12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172 |
- //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines ExprEngine's support for C expressions.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/AST/ExprCXX.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/StaticAnalyzer/Core/CheckerManager.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
- #include <optional>
- using namespace clang;
- using namespace ento;
- using llvm::APSInt;
- /// Optionally conjure and return a symbol for offset when processing
- /// an expression \p Expression.
- /// If \p Other is a location, conjure a symbol for \p Symbol
- /// (offset) if it is unknown so that memory arithmetic always
- /// results in an ElementRegion.
- /// \p Count The number of times the current basic block was visited.
- static SVal conjureOffsetSymbolOnLocation(
- SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
- unsigned Count, const LocationContext *LCtx) {
- QualType Ty = Expression->getType();
- if (isa<Loc>(Other) && Ty->isIntegralOrEnumerationType() &&
- Symbol.isUnknown()) {
- return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
- }
- return Symbol;
- }
- void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- Expr *LHS = B->getLHS()->IgnoreParens();
- Expr *RHS = B->getRHS()->IgnoreParens();
- // FIXME: Prechecks eventually go in ::Visit().
- ExplodedNodeSet CheckedSet;
- ExplodedNodeSet Tmp2;
- getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
- // With both the LHS and RHS evaluated, process the operation itself.
- for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
- it != ei; ++it) {
- ProgramStateRef state = (*it)->getState();
- const LocationContext *LCtx = (*it)->getLocationContext();
- SVal LeftV = state->getSVal(LHS, LCtx);
- SVal RightV = state->getSVal(RHS, LCtx);
- BinaryOperator::Opcode Op = B->getOpcode();
- if (Op == BO_Assign) {
- // EXPERIMENTAL: "Conjured" symbols.
- // FIXME: Handle structs.
- if (RightV.isUnknown()) {
- unsigned Count = currBldrCtx->blockCount();
- RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
- Count);
- }
- // Simulate the effects of a "store": bind the value of the RHS
- // to the L-Value represented by the LHS.
- SVal ExprVal = B->isGLValue() ? LeftV : RightV;
- evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
- LeftV, RightV);
- continue;
- }
- if (!B->isAssignmentOp()) {
- StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
- if (B->isAdditiveOp()) {
- // TODO: This can be removed after we enable history tracking with
- // SymSymExpr.
- unsigned Count = currBldrCtx->blockCount();
- RightV = conjureOffsetSymbolOnLocation(
- RightV, LeftV, RHS, svalBuilder, Count, LCtx);
- LeftV = conjureOffsetSymbolOnLocation(
- LeftV, RightV, LHS, svalBuilder, Count, LCtx);
- }
- // Although we don't yet model pointers-to-members, we do need to make
- // sure that the members of temporaries have a valid 'this' pointer for
- // other checks.
- if (B->getOpcode() == BO_PtrMemD)
- state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
- // Process non-assignments except commas or short-circuited
- // logical expressions (LAnd and LOr).
- SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
- if (!Result.isUnknown()) {
- state = state->BindExpr(B, LCtx, Result);
- } else {
- // If we cannot evaluate the operation escape the operands.
- state = escapeValues(state, LeftV, PSK_EscapeOther);
- state = escapeValues(state, RightV, PSK_EscapeOther);
- }
- Bldr.generateNode(B, *it, state);
- continue;
- }
- assert (B->isCompoundAssignmentOp());
- switch (Op) {
- default:
- llvm_unreachable("Invalid opcode for compound assignment.");
- case BO_MulAssign: Op = BO_Mul; break;
- case BO_DivAssign: Op = BO_Div; break;
- case BO_RemAssign: Op = BO_Rem; break;
- case BO_AddAssign: Op = BO_Add; break;
- case BO_SubAssign: Op = BO_Sub; break;
- case BO_ShlAssign: Op = BO_Shl; break;
- case BO_ShrAssign: Op = BO_Shr; break;
- case BO_AndAssign: Op = BO_And; break;
- case BO_XorAssign: Op = BO_Xor; break;
- case BO_OrAssign: Op = BO_Or; break;
- }
- // Perform a load (the LHS). This performs the checks for
- // null dereferences, and so on.
- ExplodedNodeSet Tmp;
- SVal location = LeftV;
- evalLoad(Tmp, B, LHS, *it, state, location);
- for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
- ++I) {
- state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- SVal V = state->getSVal(LHS, LCtx);
- // Get the computation type.
