123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- //===- ConstraintManager.cpp - Constraints on symbolic values. ------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defined the interface to manage constraints on symbolic values.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h"
- #include "clang/AST/Type.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
- #include "llvm/ADT/ScopeExit.h"
- using namespace clang;
- using namespace ento;
- ConstraintManager::~ConstraintManager() = default;
- static DefinedSVal getLocFromSymbol(const ProgramStateRef &State,
- SymbolRef Sym) {
- const MemRegion *R =
- State->getStateManager().getRegionManager().getSymbolicRegion(Sym);
- return loc::MemRegionVal(R);
- }
- ConditionTruthVal ConstraintManager::checkNull(ProgramStateRef State,
- SymbolRef Sym) {
- QualType Ty = Sym->getType();
- DefinedSVal V = Loc::isLocType(Ty) ? getLocFromSymbol(State, Sym)
- : nonloc::SymbolVal(Sym);
- const ProgramStatePair &P = assumeDual(State, V);
- if (P.first && !P.second)
- return ConditionTruthVal(false);
- if (!P.first && P.second)
- return ConditionTruthVal(true);
- return {};
- }
- template <typename AssumeFunction>
- ConstraintManager::ProgramStatePair
- ConstraintManager::assumeDualImpl(ProgramStateRef &State,
- AssumeFunction &Assume) {
- if (LLVM_UNLIKELY(State->isPosteriorlyOverconstrained()))
- return {State, State};
- // Assume functions might recurse (see `reAssume` or `tryRearrange`). During
- // the recursion the State might not change anymore, that means we reached a
- // fixpoint.
- // We avoid infinite recursion of assume calls by checking already visited
- // States on the stack of assume function calls.
- const ProgramState *RawSt = State.get();
- if (LLVM_UNLIKELY(AssumeStack.contains(RawSt)))
- return {State, State};
- AssumeStack.push(RawSt);
- auto AssumeStackBuilder =
- llvm::make_scope_exit([this]() { AssumeStack.pop(); });
- ProgramStateRef StTrue = Assume(true);
- if (!StTrue) {
- ProgramStateRef StFalse = Assume(false);
- if (LLVM_UNLIKELY(!StFalse)) { // both infeasible
- ProgramStateRef StInfeasible = State->cloneAsPosteriorlyOverconstrained();
- assert(StInfeasible->isPosteriorlyOverconstrained());
- // Checkers might rely on the API contract that both returned states
- // cannot be null. Thus, we return StInfeasible for both branches because
- // it might happen that a Checker uncoditionally uses one of them if the
- // other is a nullptr. This may also happen with the non-dual and
- // adjacent `assume(true)` and `assume(false)` calls. By implementing
- // assume in therms of assumeDual, we can keep our API contract there as
- // well.
- return ProgramStatePair(StInfeasible, StInfeasible);
- }
- return ProgramStatePair(nullptr, StFalse);
- }
- ProgramStateRef StFalse = Assume(false);
- if (!StFalse) {
- return ProgramStatePair(StTrue, nullptr);
- }
- return ProgramStatePair(StTrue, StFalse);
- }
- ConstraintManager::ProgramStatePair
- ConstraintManager::assumeDual(ProgramStateRef State, DefinedSVal Cond) {
- auto AssumeFun = [&](bool Assumption) {
- return assumeInternal(State, Cond, Assumption);
- };
- return assumeDualImpl(State, AssumeFun);
- }
- ConstraintManager::ProgramStatePair
- ConstraintManager::assumeInclusiveRangeDual(ProgramStateRef State, NonLoc Value,
- const llvm::APSInt &From,
- const llvm::APSInt &To) {
- auto AssumeFun = [&](bool Assumption) {
- return assumeInclusiveRangeInternal(State, Value, From, To, Assumption);
- };
- return assumeDualImpl(State, AssumeFun);
- }
- ProgramStateRef ConstraintManager::assume(ProgramStateRef State,
- DefinedSVal Cond, bool Assumption) {
- ConstraintManager::ProgramStatePair R = assumeDual(State, Cond);
- return Assumption ? R.first : R.second;
- }
- ProgramStateRef
- ConstraintManager::assumeInclusiveRange(ProgramStateRef State, NonLoc Value,
- const llvm::APSInt &From,
- const llvm::APSInt &To, bool InBound) {
- ConstraintManager::ProgramStatePair R =
- assumeInclusiveRangeDual(State, Value, From, To);
- return InBound ? R.first : R.second;
- }
|