123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694 |
- //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // These classes wrap the information about a call or function
- // definition used to handle ABI compliancy.
- //
- //===----------------------------------------------------------------------===//
- #include "CGCall.h"
- #include "ABIInfo.h"
- #include "CGBlocks.h"
- #include "CGCXXABI.h"
- #include "CGCleanup.h"
- #include "CGRecordLayout.h"
- #include "CodeGenFunction.h"
- #include "CodeGenModule.h"
- #include "TargetInfo.h"
- #include "clang/AST/Attr.h"
- #include "clang/AST/Decl.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/Basic/CodeGenOptions.h"
- #include "clang/Basic/TargetBuiltins.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/CodeGen/CGFunctionInfo.h"
- #include "clang/CodeGen/SwiftCallingConv.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/Assumptions.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/CallingConv.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/Type.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <optional>
- using namespace clang;
- using namespace CodeGen;
- /***/
- unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
- switch (CC) {
- default: return llvm::CallingConv::C;
- case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
- case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
- case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
- case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
- case CC_Win64: return llvm::CallingConv::Win64;
- case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
- case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
- case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
- case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
- // TODO: Add support for __pascal to LLVM.
- case CC_X86Pascal: return llvm::CallingConv::C;
- // TODO: Add support for __vectorcall to LLVM.
- case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
- case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
- case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall;
- case CC_AMDGPUKernelCall: return llvm::CallingConv::AMDGPU_KERNEL;
- case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
- case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
- case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
- case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
- case CC_Swift: return llvm::CallingConv::Swift;
- case CC_SwiftAsync: return llvm::CallingConv::SwiftTail;
- }
- }
- /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
- /// qualification. Either or both of RD and MD may be null. A null RD indicates
- /// that there is no meaningful 'this' type, and a null MD can occur when
- /// calling a method pointer.
- CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
- const CXXMethodDecl *MD) {
- QualType RecTy;
- if (RD)
- RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
- else
- RecTy = Context.VoidTy;
- if (MD)
- RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
- return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
- }
- /// Returns the canonical formal type of the given C++ method.
- static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
- return MD->getType()->getCanonicalTypeUnqualified()
- .getAs<FunctionProtoType>();
- }
- /// Returns the "extra-canonicalized" return type, which discards
- /// qualifiers on the return type. Codegen doesn't care about them,
- /// and it makes ABI code a little easier to be able to assume that
- /// all parameter and return types are top-level unqualified.
- static CanQualType GetReturnType(QualType RetTy) {
- return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
- }
- /// Arrange the argument and result information for a value of the given
- /// unprototyped freestanding function type.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
- // When translating an unprototyped function type, always use a
- // variadic type.
- return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
- /*instanceMethod=*/false,
- /*chainCall=*/false, std::nullopt,
- FTNP->getExtInfo(), {}, RequiredArgs(0));
- }
- static void addExtParameterInfosForCall(
- llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
- const FunctionProtoType *proto,
- unsigned prefixArgs,
- unsigned totalArgs) {
- assert(proto->hasExtParameterInfos());
- assert(paramInfos.size() <= prefixArgs);
- assert(proto->getNumParams() + prefixArgs <= totalArgs);
- paramInfos.reserve(totalArgs);
- // Add default infos for any prefix args that don't already have infos.
- paramInfos.resize(prefixArgs);
- // Add infos for the prototype.
- for (const auto &ParamInfo : proto->getExtParameterInfos()) {
- paramInfos.push_back(ParamInfo);
- // pass_object_size params have no parameter info.
- if (ParamInfo.hasPassObjectSize())
- paramInfos.emplace_back();
- }
- assert(paramInfos.size() <= totalArgs &&
- "Did we forget to insert pass_object_size args?");
- // Add default infos for the variadic and/or suffix arguments.
- paramInfos.resize(totalArgs);
- }
- /// Adds the formal parameters in FPT to the given prefix. If any parameter in
- /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
- static void appendParameterTypes(const CodeGenTypes &CGT,
- SmallVectorImpl<CanQualType> &prefix,
- SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos,
- CanQual<FunctionProtoType> FPT) {
- // Fast path: don't touch param info if we don't need to.
- if (!FPT->hasExtParameterInfos()) {
- assert(paramInfos.empty() &&
- "We have paramInfos, but the prototype doesn't?");
- prefix.append(FPT->param_type_begin(), FPT->param_type_end());
- return;
- }
- unsigned PrefixSize = prefix.size();
- // In the vast majority of cases, we'll have precisely FPT->getNumParams()
- // parameters; the only thing that can change this is the presence of
- // pass_object_size. So, we preallocate for the common case.
- prefix.reserve(prefix.size() + FPT->getNumParams());
- auto ExtInfos = FPT->getExtParameterInfos();
- assert(ExtInfos.size() == FPT->getNumParams());
- for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
- prefix.push_back(FPT->getParamType(I));
- if (ExtInfos[I].hasPassObjectSize())
- prefix.push_back(CGT.getContext().getSizeType());
- }
- addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
- prefix.size());
- }
- /// Arrange the LLVM function layout for a value of the given function
- /// type, on top of any implicit parameters already stored.
- static const CGFunctionInfo &
- arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
- SmallVectorImpl<CanQualType> &prefix,
- CanQual<FunctionProtoType> FTP) {
- SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
- RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
- // FIXME: Kill copy.
- appendParameterTypes(CGT, prefix, paramInfos, FTP);
- CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
- return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
- /*chainCall=*/false, prefix,
- FTP->getExtInfo(), paramInfos,
- Required);
- }
- /// Arrange the argument and result information for a value of the
- /// given freestanding function type.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
- SmallVector<CanQualType, 16> argTypes;
- return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
- FTP);
- }
- static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
- bool IsWindows) {
- // Set the appropriate calling convention for the Function.
- if (D->hasAttr<StdCallAttr>())
- return CC_X86StdCall;
- if (D->hasAttr<FastCallAttr>())
- return CC_X86FastCall;
- if (D->hasAttr<RegCallAttr>())
- return CC_X86RegCall;
- if (D->hasAttr<ThisCallAttr>())
- return CC_X86ThisCall;
- if (D->hasAttr<VectorCallAttr>())
- return CC_X86VectorCall;
- if (D->hasAttr<PascalAttr>())
- return CC_X86Pascal;
- if (PcsAttr *PCS = D->getAttr<PcsAttr>())
- return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
- if (D->hasAttr<AArch64VectorPcsAttr>())
- return CC_AArch64VectorCall;
- if (D->hasAttr<AArch64SVEPcsAttr>())
- return CC_AArch64SVEPCS;
- if (D->hasAttr<AMDGPUKernelCallAttr>())
- return CC_AMDGPUKernelCall;
- if (D->hasAttr<IntelOclBiccAttr>())
- return CC_IntelOclBicc;
- if (D->hasAttr<MSABIAttr>())
- return IsWindows ? CC_C : CC_Win64;
- if (D->hasAttr<SysVABIAttr>())
- return IsWindows ? CC_X86_64SysV : CC_C;
- if (D->hasAttr<PreserveMostAttr>())
- return CC_PreserveMost;
- if (D->hasAttr<PreserveAllAttr>())
- return CC_PreserveAll;
- return CC_C;
- }
- /// Arrange the argument and result information for a call to an
- /// unknown C++ non-static member function of the given abstract type.
- /// (A null RD means we don't have any meaningful "this" argument type,
- /// so fall back to a generic pointer type).
- /// The member function must be an ordinary function, i.e. not a
- /// constructor or destructor.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
- const FunctionProtoType *FTP,
- const CXXMethodDecl *MD) {
- SmallVector<CanQualType, 16> argTypes;
- // Add the 'this' pointer.
- argTypes.push_back(DeriveThisType(RD, MD));
- return ::arrangeLLVMFunctionInfo(
- *this, true, argTypes,
- FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
- }
- /// Set calling convention for CUDA/HIP kernel.
- static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
- const FunctionDecl *FD) {
- if (FD->hasAttr<CUDAGlobalAttr>()) {
- const FunctionType *FT = FTy->getAs<FunctionType>();
- CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
- FTy = FT->getCanonicalTypeUnqualified();
- }
- }
- /// Arrange the argument and result information for a declaration or
- /// definition of the given C++ non-static member function. The
- /// member function must be an ordinary function, i.e. not a
- /// constructor or destructor.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
- assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
- assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
- CanQualType FT = GetFormalType(MD).getAs<Type>();
- setCUDAKernelCallingConvention(FT, CGM, MD);
- auto prototype = FT.getAs<FunctionProtoType>();
- if (MD->isInstance()) {
- // The abstract case is perfectly fine.
- const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
- return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
- }
- return arrangeFreeFunctionType(prototype);
- }
- bool CodeGenTypes::inheritingCtorHasParams(
- const InheritedConstructor &Inherited, CXXCtorType Type) {
- // Parameters are unnecessary if we're constructing a base class subobject
- // and the inherited constructor lives in a virtual base.
- return Type == Ctor_Complete ||
- !Inherited.getShadowDecl()->constructsVirtualBase() ||
- !Target.getCXXABI().hasConstructorVariants();
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
- auto *MD = cast<CXXMethodDecl>(GD.getDecl());
- SmallVector<CanQualType, 16> argTypes;
- SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
- const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(GD);
- argTypes.push_back(DeriveThisType(ThisType, MD));
- bool PassParams = true;
- if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
- // A base class inheriting constructor doesn't get forwarded arguments
- // needed to construct a virtual base (or base class thereof).
- if (auto Inherited = CD->getInheritedConstructor())
- PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
- }
- CanQual<FunctionProtoType> FTP = GetFormalType(MD);
- // Add the formal parameters.
- if (PassParams)
- appendParameterTypes(*this, argTypes, paramInfos, FTP);
- CGCXXABI::AddedStructorArgCounts AddedArgs =
- TheCXXABI.buildStructorSignature(GD, argTypes);
- if (!paramInfos.empty()) {
- // Note: prefix implies after the first param.
