1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054 |
- //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Builder implementation for CGRecordLayout objects.
- //
- //===----------------------------------------------------------------------===//
- #include "CGRecordLayout.h"
- #include "CGCXXABI.h"
- #include "CodeGenTypes.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/Attr.h"
- #include "clang/AST/CXXInheritance.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/RecordLayout.h"
- #include "clang/Basic/CodeGenOptions.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace clang;
- using namespace CodeGen;
- namespace {
- /// The CGRecordLowering is responsible for lowering an ASTRecordLayout to an
- /// llvm::Type. Some of the lowering is straightforward, some is not. Here we
- /// detail some of the complexities and weirdnesses here.
- /// * LLVM does not have unions - Unions can, in theory be represented by any
- /// llvm::Type with correct size. We choose a field via a specific heuristic
- /// and add padding if necessary.
- /// * LLVM does not have bitfields - Bitfields are collected into contiguous
- /// runs and allocated as a single storage type for the run. ASTRecordLayout
- /// contains enough information to determine where the runs break. Microsoft
- /// and Itanium follow different rules and use different codepaths.
- /// * It is desired that, when possible, bitfields use the appropriate iN type
- /// when lowered to llvm types. For example unsigned x : 24 gets lowered to
- /// i24. This isn't always possible because i24 has storage size of 32 bit
- /// and if it is possible to use that extra byte of padding we must use
- /// [i8 x 3] instead of i24. The function clipTailPadding does this.
- /// C++ examples that require clipping:
- /// struct { int a : 24; char b; }; // a must be clipped, b goes at offset 3
- /// struct A { int a : 24; }; // a must be clipped because a struct like B
- // could exist: struct B : A { char b; }; // b goes at offset 3
- /// * Clang ignores 0 sized bitfields and 0 sized bases but *not* zero sized
- /// fields. The existing asserts suggest that LLVM assumes that *every* field
- /// has an underlying storage type. Therefore empty structures containing
- /// zero sized subobjects such as empty records or zero sized arrays still get
- /// a zero sized (empty struct) storage type.
- /// * Clang reads the complete type rather than the base type when generating
- /// code to access fields. Bitfields in tail position with tail padding may
- /// be clipped in the base class but not the complete class (we may discover
- /// that the tail padding is not used in the complete class.) However,
- /// because LLVM reads from the complete type it can generate incorrect code
- /// if we do not clip the tail padding off of the bitfield in the complete
- /// layout. This introduces a somewhat awkward extra unnecessary clip stage.
- /// The location of the clip is stored internally as a sentinel of type
- /// SCISSOR. If LLVM were updated to read base types (which it probably
- /// should because locations of things such as VBases are bogus in the llvm
- /// type anyway) then we could eliminate the SCISSOR.
- /// * Itanium allows nearly empty primary virtual bases. These bases don't get
- /// get their own storage because they're laid out as part of another base
- /// or at the beginning of the structure. Determining if a VBase actually
- /// gets storage awkwardly involves a walk of all bases.
- /// * VFPtrs and VBPtrs do *not* make a record NotZeroInitializable.
- struct CGRecordLowering {
- // MemberInfo is a helper structure that contains information about a record
- // member. In additional to the standard member types, there exists a
- // sentinel member type that ensures correct rounding.
- struct MemberInfo {
- CharUnits Offset;
- enum InfoKind { VFPtr, VBPtr, Field, Base, VBase, Scissor } Kind;
- llvm::Type *Data;
- union {
- const FieldDecl *FD;
- const CXXRecordDecl *RD;
- };
- MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
- const FieldDecl *FD = nullptr)
- : Offset(Offset), Kind(Kind), Data(Data), FD(FD) {}
- MemberInfo(CharUnits Offset, InfoKind Kind, llvm::Type *Data,
- const CXXRecordDecl *RD)
- : Offset(Offset), Kind(Kind), Data(Data), RD(RD) {}
- // MemberInfos are sorted so we define a < operator.
- bool operator <(const MemberInfo& a) const { return Offset < a.Offset; }
- };
- // The constructor.
- CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D, bool Packed);
- // Short helper routines.
- /// Constructs a MemberInfo instance from an offset and llvm::Type *.
- MemberInfo StorageInfo(CharUnits Offset, llvm::Type *Data) {
- return MemberInfo(Offset, MemberInfo::Field, Data);
- }
- /// The Microsoft bitfield layout rule allocates discrete storage
- /// units of the field's formal type and only combines adjacent
- /// fields of the same formal type. We want to emit a layout with
- /// these discrete storage units instead of combining them into a
- /// continuous run.
- bool isDiscreteBitFieldABI() {
- return Context.getTargetInfo().getCXXABI().isMicrosoft() ||
- D->isMsStruct(Context);
- }
- /// Helper function to check if we are targeting AAPCS.
- bool isAAPCS() const {
- return Context.getTargetInfo().getABI().startswith("aapcs");
- }
- /// Helper function to check if the target machine is BigEndian.
- bool isBE() const { return Context.getTargetInfo().isBigEndian(); }
- /// The Itanium base layout rule allows virtual bases to overlap
- /// other bases, which complicates layout in specific ways.
- ///
- /// Note specifically that the ms_struct attribute doesn't change this.
- bool isOverlappingVBaseABI() {
- return !Context.getTargetInfo().getCXXABI().isMicrosoft();
- }
- /// Wraps llvm::Type::getIntNTy with some implicit arguments.
