftI.getBitWidth());
- // Offset the increment by the pointer size.
- llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
- QualType pointeeType = resultTy->getPointeeType();
- Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
- rightI *= Multiplicand;
- // Compute the adjusted pointer.
- switch (op) {
- case BO_Add:
- rightI = leftI + rightI;
- break;
- case BO_Sub:
- rightI = leftI - rightI;
- break;
- default:
- llvm_unreachable("Invalid pointer arithmetic operation");
- }
- return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
- }
- }
- // Handle cases where 'lhs' is a region.
- if (const MemRegion *region = lhs.getAsRegion()) {
- rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
- SVal index = UnknownVal();
- const SubRegion *superR = nullptr;
- // We need to know the type of the pointer in order to add an integer to it.
- // Depending on the type, different amount of bytes is added.
- QualType elementType;
- if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
- assert(op == BO_Add || op == BO_Sub);
- index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
- getArrayIndexType());
- superR = cast<SubRegion>(elemReg->getSuperRegion());
- elementType = elemReg->getElementType();
- }
- else if (isa<SubRegion>(region)) {
- assert(op == BO_Add || op == BO_Sub);
- index = (op == BO_Add) ? rhs : evalMinus(rhs);
- superR = cast<SubRegion>(region);
- // TODO: Is this actually reliable? Maybe improving our MemRegion
- // hierarchy to provide typed regions for all non-void pointers would be
- // better. For instance, we cannot extend this towards LocAsInteger
- // operations, where result type of the expression is integer.
- if (resultTy->isAnyPointerType())
- elementType = resultTy->getPointeeType();
- }
- // Represent arithmetic on void pointers as arithmetic on char pointers.
- // It is fine when a TypedValueRegion of char value type represents
- // a void pointer. Note that arithmetic on void pointers is a GCC extension.
- if (elementType->isVoidType())
- elementType = getContext().CharTy;
- if (std::optional<NonLoc> indexV = index.getAs<NonLoc>()) {
- return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
- superR, getContext()));
- }
- }
- return UnknownVal();
- }
- const llvm::APSInt *SimpleSValBuilder::getConstValue(ProgramStateRef state,
- SVal V) {
- if (V.isUnknownOrUndef())
- return nullptr;
- if (std::optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
- return &X->getValue();
- if (std::optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
- return &X->getValue();
- if (SymbolRef Sym = V.getAsSymbol())
- return state->getConstraintManager().getSymVal(state, Sym);
- return nullptr;
- }
- const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
- SVal V) {
- return getConstValue(state, simplifySVal(state, V));
- }
- SVal SimpleSValBuilder::simplifyUntilFixpoint(ProgramStateRef State, SVal Val) {
- SVal SimplifiedVal = simplifySValOnce(State, Val);
- while (SimplifiedVal != Val) {
- Val = SimplifiedVal;
- SimplifiedVal = simplifySValOnce(State, Val);
- }
- return SimplifiedVal;
- }
- SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
- return simplifyUntilFixpoint(State, V);
- }
- SVal SimpleSValBuilder::simplifySValOnce(ProgramStateRef State, SVal V) {
- // For now, this function tries to constant-fold symbols inside a
- // nonloc::SymbolVal, and does nothing else. More simplifications should
- // be possible, such as constant-folding an index in an ElementRegion.
- class Simplifier : public FullSValVisitor<Simplifier, SVal> {
- ProgramStateRef State;
- SValBuilder &SVB;
- // Cache results for the lifetime of the Simplifier. Results change every
- // time new constraints are added to the program state, which is the whole
- // point of simplifying, and for that very reason it's pointless to maintain
- // the same cache for the duration of the whole analysis.
- llvm::DenseMap<SymbolRef, SVal> Cached;
- static bool isUnchanged(SymbolRef Sym, SVal Val) {
- return Sym == Val.getAsSymbol();
- }
- SVal cache(SymbolRef Sym, SVal V) {
- Cached[Sym] = V;
- return V;
- }
- SVal skip(SymbolRef Sym) {
- return cache(Sym, SVB.makeSymbolVal(Sym));
- }
- // Return the known const value for the Sym if available, or return Undef
- // otherwise.