- QualType CTy =
- cast<CompoundAssignOperator>(B)->getComputationResultType();
- CTy = getContext().getCanonicalType(CTy);
- QualType CLHSTy =
- cast<CompoundAssignOperator>(B)->getComputationLHSType();
- CLHSTy = getContext().getCanonicalType(CLHSTy);
- QualType LTy = getContext().getCanonicalType(LHS->getType());
- // Promote LHS.
- V = svalBuilder.evalCast(V, CLHSTy, LTy);
- // Compute the result of the operation.
- SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
- B->getType(), CTy);
- // EXPERIMENTAL: "Conjured" symbols.
- // FIXME: Handle structs.
- SVal LHSVal;
- if (Result.isUnknown()) {
- // The symbolic value is actually for the type of the left-hand side
- // expression, not the computation type, as this is the value the
- // LValue on the LHS will bind to.
- LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
- currBldrCtx->blockCount());
- // However, we need to convert the symbol to the computation type.
- Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
- }
- else {
- // The left-hand side may bind to a different value then the
- // computation type.
- LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
- }
- // In C++, assignment and compound assignment operators return an
- // lvalue.
- if (B->isGLValue())
- state = state->BindExpr(B, LCtx, location);
- else
- state = state->BindExpr(B, LCtx, Result);
- evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
- }
- }
- // FIXME: postvisits eventually go in ::Visit()
- getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
- }
- void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- CanQualType T = getContext().getCanonicalType(BE->getType());
- const BlockDecl *BD = BE->getBlockDecl();
- // Get the value of the block itself.
- SVal V = svalBuilder.getBlockPointer(BD, T,
- Pred->getLocationContext(),
- currBldrCtx->blockCount());
- ProgramStateRef State = Pred->getState();
- // If we created a new MemRegion for the block, we should explicitly bind
- // the captured variables.
- if (const BlockDataRegion *BDR =
- dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
- BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
- E = BDR->referenced_vars_end();
- auto CI = BD->capture_begin();
- auto CE = BD->capture_end();
- for (; I != E; ++I) {
- const VarRegion *capturedR = I.getCapturedRegion();
- const TypedValueRegion *originalR = I.getOriginalRegion();
- // If the capture had a copy expression, use the result of evaluating
- // that expression, otherwise use the original value.
- // We rely on the invariant that the block declaration's capture variables
- // are a prefix of the BlockDataRegion's referenced vars (which may include
- // referenced globals, etc.) to enable fast lookup of the capture for a
- // given referenced var.
- const Expr *copyExpr = nullptr;
- if (CI != CE) {
- assert(CI->getVariable() == capturedR->getDecl());
- copyExpr = CI->getCopyExpr();
- CI++;
- }
- if (capturedR != originalR) {
- SVal originalV;
- const LocationContext *LCtx = Pred->getLocationContext();
- if (copyExpr) {
- originalV = State->getSVal(copyExpr, LCtx);
- } else {
- originalV = State->getSVal(loc::MemRegionVal(originalR));
- }
- State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
- }
- }
- }
- ExplodedNodeSet Tmp;
- StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
- Bldr.generateNode(BE, Pred,
- State->BindExpr(BE, Pred->getLocationContext(), V),
- nullptr, ProgramPoint::PostLValueKind);
- // FIXME: Move all post/pre visits to ::Visit().
- getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
- }
- ProgramStateRef ExprEngine::handleLValueBitCast(
- ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
- QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
- ExplodedNode* Pred) {
- if (T->isLValueReferenceType()) {
- assert(!CastE->getType()->isLValueReferenceType());
- ExTy = getContext().getLValueReferenceType(ExTy);
- } else if (T->isRValueReferenceType()) {
- assert(!CastE->getType()->isRValueReferenceType());
- ExTy = getContext().getRValueReferenceType(ExTy);
- }
- // Delegate to SValBuilder to process.