- if (AddedArgs.Prefix)
- paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
- FunctionProtoType::ExtParameterInfo{});
- if (AddedArgs.Suffix)
- paramInfos.append(AddedArgs.Suffix,
- FunctionProtoType::ExtParameterInfo{});
- }
- RequiredArgs required =
- (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
- : RequiredArgs::All);
- FunctionType::ExtInfo extInfo = FTP->getExtInfo();
- CanQualType resultType = TheCXXABI.HasThisReturn(GD)
- ? argTypes.front()
- : TheCXXABI.hasMostDerivedReturn(GD)
- ? CGM.getContext().VoidPtrTy
- : Context.VoidTy;
- return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
- /*chainCall=*/false, argTypes, extInfo,
- paramInfos, required);
- }
- static SmallVector<CanQualType, 16>
- getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
- SmallVector<CanQualType, 16> argTypes;
- for (auto &arg : args)
- argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
- return argTypes;
- }
- static SmallVector<CanQualType, 16>
- getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
- SmallVector<CanQualType, 16> argTypes;
- for (auto &arg : args)
- argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
- return argTypes;
- }
- static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
- getExtParameterInfosForCall(const FunctionProtoType *proto,
- unsigned prefixArgs, unsigned totalArgs) {
- llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
- if (proto->hasExtParameterInfos()) {
- addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
- }
- return result;
- }
- /// Arrange a call to a C++ method, passing the given arguments.
- ///
- /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
- /// parameter.
- /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
- /// args.
- /// PassProtoArgs indicates whether `args` has args for the parameters in the
- /// given CXXConstructorDecl.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
- const CXXConstructorDecl *D,
- CXXCtorType CtorKind,
- unsigned ExtraPrefixArgs,
- unsigned ExtraSuffixArgs,
- bool PassProtoArgs) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> ArgTypes;
- for (const auto &Arg : args)
- ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
- // +1 for implicit this, which should always be args[0].
- unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
- CanQual<FunctionProtoType> FPT = GetFormalType(D);
- RequiredArgs Required = PassProtoArgs
- ? RequiredArgs::forPrototypePlus(
- FPT, TotalPrefixArgs + ExtraSuffixArgs)
- : RequiredArgs::All;
- GlobalDecl GD(D, CtorKind);
- CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
- ? ArgTypes.front()
- : TheCXXABI.hasMostDerivedReturn(GD)
- ? CGM.getContext().VoidPtrTy
- : Context.VoidTy;
- FunctionType::ExtInfo Info = FPT->getExtInfo();
- llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
- // If the prototype args are elided, we should only have ABI-specific args,
- // which never have param info.
- if (PassProtoArgs && FPT->hasExtParameterInfos()) {
- // ABI-specific suffix arguments are treated the same as variadic arguments.
- addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
- ArgTypes.size());
- }
- return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
- /*chainCall=*/false, ArgTypes, Info,
- ParamInfos, Required);
- }
- /// Arrange the argument and result information for the declaration or
- /// definition of the given function.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
- if (MD->isInstance())
- return arrangeCXXMethodDeclaration(MD);
- CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
- assert(isa<FunctionType>(FTy));
- setCUDAKernelCallingConvention(FTy, CGM, FD);
- // When declaring a function without a prototype, always use a
- // non-variadic type.
- if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
- return arrangeLLVMFunctionInfo(
- noProto->getReturnType(), /*instanceMethod=*/false,
- /*chainCall=*/false, std::nullopt, noProto->getExtInfo(), {},
- RequiredArgs::All);
- }
- return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
- }
- /// Arrange the argument and result information for the declaration or
- /// definition of an Objective-C method.
- const CGFunctionInfo &
- CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
- // It happens that this is the same as a call with no optional
- // arguments, except also using the formal 'self' type.
- return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
- }
- /// Arrange the argument and result information for the function type
- /// through which to perform a send to the given Objective-C method,
- /// using the given receiver type. The receiver type is not always
- /// the 'self' type of the method or even an Objective-C pointer type.
- /// This is *not* the right method for actually performing such a
- /// message send, due to the possibility of optional arguments.
- const CGFunctionInfo &
- CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
- QualType receiverType) {
- SmallVector<CanQualType, 16> argTys;
- SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(
- MD->isDirectMethod() ? 1 : 2);
- argTys.push_back(Context.getCanonicalParamType(receiverType));
- if (!MD->isDirectMethod())
- argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
- // FIXME: Kill copy?
- for (const auto *I : MD->parameters()) {
- argTys.push_back(Context.getCanonicalParamType(I->getType()));
- auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
- I->hasAttr<NoEscapeAttr>());
- extParamInfos.push_back(extParamInfo);
- }
- FunctionType::ExtInfo einfo;
- bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
- einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
- if (getContext().getLangOpts().ObjCAutoRefCount &&
- MD->hasAttr<NSReturnsRetainedAttr>())
- einfo = einfo.withProducesResult(true);
- RequiredArgs required =
- (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
- return arrangeLLVMFunctionInfo(
- GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
- /*chainCall=*/false, argTys, einfo, extParamInfos, required);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
- const CallArgList &args) {
- auto argTypes = getArgTypesForCall(Context, args);
- FunctionType::ExtInfo einfo;
- return arrangeLLVMFunctionInfo(
- GetReturnType(returnType), /*instanceMethod=*/false,
- /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
- // FIXME: Do we need to handle ObjCMethodDecl?
- const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
- if (isa<CXXConstructorDecl>(GD.getDecl()) ||
- isa<CXXDestructorDecl>(GD.getDecl()))
- return arrangeCXXStructorDeclaration(GD);
- return arrangeFunctionDeclaration(FD);
- }
- /// Arrange a thunk that takes 'this' as the first parameter followed by
- /// varargs. Return a void pointer, regardless of the actual return type.
- /// The body of the thunk will end in a musttail call to a function of the
- /// correct type, and the caller will bitcast the function to the correct
- /// prototype.
- const CGFunctionInfo &
- CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
- assert(MD->isVirtual() && "only methods have thunks");
- CanQual<FunctionProtoType> FTP = GetFormalType(MD);
- CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
- return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
- /*chainCall=*/false, ArgTys,
- FTP->getExtInfo(), {}, RequiredArgs(1));
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
- CXXCtorType CT) {
- assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
- CanQual<FunctionProtoType> FTP = GetFormalType(CD);
- SmallVector<CanQualType, 2> ArgTys;
- const CXXRecordDecl *RD = CD->getParent();
- ArgTys.push_back(DeriveThisType(RD, CD));
- if (CT == Ctor_CopyingClosure)
- ArgTys.push_back(*FTP->param_type_begin());
- if (RD->getNumVBases() > 0)
- ArgTys.push_back(Context.IntTy);
- CallingConv CC = Context.getDefaultCallingConvention(
- /*IsVariadic=*/false, /*IsCXXMethod=*/true);
- return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
- /*chainCall=*/false, ArgTys,
- FunctionType::ExtInfo(CC), {},
- RequiredArgs::All);
- }
- /// Arrange a call as unto a free function, except possibly with an
- /// additional number of formal parameters considered required.
- static const CGFunctionInfo &
- arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
- CodeGenModule &CGM,
- const CallArgList &args,
- const FunctionType *fnType,
- unsigned numExtraRequiredArgs,
- bool chainCall) {
- assert(args.size() >= numExtraRequiredArgs);
- llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
- // In most cases, there are no optional arguments.
- RequiredArgs required = RequiredArgs::All;
- // If we have a variadic prototype, the required arguments are the
- // extra prefix plus the arguments in the prototype.
- if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
- if (proto->isVariadic())
- required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
- if (proto->hasExtParameterInfos())
- addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
- args.size());
- // If we don't have a prototype at all, but we're supposed to
- // explicitly use the variadic convention for unprototyped calls,
- // treat all of the arguments as required but preserve the nominal
- // possibility of variadics.
- } else if (CGM.getTargetCodeGenInfo()
- .isNoProtoCallVariadic(args,
- cast<FunctionNoProtoType>(fnType))) {
- required = RequiredArgs(args.size());
- }
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (const auto &arg : args)
- argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
- return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
- /*instanceMethod=*/false, chainCall,
- argTypes, fnType->getExtInfo(), paramInfos,
- required);
- }
- /// Figure out the rules for calling a function with the given formal
- /// type using the given arguments. The arguments are necessary
- /// because the function might be unprototyped, in which case it's
- /// target-dependent in crazy ways.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
- const FunctionType *fnType,
- bool chainCall) {
- return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
- chainCall ? 1 : 0, chainCall);
- }
- /// A block function is essentially a free function with an
- /// extra implicit argument.
- const CGFunctionInfo &
- CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
- const FunctionType *fnType) {
- return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
- /*chainCall=*/false);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
- const FunctionArgList ¶ms) {
- auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
- auto argTypes = getArgTypesForDeclaration(Context, params);
- return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
- /*instanceMethod*/ false, /*chainCall*/ false,
- argTypes, proto->getExtInfo(), paramInfos,
- RequiredArgs::forPrototypePlus(proto, 1));
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
- const CallArgList &args) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (const auto &Arg : args)
- argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
- return arrangeLLVMFunctionInfo(
- GetReturnType(resultType), /*instanceMethod=*/false,
- /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
- /*paramInfos=*/ {}, RequiredArgs::All);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
- const FunctionArgList &args) {
- auto argTypes = getArgTypesForDeclaration(Context, args);
- return arrangeLLVMFunctionInfo(
- GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
- argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
- ArrayRef<CanQualType> argTypes) {
- return arrangeLLVMFunctionInfo(
- resultType, /*instanceMethod=*/false, /*chainCall=*/false,
- argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
- }
- /// Arrange a call to a C++ method, passing the given arguments.
- ///
- /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
- /// does not count `this`.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
- const FunctionProtoType *proto,
- RequiredArgs required,
- unsigned numPrefixArgs) {
- assert(numPrefixArgs + 1 <= args.size() &&
- "Emitting a call with less args than the required prefix?");
- // Add one to account for `this`. It's a bit awkward here, but we don't count
- // `this` in similar places elsewhere.
- auto paramInfos =
- getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
- // FIXME: Kill copy.