- llvm::Type *getIntNType(uint64_t NumBits) {
- unsigned AlignedBits = llvm::alignTo(NumBits, Context.getCharWidth());
- return llvm::Type::getIntNTy(Types.getLLVMContext(), AlignedBits);
- }
- /// Get the LLVM type sized as one character unit.
- llvm::Type *getCharType() {
- return llvm::Type::getIntNTy(Types.getLLVMContext(),
- Context.getCharWidth());
- }
- /// Gets an llvm type of size NumChars and alignment 1.
- llvm::Type *getByteArrayType(CharUnits NumChars) {
- assert(!NumChars.isZero() && "Empty byte arrays aren't allowed.");
- llvm::Type *Type = getCharType();
- return NumChars == CharUnits::One() ? Type :
- (llvm::Type *)llvm::ArrayType::get(Type, NumChars.getQuantity());
- }
- /// Gets the storage type for a field decl and handles storage
- /// for itanium bitfields that are smaller than their declared type.
- llvm::Type *getStorageType(const FieldDecl *FD) {
- llvm::Type *Type = Types.ConvertTypeForMem(FD->getType());
- if (!FD->isBitField()) return Type;
- if (isDiscreteBitFieldABI()) return Type;
- return getIntNType(std::min(FD->getBitWidthValue(Context),
- (unsigned)Context.toBits(getSize(Type))));
- }
- /// Gets the llvm Basesubobject type from a CXXRecordDecl.
- llvm::Type *getStorageType(const CXXRecordDecl *RD) {
- return Types.getCGRecordLayout(RD).getBaseSubobjectLLVMType();
- }
- CharUnits bitsToCharUnits(uint64_t BitOffset) {
- return Context.toCharUnitsFromBits(BitOffset);
- }
- CharUnits getSize(llvm::Type *Type) {
- return CharUnits::fromQuantity(DataLayout.getTypeAllocSize(Type));
- }
- CharUnits getAlignment(llvm::Type *Type) {
- return CharUnits::fromQuantity(DataLayout.getABITypeAlign(Type));
- }
- bool isZeroInitializable(const FieldDecl *FD) {
- return Types.isZeroInitializable(FD->getType());
- }
- bool isZeroInitializable(const RecordDecl *RD) {
- return Types.isZeroInitializable(RD);
- }
- void appendPaddingBytes(CharUnits Size) {
- if (!Size.isZero())
- FieldTypes.push_back(getByteArrayType(Size));
- }
- uint64_t getFieldBitOffset(const FieldDecl *FD) {
- return Layout.getFieldOffset(FD->getFieldIndex());
- }
- // Layout routines.
- void setBitFieldInfo(const FieldDecl *FD, CharUnits StartOffset,
- llvm::Type *StorageType);
- /// Lowers an ASTRecordLayout to a llvm type.
- void lower(bool NonVirtualBaseType);
- void lowerUnion();
- void accumulateFields();
- void accumulateBitFields(RecordDecl::field_iterator Field,
- RecordDecl::field_iterator FieldEnd);
- void computeVolatileBitfields();
- void accumulateBases();
- void accumulateVPtrs();
- void accumulateVBases();
- /// Recursively searches all of the bases to find out if a vbase is
- /// not the primary vbase of some base class.
- bool hasOwnStorage(const CXXRecordDecl *Decl, const CXXRecordDecl *Query);
- void calculateZeroInit();
- /// Lowers bitfield storage types to I8 arrays for bitfields with tail
- /// padding that is or can potentially be used.
- void clipTailPadding();
- /// Determines if we need a packed llvm struct.
- void determinePacked(bool NVBaseType);
- /// Inserts padding everywhere it's needed.
- void insertPadding();
- /// Fills out the structures that are ultimately consumed.
- void fillOutputFields();
- // Input memoization fields.
- CodeGenTypes &Types;
- const ASTContext &Context;
- const RecordDecl *D;
- const CXXRecordDecl *RD;
- const ASTRecordLayout &Layout;
- const llvm::DataLayout &DataLayout;
- // Helpful intermediate data-structures.
- std::vector<MemberInfo> Members;
- // Output fields, consumed by CodeGenTypes::ComputeRecordLayout.
- SmallVector<llvm::Type *, 16> FieldTypes;
- llvm::DenseMap<const FieldDecl *, unsigned> Fields;
- llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
- llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
- llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
- bool IsZeroInitializable : 1;
- bool IsZeroInitializableAsBase : 1;
- bool Packed : 1;
- private:
- CGRecordLowering(const CGRecordLowering &) = delete;
- void operator =(const CGRecordLowering &) = delete;
- };
- } // namespace {
- CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
- bool Packed)
- : Types(Types), Context(Types.getContext()), D(D),
- RD(dyn_cast<CXXRecordDecl>(D)),
- Layout(Types.getContext().getASTRecordLayout(D)),
- DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
- IsZeroInitializableAsBase(true), Packed(Packed) {}
- void CGRecordLowering::setBitFieldInfo(
- const FieldDecl *FD, CharUnits StartOffset, llvm::Type *StorageType) {
- CGBitFieldInfo &Info = BitFields[FD->getCanonicalDecl()];
- Info.IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
- Info.Offset = (unsigned)(getFieldBitOffset(FD) - Context.toBits(StartOffset));
- Info.Size = FD->getBitWidthValue(Context);
- Info.StorageSize = (unsigned)DataLayout.getTypeAllocSizeInBits(StorageType);
- Info.StorageOffset = StartOffset;
- if (Info.Size > Info.StorageSize)
- Info.Size = Info.StorageSize;
- // Reverse the bit offsets for big endian machines. Because we represent
- // a bitfield as a single large integer load, we can imagine the bits
- // counting from the most-significant-bit instead of the
- // least-significant-bit.