- SVal OrigV = state->getSVal(Ex, LCtx);
- SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
- // Negate the result if we're treating the boolean as a signed i1
- if (CastE->getCastKind() == CK_BooleanToSignedIntegral && V.isValid())
- V = svalBuilder.evalMinus(V.castAs<NonLoc>());
- state = state->BindExpr(CastE, LCtx, V);
- if (V.isUnknown() && !OrigV.isUnknown()) {
- state = escapeValues(state, OrigV, PSK_EscapeOther);
- }
- Bldr.generateNode(CastE, Pred, state);
- return state;
- }
- void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
- ExplodedNode *Pred, ExplodedNodeSet &Dst) {
- ExplodedNodeSet dstPreStmt;
- getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
- if (CastE->getCastKind() == CK_LValueToRValue ||
- CastE->getCastKind() == CK_LValueToRValueBitCast) {
- for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
- I!=E; ++I) {
- ExplodedNode *subExprNode = *I;
- ProgramStateRef state = subExprNode->getState();
- const LocationContext *LCtx = subExprNode->getLocationContext();
- evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
- }
- return;
- }
- // All other casts.
- QualType T = CastE->getType();
- QualType ExTy = Ex->getType();
- if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
- T = ExCast->getTypeAsWritten();
- StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
- for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
- I != E; ++I) {
- Pred = *I;
- ProgramStateRef state = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- switch (CastE->getCastKind()) {
- case CK_LValueToRValue:
- case CK_LValueToRValueBitCast:
- llvm_unreachable("LValueToRValue casts handled earlier.");
- case CK_ToVoid:
- continue;
- // The analyzer doesn't do anything special with these casts,
- // since it understands retain/release semantics already.
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject: // Fall-through.
- case CK_CopyAndAutoreleaseBlockObject:
- // The analyser can ignore atomic casts for now, although some future
- // checkers may want to make certain that you're not modifying the same
- // value through atomic and nonatomic pointers.
- case CK_AtomicToNonAtomic:
- case CK_NonAtomicToAtomic:
- // True no-ops.
- case CK_NoOp:
- case CK_ConstructorConversion:
- case CK_UserDefinedConversion:
- case CK_FunctionToPointerDecay:
- case CK_BuiltinFnToFnPtr: {
- // Copy the SVal of Ex to CastE.
- ProgramStateRef state = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- SVal V = state->getSVal(Ex, LCtx);
- state = state->BindExpr(CastE, LCtx, V);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_MemberPointerToBoolean:
- case CK_PointerToBoolean: {
- SVal V = state->getSVal(Ex, LCtx);
- auto PTMSV = V.getAs<nonloc::PointerToMember>();
- if (PTMSV)
- V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
- if (V.isUndef() || PTMSV) {
- state = state->BindExpr(CastE, LCtx, V);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- // Explicitly proceed with default handler for this case cascade.
- state =
- handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
- continue;
- }
- case CK_Dependent:
- case CK_ArrayToPointerDecay:
- case CK_BitCast:
- case CK_AddressSpaceConversion:
- case CK_BooleanToSignedIntegral:
- case CK_IntegralToPointer:
- case CK_PointerToIntegral: {
- SVal V = state->getSVal(Ex, LCtx);
- if (isa<nonloc::PointerToMember>(V)) {
- state = state->BindExpr(CastE, LCtx, UnknownVal());
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- // Explicitly proceed with default handler for this case cascade.
- state =
- handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
- continue;
- }
- case CK_IntegralToBoolean:
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- case CK_FloatingToBoolean:
- case CK_FloatingCast:
- case CK_FloatingRealToComplex:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexToBoolean:
- case CK_FloatingComplexCast:
- case CK_FloatingComplexToIntegralComplex:
- case CK_IntegralRealToComplex:
- case CK_IntegralComplexToReal:
- case CK_IntegralComplexToBoolean:
- case CK_IntegralComplexCast:
- case CK_IntegralComplexToFloatingComplex:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ObjCObjectLValueCast:
- case CK_ZeroToOCLOpaqueType:
- case CK_IntToOCLSampler:
- case CK_LValueBitCast:
- case CK_FloatingToFixedPoint:
- case CK_FixedPointToFloating:
- case CK_FixedPointCast:
- case CK_FixedPointToBoolean:
- case CK_FixedPointToIntegral:
- case CK_IntegralToFixedPoint: {
- state =
- handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
- continue;
- }
- case CK_IntegralCast: {
- // Delegate to SValBuilder to process.
- SVal V = state->getSVal(Ex, LCtx);
- if (AMgr.options.ShouldSupportSymbolicIntegerCasts)
- V = svalBuilder.evalCast(V, T, ExTy);
- else
- V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
- state = state->BindExpr(CastE, LCtx, V);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase: {
- // For DerivedToBase cast, delegate to the store manager.