- auto argTypes = getArgTypesForCall(Context, args);
- FunctionType::ExtInfo info = proto->getExtInfo();
- return arrangeLLVMFunctionInfo(
- GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
- /*chainCall=*/false, argTypes, info, paramInfos, required);
- }
- const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
- return arrangeLLVMFunctionInfo(
- getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
- std::nullopt, FunctionType::ExtInfo(), {}, RequiredArgs::All);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
- const CallArgList &args) {
- assert(signature.arg_size() <= args.size());
- if (signature.arg_size() == args.size())
- return signature;
- SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
- auto sigParamInfos = signature.getExtParameterInfos();
- if (!sigParamInfos.empty()) {
- paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
- paramInfos.resize(args.size());
- }
- auto argTypes = getArgTypesForCall(Context, args);
- assert(signature.getRequiredArgs().allowsOptionalArgs());
- return arrangeLLVMFunctionInfo(signature.getReturnType(),
- signature.isInstanceMethod(),
- signature.isChainCall(),
- argTypes,
- signature.getExtInfo(),
- paramInfos,
- signature.getRequiredArgs());
- }
- namespace clang {
- namespace CodeGen {
- void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
- }
- }
- /// Arrange the argument and result information for an abstract value
- /// of a given function type. This is the method which all of the
- /// above functions ultimately defer to.
- const CGFunctionInfo &
- CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
- bool instanceMethod,
- bool chainCall,
- ArrayRef<CanQualType> argTypes,
- FunctionType::ExtInfo info,
- ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
- RequiredArgs required) {
- assert(llvm::all_of(argTypes,
- [](CanQualType T) { return T.isCanonicalAsParam(); }));
- // Lookup or create unique function info.
- llvm::FoldingSetNodeID ID;
- CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
- required, resultType, argTypes);
- void *insertPos = nullptr;
- CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
- if (FI)
- return *FI;
- unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
- // Construct the function info. We co-allocate the ArgInfos.
- FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
- paramInfos, resultType, argTypes, required);
- FunctionInfos.InsertNode(FI, insertPos);
- bool inserted = FunctionsBeingProcessed.insert(FI).second;
- (void)inserted;
- assert(inserted && "Recursively being processed?");
- // Compute ABI information.
- if (CC == llvm::CallingConv::SPIR_KERNEL) {
- // Force target independent argument handling for the host visible
- // kernel functions.
- computeSPIRKernelABIInfo(CGM, *FI);
- } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) {
- swiftcall::computeABIInfo(CGM, *FI);
- } else {
- getABIInfo().computeInfo(*FI);
- }
- // Loop over all of the computed argument and return value info. If any of
- // them are direct or extend without a specified coerce type, specify the
- // default now.
- ABIArgInfo &retInfo = FI->getReturnInfo();
- if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
- retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
- for (auto &I : FI->arguments())
- if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
- I.info.setCoerceToType(ConvertType(I.type));
- bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
- assert(erased && "Not in set?");
- return *FI;
- }
- CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
- bool instanceMethod,
- bool chainCall,
- const FunctionType::ExtInfo &info,
- ArrayRef<ExtParameterInfo> paramInfos,
- CanQualType resultType,
- ArrayRef<CanQualType> argTypes,
- RequiredArgs required) {
- assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
- assert(!required.allowsOptionalArgs() ||
- required.getNumRequiredArgs() <= argTypes.size());
- void *buffer =
- operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>(
- argTypes.size() + 1, paramInfos.size()));
- CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
- FI->CallingConvention = llvmCC;
- FI->EffectiveCallingConvention = llvmCC;
- FI->ASTCallingConvention = info.getCC();
- FI->InstanceMethod = instanceMethod;
- FI->ChainCall = chainCall;
- FI->CmseNSCall = info.getCmseNSCall();
- FI->NoReturn = info.getNoReturn();
- FI->ReturnsRetained = info.getProducesResult();
- FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
- FI->NoCfCheck = info.getNoCfCheck();
- FI->Required = required;
- FI->HasRegParm = info.getHasRegParm();
- FI->RegParm = info.getRegParm();
- FI->ArgStruct = nullptr;
- FI->ArgStructAlign = 0;
- FI->NumArgs = argTypes.size();
- FI->HasExtParameterInfos = !paramInfos.empty();
- FI->getArgsBuffer()[0].type = resultType;
- FI->MaxVectorWidth = 0;
- for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
- FI->getArgsBuffer()[i + 1].type = argTypes[i];
- for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
- FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
- return FI;
- }
- /***/
- namespace {
- // ABIArgInfo::Expand implementation.
- // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
- struct TypeExpansion {
- enum TypeExpansionKind {
- // Elements of constant arrays are expanded recursively.
- TEK_ConstantArray,
- // Record fields are expanded recursively (but if record is a union, only
- // the field with the largest size is expanded).
- TEK_Record,
- // For complex types, real and imaginary parts are expanded recursively.
- TEK_Complex,
- // All other types are not expandable.
- TEK_None
- };
- const TypeExpansionKind Kind;
- TypeExpansion(TypeExpansionKind K) : Kind(K) {}
- virtual ~TypeExpansion() {}
- };
- struct ConstantArrayExpansion : TypeExpansion {
- QualType EltTy;
- uint64_t NumElts;
- ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
- : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
- static bool classof(const TypeExpansion *TE) {
- return TE->Kind == TEK_ConstantArray;
- }
- };
- struct RecordExpansion : TypeExpansion {
- SmallVector<const CXXBaseSpecifier *, 1> Bases;
- SmallVector<const FieldDecl *, 1> Fields;
- RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
- SmallVector<const FieldDecl *, 1> &&Fields)
- : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
- Fields(std::move(Fields)) {}
- static bool classof(const TypeExpansion *TE) {
- return TE->Kind == TEK_Record;
- }
- };
- struct ComplexExpansion : TypeExpansion {
- QualType EltTy;
- ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
- static bool classof(const TypeExpansion *TE) {
- return TE->Kind == TEK_Complex;
- }
- };
- struct NoExpansion : TypeExpansion {
- NoExpansion() : TypeExpansion(TEK_None) {}
- static bool classof(const TypeExpansion *TE) {
- return TE->Kind == TEK_None;
- }
- };
- } // namespace
- static std::unique_ptr<TypeExpansion>
- getTypeExpansion(QualType Ty, const ASTContext &Context) {
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
- return std::make_unique<ConstantArrayExpansion>(
- AT->getElementType(), AT->getSize().getZExtValue());
- }
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- SmallVector<const CXXBaseSpecifier *, 1> Bases;
- SmallVector<const FieldDecl *, 1> Fields;
- const RecordDecl *RD = RT->getDecl();
- assert(!RD->hasFlexibleArrayMember() &&
- "Cannot expand structure with flexible array.");
- if (RD->isUnion()) {
- // Unions can be here only in degenerative cases - all the fields are same
- // after flattening. Thus we have to use the "largest" field.
- const FieldDecl *LargestFD = nullptr;
- CharUnits UnionSize = CharUnits::Zero();
- for (const auto *FD : RD->fields()) {
- if (FD->isZeroLengthBitField(Context))
- continue;
- assert(!FD->isBitField() &&
- "Cannot expand structure with bit-field members.");
- CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
- if (UnionSize < FieldSize) {
- UnionSize = FieldSize;
- LargestFD = FD;
- }
- }
- if (LargestFD)
- Fields.push_back(LargestFD);
- } else {
- if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- assert(!CXXRD->isDynamicClass() &&
- "cannot expand vtable pointers in dynamic classes");
- llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases()));
- }
- for (const auto *FD : RD->fields()) {
- if (FD->isZeroLengthBitField(Context))
- continue;
- assert(!FD->isBitField() &&
- "Cannot expand structure with bit-field members.");
- Fields.push_back(FD);
- }
- }
- return std::make_unique<RecordExpansion>(std::move(Bases),
- std::move(Fields));
- }
- if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- return std::make_unique<ComplexExpansion>(CT->getElementType());
- }
- return std::make_unique<NoExpansion>();
- }
- static int getExpansionSize(QualType Ty, const ASTContext &Context) {
- auto Exp = getTypeExpansion(Ty, Context);
- if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
- return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
- }
- if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
- int Res = 0;
- for (auto BS : RExp->Bases)
- Res += getExpansionSize(BS->getType(), Context);
- for (auto FD : RExp->Fields)
- Res += getExpansionSize(FD->getType(), Context);
- return Res;
- }
- if (isa<ComplexExpansion>(Exp.get()))
- return 2;
- assert(isa<NoExpansion>(Exp.get()));
- return 1;
- }
- void
- CodeGenTypes::getExpandedTypes(QualType Ty,
- SmallVectorImpl<llvm::Type *>::iterator &TI) {
- auto Exp = getTypeExpansion(Ty, Context);
- if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
- for (int i = 0, n = CAExp->NumElts; i < n; i++) {
- getExpandedTypes(CAExp->EltTy, TI);
- }
- } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
- for (auto BS : RExp->Bases)
- getExpandedTypes(BS->getType(), TI);
- for (auto FD : RExp->Fields)
- getExpandedTypes(FD->getType(), TI);
- } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
- llvm::Type *EltTy = ConvertType(CExp->EltTy);
- *TI++ = EltTy;
- *TI++ = EltTy;
- } else {
- assert(isa<NoExpansion>(Exp.get()));
- *TI++ = ConvertType(Ty);
- }
- }
- static void forConstantArrayExpansion(CodeGenFunction &CGF,
- ConstantArrayExpansion *CAE,
- Address BaseAddr,
- llvm::function_ref<void(Address)> Fn) {
- CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
- CharUnits EltAlign =
- BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
- llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy);
- for (int i = 0, n = CAE->NumElts; i < n; i++) {
- llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32(
- BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i);
- Fn(Address(EltAddr, EltTy, EltAlign));
- }
- }
- void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
- llvm::Function::arg_iterator &AI) {
- assert(LV.isSimple() &&
- "Unexpected non-simple lvalue during struct expansion.");
- auto Exp = getTypeExpansion(Ty, getContext());
- if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
- forConstantArrayExpansion(
- *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
- LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
- ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
- });
- } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
- Address This = LV.getAddress(*this);
- for (const CXXBaseSpecifier *BS : RExp->Bases) {
- // Perform a single step derived-to-base conversion.