- if (DataLayout.isBigEndian())
- Info.Offset = Info.StorageSize - (Info.Offset + Info.Size);
- Info.VolatileStorageSize = 0;
- Info.VolatileOffset = 0;
- Info.VolatileStorageOffset = CharUnits::Zero();
- }
- void CGRecordLowering::lower(bool NVBaseType) {
- // The lowering process implemented in this function takes a variety of
- // carefully ordered phases.
- // 1) Store all members (fields and bases) in a list and sort them by offset.
- // 2) Add a 1-byte capstone member at the Size of the structure.
- // 3) Clip bitfield storages members if their tail padding is or might be
- // used by another field or base. The clipping process uses the capstone
- // by treating it as another object that occurs after the record.
- // 4) Determine if the llvm-struct requires packing. It's important that this
- // phase occur after clipping, because clipping changes the llvm type.
- // This phase reads the offset of the capstone when determining packedness
- // and updates the alignment of the capstone to be equal of the alignment
- // of the record after doing so.
- // 5) Insert padding everywhere it is needed. This phase requires 'Packed' to
- // have been computed and needs to know the alignment of the record in
- // order to understand if explicit tail padding is needed.
- // 6) Remove the capstone, we don't need it anymore.
- // 7) Determine if this record can be zero-initialized. This phase could have
- // been placed anywhere after phase 1.
- // 8) Format the complete list of members in a way that can be consumed by
- // CodeGenTypes::ComputeRecordLayout.
- CharUnits Size = NVBaseType ? Layout.getNonVirtualSize() : Layout.getSize();
- if (D->isUnion()) {
- lowerUnion();
- computeVolatileBitfields();
- return;
- }
- accumulateFields();
- // RD implies C++.
- if (RD) {
- accumulateVPtrs();
- accumulateBases();
- if (Members.empty()) {
- appendPaddingBytes(Size);
- computeVolatileBitfields();
- return;
- }
- if (!NVBaseType)
- accumulateVBases();
- }
- llvm::stable_sort(Members);
- Members.push_back(StorageInfo(Size, getIntNType(8)));
- clipTailPadding();
- determinePacked(NVBaseType);
- insertPadding();
- Members.pop_back();
- calculateZeroInit();
- fillOutputFields();
- computeVolatileBitfields();
- }
- void CGRecordLowering::lowerUnion() {
- CharUnits LayoutSize = Layout.getSize();
- llvm::Type *StorageType = nullptr;
- bool SeenNamedMember = false;
- // Iterate through the fields setting bitFieldInfo and the Fields array. Also
- // locate the "most appropriate" storage type. The heuristic for finding the
- // storage type isn't necessary, the first (non-0-length-bitfield) field's
- // type would work fine and be simpler but would be different than what we've
- // been doing and cause lit tests to change.
- for (const auto *Field : D->fields()) {
- if (Field->isBitField()) {
- if (Field->isZeroLengthBitField(Context))
- continue;
- llvm::Type *FieldType = getStorageType(Field);
- if (LayoutSize < getSize(FieldType))
- FieldType = getByteArrayType(LayoutSize);
- setBitFieldInfo(Field, CharUnits::Zero(), FieldType);
- }
- Fields[Field->getCanonicalDecl()] = 0;
- llvm::Type *FieldType = getStorageType(Field);
- // Compute zero-initializable status.
- // This union might not be zero initialized: it may contain a pointer to
- // data member which might have some exotic initialization sequence.
- // If this is the case, then we aught not to try and come up with a "better"
- // type, it might not be very easy to come up with a Constant which
- // correctly initializes it.
- if (!SeenNamedMember) {
- SeenNamedMember = Field->getIdentifier();
- if (!SeenNamedMember)
- if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
- SeenNamedMember = FieldRD->findFirstNamedDataMember();
- if (SeenNamedMember && !isZeroInitializable(Field)) {
- IsZeroInitializable = IsZeroInitializableAsBase = false;
- StorageType = FieldType;
- }
- }
- // Because our union isn't zero initializable, we won't be getting a better
- // storage type.
- if (!IsZeroInitializable)
- continue;
- // Conditionally update our storage type if we've got a new "better" one.
- if (!StorageType ||
- getAlignment(FieldType) > getAlignment(StorageType) ||
- (getAlignment(FieldType) == getAlignment(StorageType) &&
- getSize(FieldType) > getSize(StorageType)))
- StorageType = FieldType;
- }
- // If we have no storage type just pad to the appropriate size and return.
- if (!StorageType)
- return appendPaddingBytes(LayoutSize);
- // If our storage size was bigger than our required size (can happen in the
- // case of packed bitfields on Itanium) then just use an I8 array.
- if (LayoutSize < getSize(StorageType))
- StorageType = getByteArrayType(LayoutSize);
- FieldTypes.push_back(StorageType);
- appendPaddingBytes(LayoutSize - getSize(StorageType));
- // Set packed if we need it.