- SVal val = state->getSVal(Ex, LCtx);
- val = getStoreManager().evalDerivedToBase(val, CastE);
- state = state->BindExpr(CastE, LCtx, val);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- // Handle C++ dyn_cast.
- case CK_Dynamic: {
- SVal val = state->getSVal(Ex, LCtx);
- // Compute the type of the result.
- QualType resultType = CastE->getType();
- if (CastE->isGLValue())
- resultType = getContext().getPointerType(resultType);
- bool Failed = true;
- // Check if the value being cast does not evaluates to 0.
- if (!val.isZeroConstant())
- if (std::optional<SVal> V =
- StateMgr.getStoreManager().evalBaseToDerived(val, T)) {
- val = *V;
- Failed = false;
- }
- if (Failed) {
- if (T->isReferenceType()) {
- // A bad_cast exception is thrown if input value is a reference.
- // Currently, we model this, by generating a sink.
- Bldr.generateSink(CastE, Pred, state);
- continue;
- } else {
- // If the cast fails on a pointer, bind to 0.
- state = state->BindExpr(CastE, LCtx,
- svalBuilder.makeNullWithType(resultType));
- }
- } else {
- // If we don't know if the cast succeeded, conjure a new symbol.
- if (val.isUnknown()) {
- DefinedOrUnknownSVal NewSym =
- svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
- currBldrCtx->blockCount());
- state = state->BindExpr(CastE, LCtx, NewSym);
- } else
- // Else, bind to the derived region value.
- state = state->BindExpr(CastE, LCtx, val);
- }
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_BaseToDerived: {
- SVal val = state->getSVal(Ex, LCtx);
- QualType resultType = CastE->getType();
- if (CastE->isGLValue())
- resultType = getContext().getPointerType(resultType);
- if (!val.isConstant()) {
- std::optional<SVal> V = getStoreManager().evalBaseToDerived(val, T);
- val = V ? *V : UnknownVal();
- }
- // Failed to cast or the result is unknown, fall back to conservative.
- if (val.isUnknown()) {
- val =
- svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
- currBldrCtx->blockCount());
- }
- state = state->BindExpr(CastE, LCtx, val);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_NullToPointer: {
- SVal V = svalBuilder.makeNullWithType(CastE->getType());
- state = state->BindExpr(CastE, LCtx, V);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_NullToMemberPointer: {
- SVal V = svalBuilder.getMemberPointer(nullptr);
- state = state->BindExpr(CastE, LCtx, V);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- case CK_DerivedToBaseMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_ReinterpretMemberPointer: {
- SVal V = state->getSVal(Ex, LCtx);
- if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
- SVal CastedPTMSV =
- svalBuilder.makePointerToMember(getBasicVals().accumCXXBase(
- CastE->path(), *PTMSV, CastE->getCastKind()));
- state = state->BindExpr(CastE, LCtx, CastedPTMSV);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- // Explicitly proceed with default handler for this case cascade.
- }
- [[fallthrough]];
- // Various C++ casts that are not handled yet.
- case CK_ToUnion:
- case CK_MatrixCast:
- case CK_VectorSplat: {
- QualType resultType = CastE->getType();
- if (CastE->isGLValue())
- resultType = getContext().getPointerType(resultType);
- SVal result = svalBuilder.conjureSymbolVal(
- /*symbolTag=*/nullptr, CastE, LCtx, resultType,
- currBldrCtx->blockCount());
- state = state->BindExpr(CastE, LCtx, result);
- Bldr.generateNode(CastE, Pred, state);
- continue;
- }
- }
- }
- }
- void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
- ProgramStateRef State = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- const Expr *Init = CL->getInitializer();
- SVal V = State->getSVal(CL->getInitializer(), LCtx);
- if (isa<CXXConstructExpr, CXXStdInitializerListExpr>(Init)) {
- // No work needed. Just pass the value up to this expression.
- } else {
- assert(isa<InitListExpr>(Init));
- Loc CLLoc = State->getLValue(CL, LCtx);
- State = State->bindLoc(CLLoc, V, LCtx);
- if (CL->isGLValue())
- V = CLLoc;
- }
- B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
- }
- void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- if (isa<TypedefNameDecl>(*DS->decl_begin())) {
- // C99 6.7.7 "Any array size expressions associated with variable length
- // array declarators are evaluated each time the declaration of the typedef
- // name is reached in the order of execution."
- // The checkers should know about typedef to be able to handle VLA size
- // expressions.