- Address Base =
- GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
- /*NullCheckValue=*/false, SourceLocation());
- LValue SubLV = MakeAddrLValue(Base, BS->getType());
- // Recurse onto bases.
- ExpandTypeFromArgs(BS->getType(), SubLV, AI);
- }
- for (auto FD : RExp->Fields) {
- // FIXME: What are the right qualifiers here?
- LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
- ExpandTypeFromArgs(FD->getType(), SubLV, AI);
- }
- } else if (isa<ComplexExpansion>(Exp.get())) {
- auto realValue = &*AI++;
- auto imagValue = &*AI++;
- EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
- } else {
- // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
- // primitive store.
- assert(isa<NoExpansion>(Exp.get()));
- llvm::Value *Arg = &*AI++;
- if (LV.isBitField()) {
- EmitStoreThroughLValue(RValue::get(Arg), LV);
- } else {
- // TODO: currently there are some places are inconsistent in what LLVM
- // pointer type they use (see D118744). Once clang uses opaque pointers
- // all LLVM pointer types will be the same and we can remove this check.
- if (Arg->getType()->isPointerTy()) {
- Address Addr = LV.getAddress(*this);
- Arg = Builder.CreateBitCast(Arg, Addr.getElementType());
- }
- EmitStoreOfScalar(Arg, LV);
- }
- }
- }
- void CodeGenFunction::ExpandTypeToArgs(
- QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
- SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
- auto Exp = getTypeExpansion(Ty, getContext());
- if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
- Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
- : Arg.getKnownRValue().getAggregateAddress();
- forConstantArrayExpansion(
- *this, CAExp, Addr, [&](Address EltAddr) {
- CallArg EltArg = CallArg(
- convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
- CAExp->EltTy);
- ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
- IRCallArgPos);
- });
- } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
- Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
- : Arg.getKnownRValue().getAggregateAddress();
- for (const CXXBaseSpecifier *BS : RExp->Bases) {
- // Perform a single step derived-to-base conversion.
- Address Base =
- GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
- /*NullCheckValue=*/false, SourceLocation());
- CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
- // Recurse onto bases.
- ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
- IRCallArgPos);
- }
- LValue LV = MakeAddrLValue(This, Ty);
- for (auto FD : RExp->Fields) {
- CallArg FldArg =
- CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
- ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
- IRCallArgPos);
- }
- } else if (isa<ComplexExpansion>(Exp.get())) {
- ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
- IRCallArgs[IRCallArgPos++] = CV.first;
- IRCallArgs[IRCallArgPos++] = CV.second;
- } else {
- assert(isa<NoExpansion>(Exp.get()));
- auto RV = Arg.getKnownRValue();
- assert(RV.isScalar() &&
- "Unexpected non-scalar rvalue during struct expansion.");
- // Insert a bitcast as needed.
- llvm::Value *V = RV.getScalarVal();
- if (IRCallArgPos < IRFuncTy->getNumParams() &&
- V->getType() != IRFuncTy->getParamType(IRCallArgPos))
- V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
- IRCallArgs[IRCallArgPos++] = V;
- }
- }
- /// Create a temporary allocation for the purposes of coercion.
- static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
- CharUnits MinAlign,
- const Twine &Name = "tmp") {
- // Don't use an alignment that's worse than what LLVM would prefer.
- auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(Ty);
- CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
- return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
- }
- /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
- /// accessing some number of bytes out of it, try to gep into the struct to get
- /// at its inner goodness. Dive as deep as possible without entering an element
- /// with an in-memory size smaller than DstSize.
- static Address
- EnterStructPointerForCoercedAccess(Address SrcPtr,
- llvm::StructType *SrcSTy,
- uint64_t DstSize, CodeGenFunction &CGF) {
- // We can't dive into a zero-element struct.
- if (SrcSTy->getNumElements() == 0) return SrcPtr;
- llvm::Type *FirstElt = SrcSTy->getElementType(0);
- // If the first elt is at least as large as what we're looking for, or if the
- // first element is the same size as the whole struct, we can enter it. The
- // comparison must be made on the store size and not the alloca size. Using
- // the alloca size may overstate the size of the load.
- uint64_t FirstEltSize =
- CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
- if (FirstEltSize < DstSize &&
- FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
- return SrcPtr;
- // GEP into the first element.
- SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
- // If the first element is a struct, recurse.
- llvm::Type *SrcTy = SrcPtr.getElementType();
- if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
- return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
- return SrcPtr;
- }
- /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
- /// are either integers or pointers. This does a truncation of the value if it
- /// is too large or a zero extension if it is too small.
- ///
- /// This behaves as if the value were coerced through memory, so on big-endian
- /// targets the high bits are preserved in a truncation, while little-endian
- /// targets preserve the low bits.
- static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
- llvm::Type *Ty,
- CodeGenFunction &CGF) {
- if (Val->getType() == Ty)
- return Val;
- if (isa<llvm::PointerType>(Val->getType())) {
- // If this is Pointer->Pointer avoid conversion to and from int.
- if (isa<llvm::PointerType>(Ty))
- return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
- // Convert the pointer to an integer so we can play with its width.
- Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
- }
- llvm::Type *DestIntTy = Ty;
- if (isa<llvm::PointerType>(DestIntTy))
- DestIntTy = CGF.IntPtrTy;
- if (Val->getType() != DestIntTy) {
- const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
- if (DL.isBigEndian()) {
- // Preserve the high bits on big-endian targets.
- // That is what memory coercion does.
- uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
- uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
- if (SrcSize > DstSize) {
- Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
- Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
- } else {
- Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
- Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
- }
- } else {
- // Little-endian targets preserve the low bits. No shifts required.
- Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
- }
- }
- if (isa<llvm::PointerType>(Ty))
- Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
- return Val;
- }
- /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
- /// a pointer to an object of type \arg Ty, known to be aligned to
- /// \arg SrcAlign bytes.
- ///
- /// This safely handles the case when the src type is smaller than the
- /// destination type; in this situation the values of bits which not
- /// present in the src are undefined.
- static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
- CodeGenFunction &CGF) {
- llvm::Type *SrcTy = Src.getElementType();
- // If SrcTy and Ty are the same, just do a load.
- if (SrcTy == Ty)
- return CGF.Builder.CreateLoad(Src);
- llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
- if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
- Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
- DstSize.getFixedValue(), CGF);
- SrcTy = Src.getElementType();
- }
- llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
- // If the source and destination are integer or pointer types, just do an
- // extension or truncation to the desired type.
- if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
- (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
- llvm::Value *Load = CGF.Builder.CreateLoad(Src);
- return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
- }
- // If load is legal, just bitcast the src pointer.
- if (!SrcSize.isScalable() && !DstSize.isScalable() &&
- SrcSize.getFixedValue() >= DstSize.getFixedValue()) {
- // Generally SrcSize is never greater than DstSize, since this means we are
- // losing bits. However, this can happen in cases where the structure has
- // additional padding, for example due to a user specified alignment.
- //
- // FIXME: Assert that we aren't truncating non-padding bits when have access
- // to that information.
- Src = CGF.Builder.CreateElementBitCast(Src, Ty);
- return CGF.Builder.CreateLoad(Src);
- }
- // If coercing a fixed vector to a scalable vector for ABI compatibility, and
- // the types match, use the llvm.vector.insert intrinsic to perform the
- // conversion.
- if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
- if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
- // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate
- // vector, use a vector insert and bitcast the result.
- bool NeedsBitcast = false;
- auto PredType =
- llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16);
- llvm::Type *OrigType = Ty;
- if (ScalableDst == PredType &&
- FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) {
- ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2);
- NeedsBitcast = true;
- }
- if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
- auto *Load = CGF.Builder.CreateLoad(Src);
- auto *UndefVec = llvm::UndefValue::get(ScalableDst);
- auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
- llvm::Value *Result = CGF.Builder.CreateInsertVector(
- ScalableDst, UndefVec, Load, Zero, "castScalableSve");
- if (NeedsBitcast)
- Result = CGF.Builder.CreateBitCast(Result, OrigType);
- return Result;
- }
- }
- }
- // Otherwise do coercion through memory. This is stupid, but simple.
- Address Tmp =
- CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
- CGF.Builder.CreateMemCpy(
- Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
- Src.getAlignment().getAsAlign(),
- llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinValue()));
- return CGF.Builder.CreateLoad(Tmp);
- }
- // Function to store a first-class aggregate into memory. We prefer to
- // store the elements rather than the aggregate to be more friendly to
- // fast-isel.
- // FIXME: Do we need to recurse here?
- void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
- bool DestIsVolatile) {
- // Prefer scalar stores to first-class aggregate stores.
- if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Address EltPtr = Builder.CreateStructGEP(Dest, i);
- llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
- Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
- }
- } else {
- Builder.CreateStore(Val, Dest, DestIsVolatile);
- }
- }
- /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
- /// where the source and destination may have different types. The
- /// destination is known to be aligned to \arg DstAlign bytes.
- ///
- /// This safely handles the case when the src type is larger than the
- /// destination type; the upper bits of the src will be lost.
- static void CreateCoercedStore(llvm::Value *Src,
- Address Dst,
- bool DstIsVolatile,
- CodeGenFunction &CGF) {
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy = Dst.getElementType();
- if (SrcTy == DstTy) {
- CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
- return;
- }
- llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
- if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
- Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
- SrcSize.getFixedValue(), CGF);
- DstTy = Dst.getElementType();
- }
- llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
- llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
- if (SrcPtrTy && DstPtrTy &&
- SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
- Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
- CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
- return;
- }
- // If the source and destination are integer or pointer types, just do an
- // extension or truncation to the desired type.
- if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
- (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
- Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
- CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
- return;
- }
- llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
- // If store is legal, just bitcast the src pointer.
- if (isa<llvm::ScalableVectorType>(SrcTy) ||
- isa<llvm::ScalableVectorType>(DstTy) ||
- SrcSize.getFixedValue() <= DstSize.getFixedValue()) {
- Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
- CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
- } else {
- // Otherwise do coercion through memory. This is stupid, but
- // simple.