- if (LayoutSize % getAlignment(StorageType))
- Packed = true;
- }
- void CGRecordLowering::accumulateFields() {
- for (RecordDecl::field_iterator Field = D->field_begin(),
- FieldEnd = D->field_end();
- Field != FieldEnd;) {
- if (Field->isBitField()) {
- RecordDecl::field_iterator Start = Field;
- // Iterate to gather the list of bitfields.
- for (++Field; Field != FieldEnd && Field->isBitField(); ++Field);
- accumulateBitFields(Start, Field);
- } else if (!Field->isZeroSize(Context)) {
- Members.push_back(MemberInfo(
- bitsToCharUnits(getFieldBitOffset(*Field)), MemberInfo::Field,
- getStorageType(*Field), *Field));
- ++Field;
- } else {
- ++Field;
- }
- }
- }
- void
- CGRecordLowering::accumulateBitFields(RecordDecl::field_iterator Field,
- RecordDecl::field_iterator FieldEnd) {
- // Run stores the first element of the current run of bitfields. FieldEnd is
- // used as a special value to note that we don't have a current run. A
- // bitfield run is a contiguous collection of bitfields that can be stored in
- // the same storage block. Zero-sized bitfields and bitfields that would
- // cross an alignment boundary break a run and start a new one.
- RecordDecl::field_iterator Run = FieldEnd;
- // Tail is the offset of the first bit off the end of the current run. It's
- // used to determine if the ASTRecordLayout is treating these two bitfields as
- // contiguous. StartBitOffset is offset of the beginning of the Run.
- uint64_t StartBitOffset, Tail = 0;
- if (isDiscreteBitFieldABI()) {
- for (; Field != FieldEnd; ++Field) {
- uint64_t BitOffset = getFieldBitOffset(*Field);
- // Zero-width bitfields end runs.
- if (Field->isZeroLengthBitField(Context)) {
- Run = FieldEnd;
- continue;
- }
- llvm::Type *Type =
- Types.ConvertTypeForMem(Field->getType(), /*ForBitField=*/true);
- // If we don't have a run yet, or don't live within the previous run's
- // allocated storage then we allocate some storage and start a new run.
- if (Run == FieldEnd || BitOffset >= Tail) {
- Run = Field;
- StartBitOffset = BitOffset;
- Tail = StartBitOffset + DataLayout.getTypeAllocSizeInBits(Type);
- // Add the storage member to the record. This must be added to the
- // record before the bitfield members so that it gets laid out before
- // the bitfields it contains get laid out.
- Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
- }
- // Bitfields get the offset of their storage but come afterward and remain
- // there after a stable sort.
- Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
- MemberInfo::Field, nullptr, *Field));
- }
- return;
- }
- // Check if OffsetInRecord (the size in bits of the current run) is better
- // as a single field run. When OffsetInRecord has legal integer width, and
- // its bitfield offset is naturally aligned, it is better to make the
- // bitfield a separate storage component so as it can be accessed directly
- // with lower cost.
- auto IsBetterAsSingleFieldRun = [&](uint64_t OffsetInRecord,
- uint64_t StartBitOffset) {
- if (!Types.getCodeGenOpts().FineGrainedBitfieldAccesses)
- return false;
- if (OffsetInRecord < 8 || !llvm::isPowerOf2_64(OffsetInRecord) ||
- !DataLayout.fitsInLegalInteger(OffsetInRecord))
- return false;
- // Make sure StartBitOffset is naturally aligned if it is treated as an
- // IType integer.
- if (StartBitOffset %
- Context.toBits(getAlignment(getIntNType(OffsetInRecord))) !=
- 0)
- return false;
- return true;
- };
- // The start field is better as a single field run.
- bool StartFieldAsSingleRun = false;
- for (;;) {
- // Check to see if we need to start a new run.
- if (Run == FieldEnd) {
- // If we're out of fields, return.
- if (Field == FieldEnd)
- break;
- // Any non-zero-length bitfield can start a new run.
- if (!Field->isZeroLengthBitField(Context)) {
- Run = Field;
- StartBitOffset = getFieldBitOffset(*Field);
- Tail = StartBitOffset + Field->getBitWidthValue(Context);
- StartFieldAsSingleRun = IsBetterAsSingleFieldRun(Tail - StartBitOffset,
- StartBitOffset);
- }
- ++Field;
- continue;
- }
- // If the start field of a new run is better as a single run, or
- // if current field (or consecutive fields) is better as a single run, or
- // if current field has zero width bitfield and either
- // UseZeroLengthBitfieldAlignment or UseBitFieldTypeAlignment is set to
- // true, or
- // if the offset of current field is inconsistent with the offset of
- // previous field plus its offset,
- // skip the block below and go ahead to emit the storage.
- // Otherwise, try to add bitfields to the run.
- if (!StartFieldAsSingleRun && Field != FieldEnd &&
- !IsBetterAsSingleFieldRun(Tail - StartBitOffset, StartBitOffset) &&
- (!Field->isZeroLengthBitField(Context) ||
- (!Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
- !Context.getTargetInfo().useBitFieldTypeAlignment())) &&
- Tail == getFieldBitOffset(*Field)) {
- Tail += Field->getBitWidthValue(Context);
- ++Field;
- continue;
- }
- // We've hit a break-point in the run and need to emit a storage field.
- llvm::Type *Type = getIntNType(Tail - StartBitOffset);
- // Add the storage member to the record and set the bitfield info for all of
- // the bitfields in the run. Bitfields get the offset of their storage but
- // come afterward and remain there after a stable sort.