- ExplodedNodeSet DstPre;
- getCheckerManager().runCheckersForPreStmt(DstPre, Pred, DS, *this);
- getCheckerManager().runCheckersForPostStmt(Dst, DstPre, DS, *this);
- return;
- }
- // Assumption: The CFG has one DeclStmt per Decl.
- const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
- if (!VD) {
- //TODO:AZ: remove explicit insertion after refactoring is done.
- Dst.insert(Pred);
- return;
- }
- // FIXME: all pre/post visits should eventually be handled by ::Visit().
- ExplodedNodeSet dstPreVisit;
- getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
- ExplodedNodeSet dstEvaluated;
- StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
- for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
- I!=E; ++I) {
- ExplodedNode *N = *I;
- ProgramStateRef state = N->getState();
- const LocationContext *LC = N->getLocationContext();
- // Decls without InitExpr are not initialized explicitly.
- if (const Expr *InitEx = VD->getInit()) {
- // Note in the state that the initialization has occurred.
- ExplodedNode *UpdatedN = N;
- SVal InitVal = state->getSVal(InitEx, LC);
- assert(DS->isSingleDecl());
- if (getObjectUnderConstruction(state, DS, LC)) {
- state = finishObjectConstruction(state, DS, LC);
- // We constructed the object directly in the variable.
- // No need to bind anything.
- B.generateNode(DS, UpdatedN, state);
- } else {
- // Recover some path-sensitivity if a scalar value evaluated to
- // UnknownVal.
- if (InitVal.isUnknown()) {
- QualType Ty = InitEx->getType();
- if (InitEx->isGLValue()) {
- Ty = getContext().getPointerType(Ty);
- }
- InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
- currBldrCtx->blockCount());
- }
- B.takeNodes(UpdatedN);
- ExplodedNodeSet Dst2;
- evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
- B.addNodes(Dst2);
- }
- }
- else {
- B.generateNode(DS, N, state);
- }
- }
- getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
- }
- void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- // This method acts upon CFG elements for logical operators && and ||
- // and attaches the value (true or false) to them as expressions.
- // It doesn't produce any state splits.
- // If we made it that far, we're past the point when we modeled the short
- // circuit. It means that we should have precise knowledge about whether
- // we've short-circuited. If we did, we already know the value we need to
- // bind. If we didn't, the value of the RHS (casted to the boolean type)
- // is the answer.
- // Currently this method tries to figure out whether we've short-circuited
- // by looking at the ExplodedGraph. This method is imperfect because there
- // could inevitably have been merges that would have resulted in multiple
- // potential path traversal histories. We bail out when we fail.
- // Due to this ambiguity, a more reliable solution would have been to
- // track the short circuit operation history path-sensitively until
- // we evaluate the respective logical operator.
- assert(B->getOpcode() == BO_LAnd ||
- B->getOpcode() == BO_LOr);
- StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
- ProgramStateRef state = Pred->getState();
- if (B->getType()->isVectorType()) {
- // FIXME: We do not model vector arithmetic yet. When adding support for
- // that, note that the CFG-based reasoning below does not apply, because
- // logical operators on vectors are not short-circuit. Currently they are
- // modeled as short-circuit in Clang CFG but this is incorrect.
- // Do not set the value for the expression. It'd be UnknownVal by default.
- Bldr.generateNode(B, Pred, state);
- return;
- }
- ExplodedNode *N = Pred;
- while (!N->getLocation().getAs<BlockEntrance>()) {
- ProgramPoint P = N->getLocation();
- assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
- (void) P;
- if (N->pred_size() != 1) {
- // We failed to track back where we came from.
- Bldr.generateNode(B, Pred, state);
- return;
- }
- N = *N->pred_begin();
- }
- if (N->pred_size() != 1) {
- // We failed to track back where we came from.
- Bldr.generateNode(B, Pred, state);
- return;
- }
- N = *N->pred_begin();
- BlockEdge BE = N->getLocation().castAs<BlockEdge>();
- SVal X;
- // Determine the value of the expression by introspecting how we
- // got this location in the CFG. This requires looking at the previous
- // block we were in and what kind of control-flow transfer was involved.
- const CFGBlock *SrcBlock = BE.getSrc();
- // The only terminator (if there is one) that makes sense is a logical op.
- CFGTerminator T = SrcBlock->getTerminator();
- if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
- (void) Term;
- assert(Term->isLogicalOp());
- assert(SrcBlock->succ_size() == 2);
- // Did we take the true or false branch?
- unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
- X = svalBuilder.makeIntVal(constant, B->getType());
- }
- else {
- // If there is no terminator, by construction the last statement
- // in SrcBlock is the value of the enclosing expression.
- // However, we still need to constrain that value to be 0 or 1.
- assert(!SrcBlock->empty());
- CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
- const Expr *RHS = cast<Expr>(Elem.getStmt());
- SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
- if (RHSVal.isUndef()) {
- X = RHSVal;
- } else {
- // We evaluate "RHSVal != 0" expression which result in 0 if the value is
- // known to be false, 1 if the value is known to be true and a new symbol
- // when the assumption is unknown.
- nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
- X = evalBinOp(N->getState(), BO_NE,
- svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
- Zero, B->getType());
- }
- }
- Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
- }
- void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
- ProgramStateRef state = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- QualType T = getContext().getCanonicalType(IE->getType());
- unsigned NumInitElements = IE->getNumInits();
- if (!IE->isGLValue() && !IE->isTransparent() &&
- (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
- T->isAnyComplexType())) {
- llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
- // Handle base case where the initializer has no elements.
- // e.g: static int* myArray[] = {};
- if (NumInitElements == 0) {
- SVal V = svalBuilder.makeCompoundVal(T, vals);
- B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
- return;
- }
- for (const Stmt *S : llvm::reverse(*IE)) {
- SVal V = state->getSVal(cast<Expr>(S), LCtx);
- vals = getBasicVals().prependSVal(V, vals);
- }
- B.generateNode(IE, Pred,
- state->BindExpr(IE, LCtx,
- svalBuilder.makeCompoundVal(T, vals)));
- return;
- }
- // Handle scalars: int{5} and int{} and GLvalues.
- // Note, if the InitListExpr is a GLvalue, it means that there is an address
- // representing it, so it must have a single init element.
- assert(NumInitElements <= 1);
- SVal V;
- if (NumInitElements == 0)
- V = getSValBuilder().makeZeroVal(T);
- else
- V = state->getSVal(IE->getInit(0), LCtx);
- B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
- }
- void ExprEngine::VisitGuardedExpr(const Expr *Ex,
- const Expr *L,
- const Expr *R,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- assert(L && R);
- StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
- ProgramStateRef state = Pred->getState();
- const LocationContext *LCtx = Pred->getLocationContext();
- const CFGBlock *SrcBlock = nullptr;
- // Find the predecessor block.
- ProgramStateRef SrcState = state;
- for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
- ProgramPoint PP = N->getLocation();
- if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
- // If the state N has multiple predecessors P, it means that successors
- // of P are all equivalent.
- // In turn, that means that all nodes at P are equivalent in terms
- // of observable behavior at N, and we can follow any of them.
- // FIXME: a more robust solution which does not walk up the tree.
- continue;
- }
- SrcBlock = PP.castAs<BlockEdge>().getSrc();
- SrcState = N->getState();
- break;
- }
- assert(SrcBlock && "missing function entry");
- // Find the last expression in the predecessor block. That is the
- // expression that is used for the value of the ternary expression.
- bool hasValue = false;
- SVal V;
- for (CFGElement CE : llvm::reverse(*SrcBlock)) {
- if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
- const Expr *ValEx = cast<Expr>(CS->getStmt());
- ValEx = ValEx->IgnoreParens();
- // For GNU extension '?:' operator, the left hand side will be an
- // OpaqueValueExpr, so get the underlying expression.
- if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
- L = OpaqueEx->getSourceExpr();
- // If the last expression in the predecessor block matches true or false
- // subexpression, get its the value.
- if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
- hasValue = true;
- V = SrcState->getSVal(ValEx, LCtx);
- }
- break;
- }
- }
- if (!hasValue)
- V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
- currBldrCtx->blockCount());
- // Generate a new node with the binding from the appropriate path.
- B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
- }
- void ExprEngine::
- VisitOffsetOfExpr(const OffsetOfExpr *OOE,
- ExplodedNode *Pred, ExplodedNodeSet &Dst) {
- StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
- Expr::EvalResult Result;
- if (OOE->EvaluateAsInt(Result, getContext())) {
- APSInt IV = Result.Val.getInt();
- assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
- assert(OOE->getType()->castAs<BuiltinType>()->isInteger());
- assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
- SVal X = svalBuilder.makeIntVal(IV);
- B.generateNode(OOE, Pred,
- Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
- X));
- }
- // FIXME: Handle the case where __builtin_offsetof is not a constant.