- // Generally SrcSize is never greater than DstSize, since this means we are
- // losing bits. However, this can happen in cases where the structure has
- // additional padding, for example due to a user specified alignment.
- //
- // FIXME: Assert that we aren't truncating non-padding bits when have access
- // to that information.
- Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
- CGF.Builder.CreateStore(Src, Tmp);
- CGF.Builder.CreateMemCpy(
- Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
- Tmp.getAlignment().getAsAlign(),
- llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedValue()));
- }
- }
- static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
- const ABIArgInfo &info) {
- if (unsigned offset = info.getDirectOffset()) {
- addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
- addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
- CharUnits::fromQuantity(offset));
- addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
- }
- return addr;
- }
- namespace {
- /// Encapsulates information about the way function arguments from
- /// CGFunctionInfo should be passed to actual LLVM IR function.
- class ClangToLLVMArgMapping {
- static const unsigned InvalidIndex = ~0U;
- unsigned InallocaArgNo;
- unsigned SRetArgNo;
- unsigned TotalIRArgs;
- /// Arguments of LLVM IR function corresponding to single Clang argument.
- struct IRArgs {
- unsigned PaddingArgIndex;
- // Argument is expanded to IR arguments at positions
- // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
- unsigned FirstArgIndex;
- unsigned NumberOfArgs;
- IRArgs()
- : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
- NumberOfArgs(0) {}
- };
- SmallVector<IRArgs, 8> ArgInfo;
- public:
- ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
- bool OnlyRequiredArgs = false)
- : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
- ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
- construct(Context, FI, OnlyRequiredArgs);
- }
- bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
- unsigned getInallocaArgNo() const {
- assert(hasInallocaArg());
- return InallocaArgNo;
- }
- bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
- unsigned getSRetArgNo() const {
- assert(hasSRetArg());
- return SRetArgNo;
- }
- unsigned totalIRArgs() const { return TotalIRArgs; }
- bool hasPaddingArg(unsigned ArgNo) const {
- assert(ArgNo < ArgInfo.size());
- return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
- }
- unsigned getPaddingArgNo(unsigned ArgNo) const {
- assert(hasPaddingArg(ArgNo));
- return ArgInfo[ArgNo].PaddingArgIndex;
- }
- /// Returns index of first IR argument corresponding to ArgNo, and their
- /// quantity.
- std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
- assert(ArgNo < ArgInfo.size());
- return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
- ArgInfo[ArgNo].NumberOfArgs);
- }
- private:
- void construct(const ASTContext &Context, const CGFunctionInfo &FI,
- bool OnlyRequiredArgs);
- };
- void ClangToLLVMArgMapping::construct(const ASTContext &Context,
- const CGFunctionInfo &FI,
- bool OnlyRequiredArgs) {
- unsigned IRArgNo = 0;
- bool SwapThisWithSRet = false;
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- if (RetAI.getKind() == ABIArgInfo::Indirect) {
- SwapThisWithSRet = RetAI.isSRetAfterThis();
- SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
- }
- unsigned ArgNo = 0;
- unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
- for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
- ++I, ++ArgNo) {
- assert(I != FI.arg_end());
- QualType ArgType = I->type;
- const ABIArgInfo &AI = I->info;
- // Collect data about IR arguments corresponding to Clang argument ArgNo.
- auto &IRArgs = ArgInfo[ArgNo];
- if (AI.getPaddingType())
- IRArgs.PaddingArgIndex = IRArgNo++;
- switch (AI.getKind()) {
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // FIXME: handle sseregparm someday...
- llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
- if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
- IRArgs.NumberOfArgs = STy->getNumElements();
- } else {
- IRArgs.NumberOfArgs = 1;
- }
- break;
- }
- case ABIArgInfo::Indirect:
- case ABIArgInfo::IndirectAliased:
- IRArgs.NumberOfArgs = 1;
- break;
- case ABIArgInfo::Ignore:
- case ABIArgInfo::InAlloca:
- // ignore and inalloca doesn't have matching LLVM parameters.
- IRArgs.NumberOfArgs = 0;
- break;
- case ABIArgInfo::CoerceAndExpand:
- IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
- break;
- case ABIArgInfo::Expand:
- IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
- break;
- }
- if (IRArgs.NumberOfArgs > 0) {
- IRArgs.FirstArgIndex = IRArgNo;
- IRArgNo += IRArgs.NumberOfArgs;
- }
- // Skip over the sret parameter when it comes second. We already handled it
- // above.
- if (IRArgNo == 1 && SwapThisWithSRet)
- IRArgNo++;
- }
- assert(ArgNo == ArgInfo.size());
- if (FI.usesInAlloca())
- InallocaArgNo = IRArgNo++;
- TotalIRArgs = IRArgNo;
- }
- } // namespace
- /***/
- bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
- const auto &RI = FI.getReturnInfo();
- return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
- }
- bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
- return ReturnTypeUsesSRet(FI) &&
- getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
- }
- bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
- if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
- switch (BT->getKind()) {
- default:
- return false;
- case BuiltinType::Float:
- return getTarget().useObjCFPRetForRealType(FloatModeKind::Float);
- case BuiltinType::Double:
- return getTarget().useObjCFPRetForRealType(FloatModeKind::Double);
- case BuiltinType::LongDouble:
- return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble);
- }
- }
- return false;
- }
- bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
- if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
- if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
- if (BT->getKind() == BuiltinType::LongDouble)
- return getTarget().useObjCFP2RetForComplexLongDouble();
- }
- }
- return false;
- }
- llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
- const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
- return GetFunctionType(FI);
- }
- llvm::FunctionType *
- CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
- bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
- (void)Inserted;
- assert(Inserted && "Recursively being processed?");
- llvm::Type *resultType = nullptr;
- const ABIArgInfo &retAI = FI.getReturnInfo();
- switch (retAI.getKind()) {
- case ABIArgInfo::Expand:
- case ABIArgInfo::IndirectAliased:
- llvm_unreachable("Invalid ABI kind for return argument");
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- resultType = retAI.getCoerceToType();
- break;
- case ABIArgInfo::InAlloca:
- if (retAI.getInAllocaSRet()) {
- // sret things on win32 aren't void, they return the sret pointer.
- QualType ret = FI.getReturnType();
- llvm::Type *ty = ConvertType(ret);
- unsigned addressSpace = CGM.getTypes().getTargetAddressSpace(ret);
- resultType = llvm::PointerType::get(ty, addressSpace);
- } else {
- resultType = llvm::Type::getVoidTy(getLLVMContext());
- }
- break;
- case ABIArgInfo::Indirect:
- case ABIArgInfo::Ignore:
- resultType = llvm::Type::getVoidTy(getLLVMContext());
- break;
- case ABIArgInfo::CoerceAndExpand:
- resultType = retAI.getUnpaddedCoerceAndExpandType();
- break;
- }
- ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
- SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
- // Add type for sret argument.
- if (IRFunctionArgs.hasSRetArg()) {
- QualType Ret = FI.getReturnType();
- llvm::Type *Ty = ConvertType(Ret);
- unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(Ret);
- ArgTypes[IRFunctionArgs.getSRetArgNo()] =
- llvm::PointerType::get(Ty, AddressSpace);
- }
- // Add type for inalloca argument.
- if (IRFunctionArgs.hasInallocaArg()) {
- auto ArgStruct = FI.getArgStruct();
- assert(ArgStruct);
- ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
- }
- // Add in all of the required arguments.
- unsigned ArgNo = 0;
- CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
- ie = it + FI.getNumRequiredArgs();
- for (; it != ie; ++it, ++ArgNo) {
- const ABIArgInfo &ArgInfo = it->info;
- // Insert a padding type to ensure proper alignment.
- if (IRFunctionArgs.hasPaddingArg(ArgNo))
- ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
- ArgInfo.getPaddingType();
- unsigned FirstIRArg, NumIRArgs;
- std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
- switch (ArgInfo.getKind()) {
- case ABIArgInfo::Ignore:
- case ABIArgInfo::InAlloca:
- assert(NumIRArgs == 0);
- break;
- case ABIArgInfo::Indirect: {
- assert(NumIRArgs == 1);
- // indirect arguments are always on the stack, which is alloca addr space.
- llvm::Type *LTy = ConvertTypeForMem(it->type);
- ArgTypes[FirstIRArg] = LTy->getPointerTo(
- CGM.getDataLayout().getAllocaAddrSpace());
- break;
- }
- case ABIArgInfo::IndirectAliased: {
- assert(NumIRArgs == 1);
- llvm::Type *LTy = ConvertTypeForMem(it->type);
- ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // Fast-isel and the optimizer generally like scalar values better than
- // FCAs, so we flatten them if this is safe to do for this argument.
- llvm::Type *argType = ArgInfo.getCoerceToType();
- llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
- if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
- assert(NumIRArgs == st->getNumElements());
- for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
- ArgTypes[FirstIRArg + i] = st->getElementType(i);
- } else {
- assert(NumIRArgs == 1);
- ArgTypes[FirstIRArg] = argType;
- }
- break;
- }
- case ABIArgInfo::CoerceAndExpand: {
- auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
- for (auto *EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
- *ArgTypesIter++ = EltTy;
- }
- assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
- break;
- }
- case ABIArgInfo::Expand:
- auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
- getExpandedTypes(it->type, ArgTypesIter);
- assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
- break;
- }
- }
- bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
- assert(Erased && "Not in set?");
- return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
- }
- llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
- const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
- const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
- if (!isFuncTypeConvertible(FPT))
- return llvm::StructType::get(getLLVMContext());
- return GetFunctionType(GD);
- }
- static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
- llvm::AttrBuilder &FuncAttrs,
- const FunctionProtoType *FPT) {
- if (!FPT)
- return;
- if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
- FPT->isNothrow())
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- }
- static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs,
- const Decl *Callee) {
- if (!Callee)
- return;
- SmallVector<StringRef, 4> Attrs;
- for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>())
- AA->getAssumption().split(Attrs, ",");
- if (!Attrs.empty())
- FuncAttrs.addAttribute(llvm::AssumptionAttrKey,
- llvm::join(Attrs.begin(), Attrs.end(), ","));
- }
- bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context,
- QualType ReturnType) const {
- // We can't just discard the return value for a record type with a
- // complex destructor or a non-trivially copyable type.