- Members.push_back(StorageInfo(bitsToCharUnits(StartBitOffset), Type));
- for (; Run != Field; ++Run)
- Members.push_back(MemberInfo(bitsToCharUnits(StartBitOffset),
- MemberInfo::Field, nullptr, *Run));
- Run = FieldEnd;
- StartFieldAsSingleRun = false;
- }
- }
- void CGRecordLowering::accumulateBases() {
- // If we've got a primary virtual base, we need to add it with the bases.
- if (Layout.isPrimaryBaseVirtual()) {
- const CXXRecordDecl *BaseDecl = Layout.getPrimaryBase();
- Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::Base,
- getStorageType(BaseDecl), BaseDecl));
- }
- // Accumulate the non-virtual bases.
- for (const auto &Base : RD->bases()) {
- if (Base.isVirtual())
- continue;
- // Bases can be zero-sized even if not technically empty if they
- // contain only a trailing array member.
- const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
- if (!BaseDecl->isEmpty() &&
- !Context.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
- Members.push_back(MemberInfo(Layout.getBaseClassOffset(BaseDecl),
- MemberInfo::Base, getStorageType(BaseDecl), BaseDecl));
- }
- }
- /// The AAPCS that defines that, when possible, bit-fields should
- /// be accessed using containers of the declared type width:
- /// When a volatile bit-field is read, and its container does not overlap with
- /// any non-bit-field member or any zero length bit-field member, its container
- /// must be read exactly once using the access width appropriate to the type of
- /// the container. When a volatile bit-field is written, and its container does
- /// not overlap with any non-bit-field member or any zero-length bit-field
- /// member, its container must be read exactly once and written exactly once
- /// using the access width appropriate to the type of the container. The two
- /// accesses are not atomic.
- ///
- /// Enforcing the width restriction can be disabled using
- /// -fno-aapcs-bitfield-width.
- void CGRecordLowering::computeVolatileBitfields() {
- if (!isAAPCS() || !Types.getCodeGenOpts().AAPCSBitfieldWidth)
- return;
- for (auto &I : BitFields) {
- const FieldDecl *Field = I.first;
- CGBitFieldInfo &Info = I.second;
- llvm::Type *ResLTy = Types.ConvertTypeForMem(Field->getType());
- // If the record alignment is less than the type width, we can't enforce a
- // aligned load, bail out.
- if ((uint64_t)(Context.toBits(Layout.getAlignment())) <
- ResLTy->getPrimitiveSizeInBits())
- continue;
- // CGRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets
- // for big-endian targets, but it assumes a container of width
- // Info.StorageSize. Since AAPCS uses a different container size (width
- // of the type), we first undo that calculation here and redo it once
- // the bit-field offset within the new container is calculated.
- const unsigned OldOffset =
- isBE() ? Info.StorageSize - (Info.Offset + Info.Size) : Info.Offset;
- // Offset to the bit-field from the beginning of the struct.
- const unsigned AbsoluteOffset =
- Context.toBits(Info.StorageOffset) + OldOffset;
- // Container size is the width of the bit-field type.
- const unsigned StorageSize = ResLTy->getPrimitiveSizeInBits();
- // Nothing to do if the access uses the desired
- // container width and is naturally aligned.
- if (Info.StorageSize == StorageSize && (OldOffset % StorageSize == 0))
- continue;
- // Offset within the container.
- unsigned Offset = AbsoluteOffset & (StorageSize - 1);
- // Bail out if an aligned load of the container cannot cover the entire
- // bit-field. This can happen for example, if the bit-field is part of a
- // packed struct. AAPCS does not define access rules for such cases, we let
- // clang to follow its own rules.
- if (Offset + Info.Size > StorageSize)
- continue;
- // Re-adjust offsets for big-endian targets.
- if (isBE())
- Offset = StorageSize - (Offset + Info.Size);
- const CharUnits StorageOffset =
- Context.toCharUnitsFromBits(AbsoluteOffset & ~(StorageSize - 1));
- const CharUnits End = StorageOffset +
- Context.toCharUnitsFromBits(StorageSize) -
- CharUnits::One();
- const ASTRecordLayout &Layout =
- Context.getASTRecordLayout(Field->getParent());
- // If we access outside memory outside the record, than bail out.
- const CharUnits RecordSize = Layout.getSize();
- if (End >= RecordSize)
- continue;
- // Bail out if performing this load would access non-bit-fields members.
- bool Conflict = false;
- for (const auto *F : D->fields()) {
- // Allow sized bit-fields overlaps.
- if (F->isBitField() && !F->isZeroLengthBitField(Context))
- continue;
- const CharUnits FOffset = Context.toCharUnitsFromBits(
- Layout.getFieldOffset(F->getFieldIndex()));
- // As C11 defines, a zero sized bit-field defines a barrier, so
- // fields after and before it should be race condition free.
- // The AAPCS acknowledges it and imposes no restritions when the
- // natural container overlaps a zero-length bit-field.
- if (F->isZeroLengthBitField(Context)) {
- if (End > FOffset && StorageOffset < FOffset) {
- Conflict = true;
- break;
- }
- }
- const CharUnits FEnd =
- FOffset +
- Context.toCharUnitsFromBits(
- Types.ConvertTypeForMem(F->getType())->getPrimitiveSizeInBits()) -
- CharUnits::One();
- // If no overlap, continue.
- if (End < FOffset || FEnd < StorageOffset)
- continue;
- // The desired load overlaps a non-bit-field member, bail out.