- }
- void ExprEngine::
- VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- // FIXME: Prechecks eventually go in ::Visit().
- ExplodedNodeSet CheckedSet;
- getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
- ExplodedNodeSet EvalSet;
- StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
- QualType T = Ex->getTypeOfArgument();
- for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
- I != E; ++I) {
- if (Ex->getKind() == UETT_SizeOf) {
- if (!T->isIncompleteType() && !T->isConstantSizeType()) {
- assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
- // FIXME: Add support for VLA type arguments and VLA expressions.
- // When that happens, we should probably refactor VLASizeChecker's code.
- continue;
- } else if (T->getAs<ObjCObjectType>()) {
- // Some code tries to take the sizeof an ObjCObjectType, relying that
- // the compiler has laid out its representation. Just report Unknown
- // for these.
- continue;
- }
- }
- APSInt Value = Ex->EvaluateKnownConstInt(getContext());
- CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
- ProgramStateRef state = (*I)->getState();
- state = state->BindExpr(Ex, (*I)->getLocationContext(),
- svalBuilder.makeIntVal(amt.getQuantity(),
- Ex->getType()));
- Bldr.generateNode(Ex, *I, state);
- }
- getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
- }
- void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
- const UnaryOperator *U,
- StmtNodeBuilder &Bldr) {
- // FIXME: We can probably just have some magic in Environment::getSVal()
- // that propagates values, instead of creating a new node here.
- //
- // Unary "+" is a no-op, similar to a parentheses. We still have places
- // where it may be a block-level expression, so we need to
- // generate an extra node that just propagates the value of the
- // subexpression.
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- ProgramStateRef state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
- state->getSVal(Ex, LCtx)));
- }
- void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- // FIXME: Prechecks eventually go in ::Visit().
- ExplodedNodeSet CheckedSet;
- getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
- ExplodedNodeSet EvalSet;
- StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
- for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
- I != E; ++I) {
- switch (U->getOpcode()) {
- default: {
- Bldr.takeNodes(*I);
- ExplodedNodeSet Tmp;
- VisitIncrementDecrementOperator(U, *I, Tmp);
- Bldr.addNodes(Tmp);
- break;
- }
- case UO_Real: {
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- // FIXME: We don't have complex SValues yet.
- if (Ex->getType()->isAnyComplexType()) {
- // Just report "Unknown."
- break;
- }
- // For all other types, UO_Real is an identity operation.
- assert (U->getType() == Ex->getType());
- ProgramStateRef state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
- state->getSVal(Ex, LCtx)));
- break;
- }
- case UO_Imag: {
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- // FIXME: We don't have complex SValues yet.
- if (Ex->getType()->isAnyComplexType()) {
- // Just report "Unknown."
- break;
- }
- // For all other types, UO_Imag returns 0.
- ProgramStateRef state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- SVal X = svalBuilder.makeZeroVal(Ex->getType());
- Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
- break;
- }
- case UO_AddrOf: {
- // Process pointer-to-member address operation.
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
- const ValueDecl *VD = DRE->getDecl();
- if (isa<CXXMethodDecl, FieldDecl, IndirectFieldDecl>(VD)) {
- ProgramStateRef State = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- SVal SV = svalBuilder.getMemberPointer(cast<NamedDecl>(VD));
- Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
- break;
- }
- }
- // Explicitly proceed with default handler for this case cascade.
- handleUOExtension(I, U, Bldr);
- break;
- }
- case UO_Plus:
- assert(!U->isGLValue());
- [[fallthrough]];
- case UO_Deref:
- case UO_Extension: {
- handleUOExtension(I, U, Bldr);
- break;
- }
- case UO_LNot:
- case UO_Minus:
- case UO_Not: {
- assert (!U->isGLValue());
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- ProgramStateRef state = (*I)->getState();
- const LocationContext *LCtx = (*I)->getLocationContext();
- // Get the value of the subexpression.
- SVal V = state->getSVal(Ex, LCtx);
- if (V.isUnknownOrUndef()) {
- Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
- break;
- }
- switch (U->getOpcode()) {
- default:
- llvm_unreachable("Invalid Opcode.");
- case UO_Not:
- // FIXME: Do we need to handle promotions?