- if (const RecordType *RT =
- ReturnType.getCanonicalType()->getAs<RecordType>()) {
- if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
- return ClassDecl->hasTrivialDestructor();
- }
- return ReturnType.isTriviallyCopyableType(Context);
- }
- static bool HasStrictReturn(const CodeGenModule &Module, QualType RetTy,
- const Decl *TargetDecl) {
- // As-is msan can not tolerate noundef mismatch between caller and
- // implementation. Mismatch is possible for e.g. indirect calls from C-caller
- // into C++. Such mismatches lead to confusing false reports. To avoid
- // expensive workaround on msan we enforce initialization event in uncommon
- // cases where it's allowed.
- if (Module.getLangOpts().Sanitize.has(SanitizerKind::Memory))
- return true;
- // C++ explicitly makes returning undefined values UB. C's rule only applies
- // to used values, so we never mark them noundef for now.
- if (!Module.getLangOpts().CPlusPlus)
- return false;
- if (TargetDecl) {
- if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) {
- if (FDecl->isExternC())
- return false;
- } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) {
- // Function pointer.
- if (VDecl->isExternC())
- return false;
- }
- }
- // We don't want to be too aggressive with the return checking, unless
- // it's explicit in the code opts or we're using an appropriate sanitizer.
- // Try to respect what the programmer intended.
- return Module.getCodeGenOpts().StrictReturn ||
- !Module.MayDropFunctionReturn(Module.getContext(), RetTy) ||
- Module.getLangOpts().Sanitize.has(SanitizerKind::Return);
- }
- void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
- bool HasOptnone,
- bool AttrOnCallSite,
- llvm::AttrBuilder &FuncAttrs) {
- // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
- if (!HasOptnone) {
- if (CodeGenOpts.OptimizeSize)
- FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
- if (CodeGenOpts.OptimizeSize == 2)
- FuncAttrs.addAttribute(llvm::Attribute::MinSize);
- }
- if (CodeGenOpts.DisableRedZone)
- FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
- if (CodeGenOpts.IndirectTlsSegRefs)
- FuncAttrs.addAttribute("indirect-tls-seg-refs");
- if (CodeGenOpts.NoImplicitFloat)
- FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
- if (AttrOnCallSite) {
- // Attributes that should go on the call site only.
- // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking
- // the -fno-builtin-foo list.
- if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name))
- FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
- if (!CodeGenOpts.TrapFuncName.empty())
- FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
- } else {
- switch (CodeGenOpts.getFramePointer()) {
- case CodeGenOptions::FramePointerKind::None:
- // This is the default behavior.
- break;
- case CodeGenOptions::FramePointerKind::NonLeaf:
- case CodeGenOptions::FramePointerKind::All:
- FuncAttrs.addAttribute("frame-pointer",
- CodeGenOptions::getFramePointerKindName(
- CodeGenOpts.getFramePointer()));
- }
- if (CodeGenOpts.LessPreciseFPMAD)
- FuncAttrs.addAttribute("less-precise-fpmad", "true");
- if (CodeGenOpts.NullPointerIsValid)
- FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
- if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
- FuncAttrs.addAttribute("denormal-fp-math",
- CodeGenOpts.FPDenormalMode.str());
- if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
- FuncAttrs.addAttribute(
- "denormal-fp-math-f32",
- CodeGenOpts.FP32DenormalMode.str());
- }
- if (LangOpts.getDefaultExceptionMode() == LangOptions::FPE_Ignore)
- FuncAttrs.addAttribute("no-trapping-math", "true");
- // TODO: Are these all needed?
- // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
- if (LangOpts.NoHonorInfs)
- FuncAttrs.addAttribute("no-infs-fp-math", "true");
- if (LangOpts.NoHonorNaNs)
- FuncAttrs.addAttribute("no-nans-fp-math", "true");
- if (LangOpts.ApproxFunc)
- FuncAttrs.addAttribute("approx-func-fp-math", "true");
- if (LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
- LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
- (LangOpts.getDefaultFPContractMode() ==
- LangOptions::FPModeKind::FPM_Fast ||
- LangOpts.getDefaultFPContractMode() ==
- LangOptions::FPModeKind::FPM_FastHonorPragmas))
- FuncAttrs.addAttribute("unsafe-fp-math", "true");
- if (CodeGenOpts.SoftFloat)
- FuncAttrs.addAttribute("use-soft-float", "true");
- FuncAttrs.addAttribute("stack-protector-buffer-size",
- llvm::utostr(CodeGenOpts.SSPBufferSize));
- if (LangOpts.NoSignedZero)
- FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
- // TODO: Reciprocal estimate codegen options should apply to instructions?
- const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
- if (!Recips.empty())
- FuncAttrs.addAttribute("reciprocal-estimates",
- llvm::join(Recips, ","));
- if (!CodeGenOpts.PreferVectorWidth.empty() &&
- CodeGenOpts.PreferVectorWidth != "none")
- FuncAttrs.addAttribute("prefer-vector-width",
- CodeGenOpts.PreferVectorWidth);
- if (CodeGenOpts.StackRealignment)
- FuncAttrs.addAttribute("stackrealign");
- if (CodeGenOpts.Backchain)
- FuncAttrs.addAttribute("backchain");
- if (CodeGenOpts.EnableSegmentedStacks)
- FuncAttrs.addAttribute("split-stack");
- if (CodeGenOpts.SpeculativeLoadHardening)
- FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
- // Add zero-call-used-regs attribute.
- switch (CodeGenOpts.getZeroCallUsedRegs()) {
- case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip:
- FuncAttrs.removeAttribute("zero-call-used-regs");
- break;
- case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg:
- FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg");
- break;
- case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR:
- FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr");
- break;
- case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg:
- FuncAttrs.addAttribute("zero-call-used-regs", "used-arg");
- break;
- case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used:
- FuncAttrs.addAttribute("zero-call-used-regs", "used");
- break;
- case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg:
- FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg");
- break;
- case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR:
- FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr");
- break;
- case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg:
- FuncAttrs.addAttribute("zero-call-used-regs", "all-arg");
- break;
- case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All:
- FuncAttrs.addAttribute("zero-call-used-regs", "all");
- break;
- }
- }
- if (getLangOpts().assumeFunctionsAreConvergent()) {
- // Conservatively, mark all functions and calls in CUDA and OpenCL as
- // convergent (meaning, they may call an intrinsically convergent op, such
- // as __syncthreads() / barrier(), and so can't have certain optimizations
- // applied around them). LLVM will remove this attribute where it safely
- // can.
- FuncAttrs.addAttribute(llvm::Attribute::Convergent);
- }
- // TODO: NoUnwind attribute should be added for other GPU modes HIP,
- // SYCL, OpenMP offload. AFAIK, none of them support exceptions in device
- // code.
- if ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice) ||
- getLangOpts().OpenCL) {
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- }
- for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
- StringRef Var, Value;
- std::tie(Var, Value) = Attr.split('=');
- FuncAttrs.addAttribute(Var, Value);
- }
- }
- void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
- llvm::AttrBuilder FuncAttrs(F.getContext());
- getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
- /* AttrOnCallSite = */ false, FuncAttrs);
- // TODO: call GetCPUAndFeaturesAttributes?
- F.addFnAttrs(FuncAttrs);
- }
- void CodeGenModule::addDefaultFunctionDefinitionAttributes(
- llvm::AttrBuilder &attrs) {
- getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
- /*for call*/ false, attrs);
- GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
- }
- static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
- const LangOptions &LangOpts,
- const NoBuiltinAttr *NBA = nullptr) {
- auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
- SmallString<32> AttributeName;
- AttributeName += "no-builtin-";
- AttributeName += BuiltinName;
- FuncAttrs.addAttribute(AttributeName);
- };
- // First, handle the language options passed through -fno-builtin.
- if (LangOpts.NoBuiltin) {
- // -fno-builtin disables them all.
- FuncAttrs.addAttribute("no-builtins");
- return;
- }
- // Then, add attributes for builtins specified through -fno-builtin-<name>.
- llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
- // Now, let's check the __attribute__((no_builtin("...")) attribute added to
- // the source.
- if (!NBA)
- return;
- // If there is a wildcard in the builtin names specified through the
- // attribute, disable them all.
- if (llvm::is_contained(NBA->builtinNames(), "*")) {
- FuncAttrs.addAttribute("no-builtins");
- return;
- }
- // And last, add the rest of the builtin names.
- llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
- }
- static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types,
- const llvm::DataLayout &DL, const ABIArgInfo &AI,
- bool CheckCoerce = true) {
- llvm::Type *Ty = Types.ConvertTypeForMem(QTy);
- if (AI.getKind() == ABIArgInfo::Indirect)
- return true;
- if (AI.getKind() == ABIArgInfo::Extend)
- return true;
- if (!DL.typeSizeEqualsStoreSize(Ty))
- // TODO: This will result in a modest amount of values not marked noundef
- // when they could be. We care about values that *invisibly* contain undef
- // bits from the perspective of LLVM IR.
- return false;
- if (CheckCoerce && AI.canHaveCoerceToType()) {
- llvm::Type *CoerceTy = AI.getCoerceToType();
- if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy),
- DL.getTypeSizeInBits(Ty)))
- // If we're coercing to a type with a greater size than the canonical one,
- // we're introducing new undef bits.
- // Coercing to a type of smaller or equal size is ok, as we know that
- // there's no internal padding (typeSizeEqualsStoreSize).
- return false;
- }
- if (QTy->isBitIntType())
- return true;
- if (QTy->isReferenceType())
- return true;
- if (QTy->isNullPtrType())
- return false;
- if (QTy->isMemberPointerType())
- // TODO: Some member pointers are `noundef`, but it depends on the ABI. For
- // now, never mark them.