- Conflict = true;
- break;
- }
- if (Conflict)
- continue;
- // Write the new bit-field access parameters.
- // As the storage offset now is defined as the number of elements from the
- // start of the structure, we should divide the Offset by the element size.
- Info.VolatileStorageOffset =
- StorageOffset / Context.toCharUnitsFromBits(StorageSize).getQuantity();
- Info.VolatileStorageSize = StorageSize;
- Info.VolatileOffset = Offset;
- }
- }
- void CGRecordLowering::accumulateVPtrs() {
- if (Layout.hasOwnVFPtr())
- Members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::VFPtr,
- llvm::FunctionType::get(getIntNType(32), /*isVarArg=*/true)->
- getPointerTo()->getPointerTo()));
- if (Layout.hasOwnVBPtr())
- Members.push_back(MemberInfo(Layout.getVBPtrOffset(), MemberInfo::VBPtr,
- llvm::Type::getInt32PtrTy(Types.getLLVMContext())));
- }
- void CGRecordLowering::accumulateVBases() {
- CharUnits ScissorOffset = Layout.getNonVirtualSize();
- // In the itanium ABI, it's possible to place a vbase at a dsize that is
- // smaller than the nvsize. Here we check to see if such a base is placed
- // before the nvsize and set the scissor offset to that, instead of the
- // nvsize.
- if (isOverlappingVBaseABI())
- for (const auto &Base : RD->vbases()) {
- const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
- if (BaseDecl->isEmpty())
- continue;
- // If the vbase is a primary virtual base of some base, then it doesn't
- // get its own storage location but instead lives inside of that base.
- if (Context.isNearlyEmpty(BaseDecl) && !hasOwnStorage(RD, BaseDecl))
- continue;
- ScissorOffset = std::min(ScissorOffset,
- Layout.getVBaseClassOffset(BaseDecl));
- }
- Members.push_back(MemberInfo(ScissorOffset, MemberInfo::Scissor, nullptr,
- RD));
- for (const auto &Base : RD->vbases()) {
- const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
- if (BaseDecl->isEmpty())
- continue;
- CharUnits Offset = Layout.getVBaseClassOffset(BaseDecl);
- // If the vbase is a primary virtual base of some base, then it doesn't
- // get its own storage location but instead lives inside of that base.
- if (isOverlappingVBaseABI() &&
- Context.isNearlyEmpty(BaseDecl) &&
- !hasOwnStorage(RD, BaseDecl)) {
- Members.push_back(MemberInfo(Offset, MemberInfo::VBase, nullptr,
- BaseDecl));
- continue;
- }
- // If we've got a vtordisp, add it as a storage type.
- if (Layout.getVBaseOffsetsMap().find(BaseDecl)->second.hasVtorDisp())
- Members.push_back(StorageInfo(Offset - CharUnits::fromQuantity(4),
- getIntNType(32)));
- Members.push_back(MemberInfo(Offset, MemberInfo::VBase,
- getStorageType(BaseDecl), BaseDecl));
- }
- }
- bool CGRecordLowering::hasOwnStorage(const CXXRecordDecl *Decl,
- const CXXRecordDecl *Query) {
- const ASTRecordLayout &DeclLayout = Context.getASTRecordLayout(Decl);
- if (DeclLayout.isPrimaryBaseVirtual() && DeclLayout.getPrimaryBase() == Query)
- return false;
- for (const auto &Base : Decl->bases())
- if (!hasOwnStorage(Base.getType()->getAsCXXRecordDecl(), Query))
- return false;
- return true;
- }
- void CGRecordLowering::calculateZeroInit() {
- for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
- MemberEnd = Members.end();
- IsZeroInitializableAsBase && Member != MemberEnd; ++Member) {
- if (Member->Kind == MemberInfo::Field) {
- if (!Member->FD || isZeroInitializable(Member->FD))
- continue;
- IsZeroInitializable = IsZeroInitializableAsBase = false;
- } else if (Member->Kind == MemberInfo::Base ||
- Member->Kind == MemberInfo::VBase) {
- if (isZeroInitializable(Member->RD))
- continue;
- IsZeroInitializable = false;
- if (Member->Kind == MemberInfo::Base)
- IsZeroInitializableAsBase = false;
- }
- }
- }
- void CGRecordLowering::clipTailPadding() {
- std::vector<MemberInfo>::iterator Prior = Members.begin();
- CharUnits Tail = getSize(Prior->Data);
- for (std::vector<MemberInfo>::iterator Member = Prior + 1,
- MemberEnd = Members.end();
- Member != MemberEnd; ++Member) {
- // Only members with data and the scissor can cut into tail padding.
- if (!Member->Data && Member->Kind != MemberInfo::Scissor)
- continue;
- if (Member->Offset < Tail) {
- assert(Prior->Kind == MemberInfo::Field &&
- "Only storage fields have tail padding!");
- if (!Prior->FD || Prior->FD->isBitField())
- Prior->Data = getByteArrayType(bitsToCharUnits(llvm::alignTo(
- cast<llvm::IntegerType>(Prior->Data)->getIntegerBitWidth(), 8)));
- else {
- assert(Prior->FD->hasAttr<NoUniqueAddressAttr>() &&
- "should not have reused this field's tail padding");
- Prior->Data = getByteArrayType(
- Context.getTypeInfoDataSizeInChars(Prior->FD->getType()).Width);
- }
- }
- if (Member->Data)
- Prior = Member;
- Tail = Prior->Offset + getSize(Prior->Data);
- }
- }
- void CGRecordLowering::determinePacked(bool NVBaseType) {
- if (Packed)
- return;
- CharUnits Alignment = CharUnits::One();
- CharUnits NVAlignment = CharUnits::One();
- CharUnits NVSize =
- !NVBaseType && RD ? Layout.getNonVirtualSize() : CharUnits::Zero();
- for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
- MemberEnd = Members.end();
- Member != MemberEnd; ++Member) {
- if (!Member->Data)
- continue;
- // If any member falls at an offset that it not a multiple of its alignment,
- // then the entire record must be packed.