- state = state->BindExpr(
- U, LCtx, svalBuilder.evalComplement(V.castAs<NonLoc>()));
- break;
- case UO_Minus:
- // FIXME: Do we need to handle promotions?
- state = state->BindExpr(U, LCtx,
- svalBuilder.evalMinus(V.castAs<NonLoc>()));
- break;
- case UO_LNot:
- // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
- //
- // Note: technically we do "E == 0", but this is the same in the
- // transfer functions as "0 == E".
- SVal Result;
- if (std::optional<Loc> LV = V.getAs<Loc>()) {
- Loc X = svalBuilder.makeNullWithType(Ex->getType());
- Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
- } else if (Ex->getType()->isFloatingType()) {
- // FIXME: handle floating point types.
- Result = UnknownVal();
- } else {
- nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
- Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, U->getType());
- }
- state = state->BindExpr(U, LCtx, Result);
- break;
- }
- Bldr.generateNode(U, *I, state);
- break;
- }
- }
- }
- getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
- }
- void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
- ExplodedNode *Pred,
- ExplodedNodeSet &Dst) {
- // Handle ++ and -- (both pre- and post-increment).
- assert (U->isIncrementDecrementOp());
- const Expr *Ex = U->getSubExpr()->IgnoreParens();
- const LocationContext *LCtx = Pred->getLocationContext();
- ProgramStateRef state = Pred->getState();
- SVal loc = state->getSVal(Ex, LCtx);
- // Perform a load.
- ExplodedNodeSet Tmp;
- evalLoad(Tmp, U, Ex, Pred, state, loc);
- ExplodedNodeSet Dst2;
- StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
- for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
- state = (*I)->getState();
- assert(LCtx == (*I)->getLocationContext());
- SVal V2_untested = state->getSVal(Ex, LCtx);
- // Propagate unknown and undefined values.
- if (V2_untested.isUnknownOrUndef()) {
- state = state->BindExpr(U, LCtx, V2_untested);
- // Perform the store, so that the uninitialized value detection happens.
- Bldr.takeNodes(*I);
- ExplodedNodeSet Dst3;
- evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
- Bldr.addNodes(Dst3);
- continue;
- }
- DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
- // Handle all other values.
- BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
- // If the UnaryOperator has non-location type, use its type to create the
- // constant value. If the UnaryOperator has location type, create the
- // constant with int type and pointer width.
- SVal RHS;
- SVal Result;
- if (U->getType()->isAnyPointerType())
- RHS = svalBuilder.makeArrayIndex(1);
- else if (U->getType()->isIntegralOrEnumerationType())
- RHS = svalBuilder.makeIntVal(1, U->getType());
- else
- RHS = UnknownVal();
- // The use of an operand of type bool with the ++ operators is deprecated
- // but valid until C++17. And if the operand of the ++ operator is of type
- // bool, it is set to true until C++17. Note that for '_Bool', it is also
- // set to true when it encounters ++ operator.
- if (U->getType()->isBooleanType() && U->isIncrementOp())
- Result = svalBuilder.makeTruthVal(true, U->getType());
- else
- Result = evalBinOp(state, Op, V2, RHS, U->getType());
- // Conjure a new symbol if necessary to recover precision.
- if (Result.isUnknown()){
- DefinedOrUnknownSVal SymVal =
- svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
- currBldrCtx->blockCount());
- Result = SymVal;
- // If the value is a location, ++/-- should always preserve
- // non-nullness. Check if the original value was non-null, and if so
- // propagate that constraint.
- if (Loc::isLocType(U->getType())) {
- DefinedOrUnknownSVal Constraint =
- svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
- if (!state->assume(Constraint, true)) {
- // It isn't feasible for the original value to be null.
- // Propagate this constraint.
- Constraint = svalBuilder.evalEQ(state, SymVal,
- svalBuilder.makeZeroVal(U->getType()));
- state = state->assume(Constraint, false);
- assert(state);
- }
- }
- }
- // Since the lvalue-to-rvalue conversion is explicit in the AST,
- // we bind an l-value if the operator is prefix and an lvalue (in C++).
- if (U->isGLValue())
- state = state->BindExpr(U, LCtx, loc);
- else
- state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
- // Perform the store.
- Bldr.takeNodes(*I);
- ExplodedNodeSet Dst3;
- evalStore(Dst3, U, Ex, *I, state, loc, Result);
- Bldr.addNodes(Dst3);
- }
- Dst.insert(Dst2);
- }
|