- SVal getConst(SymbolRef Sym) {
- const llvm::APSInt *Const =
- State->getConstraintManager().getSymVal(State, Sym);
- if (Const)
- return Loc::isLocType(Sym->getType()) ? (SVal)SVB.makeIntLocVal(*Const)
- : (SVal)SVB.makeIntVal(*Const);
- return UndefinedVal();
- }
- SVal getConstOrVisit(SymbolRef Sym) {
- const SVal Ret = getConst(Sym);
- if (Ret.isUndef())
- return Visit(Sym);
- return Ret;
- }
- public:
- Simplifier(ProgramStateRef State)
- : State(State), SVB(State->getStateManager().getSValBuilder()) {}
- SVal VisitSymbolData(const SymbolData *S) {
- // No cache here.
- if (const llvm::APSInt *I =
- State->getConstraintManager().getSymVal(State, S))
- return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
- : (SVal)SVB.makeIntVal(*I);
- return SVB.makeSymbolVal(S);
- }
- SVal VisitSymIntExpr(const SymIntExpr *S) {
- auto I = Cached.find(S);
- if (I != Cached.end())
- return I->second;
- SVal LHS = getConstOrVisit(S->getLHS());
- if (isUnchanged(S->getLHS(), LHS))
- return skip(S);
- SVal RHS;
- // By looking at the APSInt in the right-hand side of S, we cannot
- // figure out if it should be treated as a Loc or as a NonLoc.
- // So make our guess by recalling that we cannot multiply pointers
- // or compare a pointer to an integer.
- if (Loc::isLocType(S->getLHS()->getType()) &&
- BinaryOperator::isComparisonOp(S->getOpcode())) {
- // The usual conversion of $sym to &SymRegion{$sym}, as they have
- // the same meaning for Loc-type symbols, but the latter form
- // is preferred in SVal computations for being Loc itself.
- if (SymbolRef Sym = LHS.getAsSymbol()) {
- assert(Loc::isLocType(Sym->getType()));
- LHS = SVB.makeLoc(Sym);
- }
- RHS = SVB.makeIntLocVal(S->getRHS());
- } else {
- RHS = SVB.makeIntVal(S->getRHS());
- }
- return cache(
- S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
- }
- SVal VisitIntSymExpr(const IntSymExpr *S) {
- auto I = Cached.find(S);
- if (I != Cached.end())
- return I->second;
- SVal RHS = getConstOrVisit(S->getRHS());
- if (isUnchanged(S->getRHS(), RHS))
- return skip(S);
- SVal LHS = SVB.makeIntVal(S->getLHS());
- return cache(
- S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
- }
- SVal VisitSymSymExpr(const SymSymExpr *S) {
- auto I = Cached.find(S);
- if (I != Cached.end())
- return I->second;
- // For now don't try to simplify mixed Loc/NonLoc expressions
- // because they often appear from LocAsInteger operations
- // and we don't know how to combine a LocAsInteger
- // with a concrete value.
- if (Loc::isLocType(S->getLHS()->getType()) !=
- Loc::isLocType(S->getRHS()->getType()))
- return skip(S);
- SVal LHS = getConstOrVisit(S->getLHS());
- SVal RHS = getConstOrVisit(S->getRHS());
- if (isUnchanged(S->getLHS(), LHS) && isUnchanged(S->getRHS(), RHS))
- return skip(S);
- return cache(
- S, SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType()));
- }
- SVal VisitSymbolCast(const SymbolCast *S) {
- auto I = Cached.find(S);
- if (I != Cached.end())
- return I->second;
- const SymExpr *OpSym = S->getOperand();
- SVal OpVal = getConstOrVisit(OpSym);
- if (isUnchanged(OpSym, OpVal))
- return skip(S);
- return cache(S, SVB.evalCast(OpVal, S->getType(), OpSym->getType()));
- }
- SVal VisitUnarySymExpr(const UnarySymExpr *S) {
- auto I = Cached.find(S);
- if (I != Cached.end())
- return I->second;
- SVal Op = getConstOrVisit(S->getOperand());
- if (isUnchanged(S->getOperand(), Op))
- return skip(S);
- return cache(
- S, SVB.evalUnaryOp(State, S->getOpcode(), Op, S->getType()));
- }
- SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
- SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
- SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
- // Simplification is much more costly than computing complexity.
- // For high complexity, it may be not worth it.
- return Visit(V.getSymbol());
- }
- SVal VisitSVal(SVal V) { return V; }
- };
- SVal SimplifiedV = Simplifier(State).Visit(V);
- return SimplifiedV;
- }
|