- if (Member->Offset % getAlignment(Member->Data))
- Packed = true;
- if (Member->Offset < NVSize)
- NVAlignment = std::max(NVAlignment, getAlignment(Member->Data));
- Alignment = std::max(Alignment, getAlignment(Member->Data));
- }
- // If the size of the record (the capstone's offset) is not a multiple of the
- // record's alignment, it must be packed.
- if (Members.back().Offset % Alignment)
- Packed = true;
- // If the non-virtual sub-object is not a multiple of the non-virtual
- // sub-object's alignment, it must be packed. We cannot have a packed
- // non-virtual sub-object and an unpacked complete object or vise versa.
- if (NVSize % NVAlignment)
- Packed = true;
- // Update the alignment of the sentinel.
- if (!Packed)
- Members.back().Data = getIntNType(Context.toBits(Alignment));
- }
- void CGRecordLowering::insertPadding() {
- std::vector<std::pair<CharUnits, CharUnits> > Padding;
- CharUnits Size = CharUnits::Zero();
- for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
- MemberEnd = Members.end();
- Member != MemberEnd; ++Member) {
- if (!Member->Data)
- continue;
- CharUnits Offset = Member->Offset;
- assert(Offset >= Size);
- // Insert padding if we need to.
- if (Offset !=
- Size.alignTo(Packed ? CharUnits::One() : getAlignment(Member->Data)))
- Padding.push_back(std::make_pair(Size, Offset - Size));
- Size = Offset + getSize(Member->Data);
- }
- if (Padding.empty())
- return;
- // Add the padding to the Members list and sort it.
- for (std::vector<std::pair<CharUnits, CharUnits> >::const_iterator
- Pad = Padding.begin(), PadEnd = Padding.end();
- Pad != PadEnd; ++Pad)
- Members.push_back(StorageInfo(Pad->first, getByteArrayType(Pad->second)));
- llvm::stable_sort(Members);
- }
- void CGRecordLowering::fillOutputFields() {
- for (std::vector<MemberInfo>::const_iterator Member = Members.begin(),
- MemberEnd = Members.end();
- Member != MemberEnd; ++Member) {
- if (Member->Data)
- FieldTypes.push_back(Member->Data);
- if (Member->Kind == MemberInfo::Field) {
- if (Member->FD)
- Fields[Member->FD->getCanonicalDecl()] = FieldTypes.size() - 1;
- // A field without storage must be a bitfield.
- if (!Member->Data)
- setBitFieldInfo(Member->FD, Member->Offset, FieldTypes.back());
- } else if (Member->Kind == MemberInfo::Base)
- NonVirtualBases[Member->RD] = FieldTypes.size() - 1;
- else if (Member->Kind == MemberInfo::VBase)
- VirtualBases[Member->RD] = FieldTypes.size() - 1;
- }
- }
- CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
- const FieldDecl *FD,
- uint64_t Offset, uint64_t Size,
- uint64_t StorageSize,
- CharUnits StorageOffset) {
- // This function is vestigial from CGRecordLayoutBuilder days but is still
- // used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that
- // when addressed will allow for the removal of this function.
- llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
- CharUnits TypeSizeInBytes =
- CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
- uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
- bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
- if (Size > TypeSizeInBits) {
- // We have a wide bit-field. The extra bits are only used for padding, so
- // if we have a bitfield of type T, with size N:
- //
- // T t : N;
- //
- // We can just assume that it's:
- //
- // T t : sizeof(T);
- //
- Size = TypeSizeInBits;
- }
- // Reverse the bit offsets for big endian machines. Because we represent
- // a bitfield as a single large integer load, we can imagine the bits
- // counting from the most-significant-bit instead of the
- // least-significant-bit.
- if (Types.getDataLayout().isBigEndian()) {
- Offset = StorageSize - (Offset + Size);
- }
- return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
- }
- std::unique_ptr<CGRecordLayout>
- CodeGenTypes::ComputeRecordLayout(const RecordDecl *D, llvm::StructType *Ty) {
- CGRecordLowering Builder(*this, D, /*Packed=*/false);
- Builder.lower(/*NonVirtualBaseType=*/false);
- // If we're in C++, compute the base subobject type.
- llvm::StructType *BaseTy = nullptr;
- if (isa<CXXRecordDecl>(D) && !D->isUnion() && !D->hasAttr<FinalAttr>()) {
- BaseTy = Ty;
- if (Builder.Layout.getNonVirtualSize() != Builder.Layout.getSize()) {
- CGRecordLowering BaseBuilder(*this, D, /*Packed=*/Builder.Packed);
- BaseBuilder.lower(/*NonVirtualBaseType=*/true);
- BaseTy = llvm::StructType::create(
- getLLVMContext(), BaseBuilder.FieldTypes, "", BaseBuilder.Packed);
- addRecordTypeName(D, BaseTy, ".base");
- // BaseTy and Ty must agree on their packedness for getLLVMFieldNo to work
- // on both of them with the same index.