- return false;
- if (QTy->isScalarType()) {
- if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy))
- return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false);
- return true;
- }
- if (const VectorType *Vector = dyn_cast<VectorType>(QTy))
- return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false);
- if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy))
- return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false);
- if (const ArrayType *Array = dyn_cast<ArrayType>(QTy))
- return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false);
- // TODO: Some structs may be `noundef`, in specific situations.
- return false;
- }
- /// Check if the argument of a function has maybe_undef attribute.
- static bool IsArgumentMaybeUndef(const Decl *TargetDecl,
- unsigned NumRequiredArgs, unsigned ArgNo) {
- const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
- if (!FD)
- return false;
- // Assume variadic arguments do not have maybe_undef attribute.
- if (ArgNo >= NumRequiredArgs)
- return false;
- // Check if argument has maybe_undef attribute.
- if (ArgNo < FD->getNumParams()) {
- const ParmVarDecl *Param = FD->getParamDecl(ArgNo);
- if (Param && Param->hasAttr<MaybeUndefAttr>())
- return true;
- }
- return false;
- }
- /// Construct the IR attribute list of a function or call.
- ///
- /// When adding an attribute, please consider where it should be handled:
- ///
- /// - getDefaultFunctionAttributes is for attributes that are essentially
- /// part of the global target configuration (but perhaps can be
- /// overridden on a per-function basis). Adding attributes there
- /// will cause them to also be set in frontends that build on Clang's
- /// target-configuration logic, as well as for code defined in library
- /// modules such as CUDA's libdevice.
- ///
- /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes
- /// and adds declaration-specific, convention-specific, and
- /// frontend-specific logic. The last is of particular importance:
- /// attributes that restrict how the frontend generates code must be
- /// added here rather than getDefaultFunctionAttributes.
- ///
- void CodeGenModule::ConstructAttributeList(StringRef Name,
- const CGFunctionInfo &FI,
- CGCalleeInfo CalleeInfo,
- llvm::AttributeList &AttrList,
- unsigned &CallingConv,
- bool AttrOnCallSite, bool IsThunk) {
- llvm::AttrBuilder FuncAttrs(getLLVMContext());
- llvm::AttrBuilder RetAttrs(getLLVMContext());
- // Collect function IR attributes from the CC lowering.
- // We'll collect the paramete and result attributes later.
- CallingConv = FI.getEffectiveCallingConvention();
- if (FI.isNoReturn())
- FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
- if (FI.isCmseNSCall())
- FuncAttrs.addAttribute("cmse_nonsecure_call");
- // Collect function IR attributes from the callee prototype if we have one.
- AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
- CalleeInfo.getCalleeFunctionProtoType());
- const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
- // Attach assumption attributes to the declaration. If this is a call
- // site, attach assumptions from the caller to the call as well.
- AddAttributesFromAssumes(FuncAttrs, TargetDecl);
- bool HasOptnone = false;
- // The NoBuiltinAttr attached to the target FunctionDecl.
- const NoBuiltinAttr *NBA = nullptr;
- // Some ABIs may result in additional accesses to arguments that may
- // otherwise not be present.
- auto AddPotentialArgAccess = [&]() {
- llvm::Attribute A = FuncAttrs.getAttribute(llvm::Attribute::Memory);
- if (A.isValid())
- FuncAttrs.addMemoryAttr(A.getMemoryEffects() |
- llvm::MemoryEffects::argMemOnly());
- };
- // Collect function IR attributes based on declaration-specific
- // information.
- // FIXME: handle sseregparm someday...
- if (TargetDecl) {
- if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
- if (TargetDecl->hasAttr<NoThrowAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- if (TargetDecl->hasAttr<NoReturnAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
- if (TargetDecl->hasAttr<ColdAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::Cold);
- if (TargetDecl->hasAttr<HotAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::Hot);
- if (TargetDecl->hasAttr<NoDuplicateAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
- if (TargetDecl->hasAttr<ConvergentAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::Convergent);
- if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
- AddAttributesFromFunctionProtoType(
- getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
- if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
- // A sane operator new returns a non-aliasing pointer.
- auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
- if (getCodeGenOpts().AssumeSaneOperatorNew &&
- (Kind == OO_New || Kind == OO_Array_New))
- RetAttrs.addAttribute(llvm::Attribute::NoAlias);
- }
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
- const bool IsVirtualCall = MD && MD->isVirtual();
- // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
- // virtual function. These attributes are not inherited by overloads.
- if (!(AttrOnCallSite && IsVirtualCall)) {
- if (Fn->isNoReturn())
- FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
- NBA = Fn->getAttr<NoBuiltinAttr>();
- }
- // Only place nomerge attribute on call sites, never functions. This
- // allows it to work on indirect virtual function calls.
- if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
- }
- // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
- if (TargetDecl->hasAttr<ConstAttr>()) {
- FuncAttrs.addMemoryAttr(llvm::MemoryEffects::none());
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- // gcc specifies that 'const' functions have greater restrictions than
- // 'pure' functions, so they also cannot have infinite loops.
- FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
- } else if (TargetDecl->hasAttr<PureAttr>()) {
- FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly());
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- // gcc specifies that 'pure' functions cannot have infinite loops.
- FuncAttrs.addAttribute(llvm::Attribute::WillReturn);
- } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
- FuncAttrs.addMemoryAttr(llvm::MemoryEffects::argMemOnly());
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- }
- if (TargetDecl->hasAttr<RestrictAttr>())
- RetAttrs.addAttribute(llvm::Attribute::NoAlias);
- if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
- !CodeGenOpts.NullPointerIsValid)
- RetAttrs.addAttribute(llvm::Attribute::NonNull);
- if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
- FuncAttrs.addAttribute("no_caller_saved_registers");
- if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
- if (TargetDecl->hasAttr<LeafAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
- HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
- if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
- std::optional<unsigned> NumElemsParam;
- if (AllocSize->getNumElemsParam().isValid())
- NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
- FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
- NumElemsParam);
- }
- if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
- if (getLangOpts().OpenCLVersion <= 120) {
- // OpenCL v1.2 Work groups are always uniform
- FuncAttrs.addAttribute("uniform-work-group-size", "true");
- } else {
- // OpenCL v2.0 Work groups may be whether uniform or not.
- // '-cl-uniform-work-group-size' compile option gets a hint
- // to the compiler that the global work-size be a multiple of
- // the work-group size specified to clEnqueueNDRangeKernel
- // (i.e. work groups are uniform).
- FuncAttrs.addAttribute("uniform-work-group-size",
- llvm::toStringRef(CodeGenOpts.UniformWGSize));
- }
- }
- }
- // Attach "no-builtins" attributes to:
- // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
- // * definitions: "no-builtins" or "no-builtin-<name>" only.
- // The attributes can come from:
- // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
- // * FunctionDecl attributes: __attribute__((no_builtin(...)))
- addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
- // Collect function IR attributes based on global settiings.
- getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
- // Override some default IR attributes based on declaration-specific
- // information.
- if (TargetDecl) {
- if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
- FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
- if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
- if (TargetDecl->hasAttr<NoSplitStackAttr>())
- FuncAttrs.removeAttribute("split-stack");
- if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) {
- // A function "__attribute__((...))" overrides the command-line flag.
- auto Kind =
- TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs();
- FuncAttrs.removeAttribute("zero-call-used-regs");
- FuncAttrs.addAttribute(
- "zero-call-used-regs",
- ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind));
- }
- // Add NonLazyBind attribute to function declarations when -fno-plt
- // is used.
- // FIXME: what if we just haven't processed the function definition
- // yet, or if it's an external definition like C99 inline?
- if (CodeGenOpts.NoPLT) {
- if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
- if (!Fn->isDefined() && !AttrOnCallSite) {
- FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
- }
- }
- }
- }
- // Add "sample-profile-suffix-elision-policy" attribute for internal linkage
- // functions with -funique-internal-linkage-names.
- if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) {
- if (const auto *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
- if (!FD->isExternallyVisible())
- FuncAttrs.addAttribute("sample-profile-suffix-elision-policy",
- "selected");
- }
- }
- // Collect non-call-site function IR attributes from declaration-specific
- // information.
- if (!AttrOnCallSite) {
- if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
- FuncAttrs.addAttribute("cmse_nonsecure_entry");
- // Whether tail calls are enabled.
- auto shouldDisableTailCalls = [&] {
- // Should this be honored in getDefaultFunctionAttributes?
- if (CodeGenOpts.DisableTailCalls)
- return true;
- if (!TargetDecl)
- return false;
- if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
- TargetDecl->hasAttr<AnyX86InterruptAttr>())
- return true;
- if (CodeGenOpts.NoEscapingBlockTailCalls) {
- if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
- if (!BD->doesNotEscape())
- return true;
- }
- return false;
- };
- if (shouldDisableTailCalls())
- FuncAttrs.addAttribute("disable-tail-calls", "true");
- // CPU/feature overrides. addDefaultFunctionDefinitionAttributes
- // handles these separately to set them based on the global defaults.
- GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
- }
- // Collect attributes from arguments and return values.
- ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
- QualType RetTy = FI.getReturnType();
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- const llvm::DataLayout &DL = getDataLayout();
- // Determine if the return type could be partially undef
- if (CodeGenOpts.EnableNoundefAttrs &&
- HasStrictReturn(*this, RetTy, TargetDecl)) {
- if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect &&
- DetermineNoUndef(RetTy, getTypes(), DL, RetAI))
- RetAttrs.addAttribute(llvm::Attribute::NoUndef);
- }
- switch (RetAI.getKind()) {
- case ABIArgInfo::Extend:
- if (RetAI.isSignExt())
- RetAttrs.addAttribute(llvm::Attribute::SExt);
- else
- RetAttrs.addAttribute(llvm::Attribute::ZExt);
- [[fallthrough]];
- case ABIArgInfo::Direct:
- if (RetAI.getInReg())
- RetAttrs.addAttribute(llvm::Attribute::InReg);
- break;
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::InAlloca:
- case ABIArgInfo::Indirect: {
- // inalloca and sret disable readnone and readonly
- AddPotentialArgAccess();
- break;
- }
- case ABIArgInfo::CoerceAndExpand:
- break;
- case ABIArgInfo::Expand:
- case ABIArgInfo::IndirectAliased:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- if (!IsThunk) {
- // FIXME: fix this properly, https://reviews.llvm.org/D100388
- if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
- QualType PTy = RefTy->getPointeeType();
- if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
- RetAttrs.addDereferenceableAttr(
- getMinimumObjectSize(PTy).getQuantity());
- if (getTypes().getTargetAddressSpace(PTy) == 0 &&
- !CodeGenOpts.NullPointerIsValid)
- RetAttrs.addAttribute(llvm::Attribute::NonNull);
- if (PTy->isObjectType()) {
- llvm::Align Alignment =
- getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
- RetAttrs.addAlignmentAttr(Alignment);
- }
- }
- }
- bool hasUsedSRet = false;
- SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
- // Attach attributes to sret.