- assert(Builder.Packed == BaseBuilder.Packed &&
- "Non-virtual and complete types must agree on packedness");
- }
- }
- // Fill in the struct *after* computing the base type. Filling in the body
- // signifies that the type is no longer opaque and record layout is complete,
- // but we may need to recursively layout D while laying D out as a base type.
- Ty->setBody(Builder.FieldTypes, Builder.Packed);
- auto RL = std::make_unique<CGRecordLayout>(
- Ty, BaseTy, (bool)Builder.IsZeroInitializable,
- (bool)Builder.IsZeroInitializableAsBase);
- RL->NonVirtualBases.swap(Builder.NonVirtualBases);
- RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
- // Add all the field numbers.
- RL->FieldInfo.swap(Builder.Fields);
- // Add bitfield info.
- RL->BitFields.swap(Builder.BitFields);
- // Dump the layout, if requested.
- if (getContext().getLangOpts().DumpRecordLayouts) {
- llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
- llvm::outs() << "Record: ";
- D->dump(llvm::outs());
- llvm::outs() << "\nLayout: ";
- RL->print(llvm::outs());
- }
- #ifndef NDEBUG
- // Verify that the computed LLVM struct size matches the AST layout size.
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
- uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
- assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
- "Type size mismatch!");
- if (BaseTy) {
- CharUnits NonVirtualSize = Layout.getNonVirtualSize();
- uint64_t AlignedNonVirtualTypeSizeInBits =
- getContext().toBits(NonVirtualSize);
- assert(AlignedNonVirtualTypeSizeInBits ==
- getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
- "Type size mismatch!");
- }
- // Verify that the LLVM and AST field offsets agree.
- llvm::StructType *ST = RL->getLLVMType();
- const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
- const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
- RecordDecl::field_iterator it = D->field_begin();
- for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
- const FieldDecl *FD = *it;
- // Ignore zero-sized fields.
- if (FD->isZeroSize(getContext()))
- continue;
- // For non-bit-fields, just check that the LLVM struct offset matches the
- // AST offset.
- if (!FD->isBitField()) {
- unsigned FieldNo = RL->getLLVMFieldNo(FD);
- assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
- "Invalid field offset!");
- continue;
- }
- // Ignore unnamed bit-fields.
- if (!FD->getDeclName())
- continue;
- const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
- llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
- // Unions have overlapping elements dictating their layout, but for
- // non-unions we can verify that this section of the layout is the exact
- // expected size.
- if (D->isUnion()) {
- // For unions we verify that the start is zero and the size
- // is in-bounds. However, on BE systems, the offset may be non-zero, but
- // the size + offset should match the storage size in that case as it
- // "starts" at the back.
- if (getDataLayout().isBigEndian())
- assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
- Info.StorageSize &&
- "Big endian union bitfield does not end at the back");
- else
- assert(Info.Offset == 0 &&
- "Little endian union bitfield with a non-zero offset");
- assert(Info.StorageSize <= SL->getSizeInBits() &&
- "Union not large enough for bitfield storage");
- } else {
- assert((Info.StorageSize ==
- getDataLayout().getTypeAllocSizeInBits(ElementTy) ||
- Info.VolatileStorageSize ==
- getDataLayout().getTypeAllocSizeInBits(ElementTy)) &&
- "Storage size does not match the element type size");
- }
- assert(Info.Size > 0 && "Empty bitfield!");
- assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
- "Bitfield outside of its allocated storage");
- }
- #endif
- return RL;
- }
- void CGRecordLayout::print(raw_ostream &OS) const {
- OS << "<CGRecordLayout\n";
- OS << " LLVMType:" << *CompleteObjectType << "\n";
- if (BaseSubobjectType)
- OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
- OS << " IsZeroInitializable:" << IsZeroInitializable << "\n";
- OS << " BitFields:[\n";
- // Print bit-field infos in declaration order.
- std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
- for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
- it = BitFields.begin(), ie = BitFields.end();
- it != ie; ++it) {
- const RecordDecl *RD = it->first->getParent();
- unsigned Index = 0;
- for (RecordDecl::field_iterator
- it2 = RD->field_begin(); *it2 != it->first; ++it2)
- ++Index;
- BFIs.push_back(std::make_pair(Index, &it->second));
- }
- llvm::array_pod_sort(BFIs.begin(), BFIs.end());
- for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
- OS.indent(4);
- BFIs[i].second->print(OS);
- OS << "\n";
- }
- OS << "]>\n";
- }
- LLVM_DUMP_METHOD void CGRecordLayout::dump() const {
- print(llvm::errs());
- }
- void CGBitFieldInfo::print(raw_ostream &OS) const {
- OS << "<CGBitFieldInfo"
- << " Offset:" << Offset << " Size:" << Size << " IsSigned:" << IsSigned
- << " StorageSize:" << StorageSize
- << " StorageOffset:" << StorageOffset.getQuantity()
- << " VolatileOffset:" << VolatileOffset
- << " VolatileStorageSize:" << VolatileStorageSize
- << " VolatileStorageOffset:" << VolatileStorageOffset.getQuantity() << ">";
- }
- LLVM_DUMP_METHOD void CGBitFieldInfo::dump() const {
- print(llvm::errs());
- }
|