- if (IRFunctionArgs.hasSRetArg()) {
- llvm::AttrBuilder SRETAttrs(getLLVMContext());
- SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
- hasUsedSRet = true;
- if (RetAI.getInReg())
- SRETAttrs.addAttribute(llvm::Attribute::InReg);
- SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
- ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
- llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
- }
- // Attach attributes to inalloca argument.
- if (IRFunctionArgs.hasInallocaArg()) {
- llvm::AttrBuilder Attrs(getLLVMContext());
- Attrs.addInAllocaAttr(FI.getArgStruct());
- ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
- llvm::AttributeSet::get(getLLVMContext(), Attrs);
- }
- // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument,
- // unless this is a thunk function.
- // FIXME: fix this properly, https://reviews.llvm.org/D100388
- if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
- !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) {
- auto IRArgs = IRFunctionArgs.getIRArgs(0);
- assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
- llvm::AttrBuilder Attrs(getLLVMContext());
- QualType ThisTy =
- FI.arg_begin()->type.castAs<PointerType>()->getPointeeType();
- if (!CodeGenOpts.NullPointerIsValid &&
- getTypes().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
- Attrs.addAttribute(llvm::Attribute::NonNull);
- Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity());
- } else {
- // FIXME dereferenceable should be correct here, regardless of
- // NullPointerIsValid. However, dereferenceable currently does not always
- // respect NullPointerIsValid and may imply nonnull and break the program.
- // See https://reviews.llvm.org/D66618 for discussions.
- Attrs.addDereferenceableOrNullAttr(
- getMinimumObjectSize(
- FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
- .getQuantity());
- }
- llvm::Align Alignment =
- getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr,
- /*TBAAInfo=*/nullptr, /*forPointeeType=*/true)
- .getAsAlign();
- Attrs.addAlignmentAttr(Alignment);
- ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
- }
- unsigned ArgNo = 0;
- for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
- E = FI.arg_end();
- I != E; ++I, ++ArgNo) {
- QualType ParamType = I->type;
- const ABIArgInfo &AI = I->info;
- llvm::AttrBuilder Attrs(getLLVMContext());
- // Add attribute for padding argument, if necessary.
- if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
- if (AI.getPaddingInReg()) {
- ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
- llvm::AttributeSet::get(
- getLLVMContext(),
- llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg));
- }
- }
- // Decide whether the argument we're handling could be partially undef
- if (CodeGenOpts.EnableNoundefAttrs &&
- DetermineNoUndef(ParamType, getTypes(), DL, AI)) {
- Attrs.addAttribute(llvm::Attribute::NoUndef);
- }
- // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
- // have the corresponding parameter variable. It doesn't make
- // sense to do it here because parameters are so messed up.
- switch (AI.getKind()) {
- case ABIArgInfo::Extend:
- if (AI.isSignExt())
- Attrs.addAttribute(llvm::Attribute::SExt);
- else
- Attrs.addAttribute(llvm::Attribute::ZExt);
- [[fallthrough]];
- case ABIArgInfo::Direct:
- if (ArgNo == 0 && FI.isChainCall())
- Attrs.addAttribute(llvm::Attribute::Nest);
- else if (AI.getInReg())
- Attrs.addAttribute(llvm::Attribute::InReg);
- Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign()));
- break;
- case ABIArgInfo::Indirect: {
- if (AI.getInReg())
- Attrs.addAttribute(llvm::Attribute::InReg);
- if (AI.getIndirectByVal())
- Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
- auto *Decl = ParamType->getAsRecordDecl();
- if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
- Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
- // When calling the function, the pointer passed in will be the only
- // reference to the underlying object. Mark it accordingly.
- Attrs.addAttribute(llvm::Attribute::NoAlias);
- // TODO: We could add the byref attribute if not byval, but it would
- // require updating many testcases.
- CharUnits Align = AI.getIndirectAlign();
- // In a byval argument, it is important that the required
- // alignment of the type is honored, as LLVM might be creating a
- // *new* stack object, and needs to know what alignment to give
- // it. (Sometimes it can deduce a sensible alignment on its own,
- // but not if clang decides it must emit a packed struct, or the
- // user specifies increased alignment requirements.)
- //
- // This is different from indirect *not* byval, where the object
- // exists already, and the align attribute is purely
- // informative.
- assert(!Align.isZero());
- // For now, only add this when we have a byval argument.
- // TODO: be less lazy about updating test cases.
- if (AI.getIndirectByVal())
- Attrs.addAlignmentAttr(Align.getQuantity());
- // byval disables readnone and readonly.
- AddPotentialArgAccess();
- break;
- }
- case ABIArgInfo::IndirectAliased: {
- CharUnits Align = AI.getIndirectAlign();
- Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
- Attrs.addAlignmentAttr(Align.getQuantity());
- break;
- }
- case ABIArgInfo::Ignore:
- case ABIArgInfo::Expand:
- case ABIArgInfo::CoerceAndExpand:
- break;
- case ABIArgInfo::InAlloca:
- // inalloca disables readnone and readonly.
- AddPotentialArgAccess();
- continue;
- }
- if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
- QualType PTy = RefTy->getPointeeType();
- if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
- Attrs.addDereferenceableAttr(
- getMinimumObjectSize(PTy).getQuantity());
- if (getTypes().getTargetAddressSpace(PTy) == 0 &&
- !CodeGenOpts.NullPointerIsValid)
- Attrs.addAttribute(llvm::Attribute::NonNull);
- if (PTy->isObjectType()) {
- llvm::Align Alignment =
- getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
- Attrs.addAlignmentAttr(Alignment);
- }
- }
- // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types:
- // > For arguments to a __kernel function declared to be a pointer to a
- // > data type, the OpenCL compiler can assume that the pointee is always
- // > appropriately aligned as required by the data type.
- if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() &&
- ParamType->isPointerType()) {
- QualType PTy = ParamType->getPointeeType();
- if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
- llvm::Align Alignment =
- getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
- Attrs.addAlignmentAttr(Alignment);
- }
- }
- switch (FI.getExtParameterInfo(ArgNo).getABI()) {
- case ParameterABI::Ordinary:
- break;
- case ParameterABI::SwiftIndirectResult: {
- // Add 'sret' if we haven't already used it for something, but
- // only if the result is void.
- if (!hasUsedSRet && RetTy->isVoidType()) {
- Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
- hasUsedSRet = true;
- }
- // Add 'noalias' in either case.
- Attrs.addAttribute(llvm::Attribute::NoAlias);
- // Add 'dereferenceable' and 'alignment'.
- auto PTy = ParamType->getPointeeType();
- if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
- auto info = getContext().getTypeInfoInChars(PTy);
- Attrs.addDereferenceableAttr(info.Width.getQuantity());
- Attrs.addAlignmentAttr(info.Align.getAsAlign());
- }
- break;
- }
- case ParameterABI::SwiftErrorResult:
- Attrs.addAttribute(llvm::Attribute::SwiftError);
- break;
- case ParameterABI::SwiftContext:
- Attrs.addAttribute(llvm::Attribute::SwiftSelf);
- break;
- case ParameterABI::SwiftAsyncContext:
- Attrs.addAttribute(llvm::Attribute::SwiftAsync);
- break;
- }
- if (FI.getExtParameterInfo(ArgNo).isNoEscape())
- Attrs.addAttribute(llvm::Attribute::NoCapture);
- if (Attrs.hasAttributes()) {
- unsigned FirstIRArg, NumIRArgs;
- std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
- for (unsigned i = 0; i < NumIRArgs; i++)
- ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes(
- getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs));
- }
- }
- assert(ArgNo == FI.arg_size());
- AttrList = llvm::AttributeList::get(
- getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
- llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
- }
- /// An argument came in as a promoted argument; demote it back to its
- /// declared type.
- static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
- const VarDecl *var,
- llvm::Value *value) {
- llvm::Type *varType = CGF.ConvertType(var->getType());
- // This can happen with promotions that actually don't change the
- // underlying type, like the enum promotions.
- if (value->getType() == varType) return value;
- assert((varType->isIntegerTy() || varType->isFloatingPointTy())
- && "unexpected promotion type");
- if (isa<llvm::IntegerType>(varType))
- return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
- return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
- }
- /// Returns the attribute (either parameter attribute, or function
- /// attribute), which declares argument ArgNo to be non-null.
- static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
- QualType ArgType, unsigned ArgNo) {
- // FIXME: __attribute__((nonnull)) can also be applied to:
- // - references to pointers, where the pointee is known to be
- // nonnull (apparently a Clang extension)
- // - transparent unions containing pointers
- // In the former case, LLVM IR cannot represent the constraint. In
- // the latter case, we have no guarantee that the transparent union
- // is in fact passed as a pointer.
- if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
- return nullptr;
- // First, check attribute on parameter itself.
- if (PVD) {
- if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
- return ParmNNAttr;
- }
- // Check function attributes.
- if (!FD)
- return nullptr;
- for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
- if (NNAttr->isNonNull(ArgNo))
- return NNAttr;
- }
- return nullptr;
- }
- namespace {
- struct CopyBackSwiftError final : EHScopeStack::Cleanup {
- Address Temp;
- Address Arg;
- CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
- void Emit(CodeGenFunction &CGF, Flags flags) override {
- llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
- CGF.Builder.CreateStore(errorValue, Arg);
- }
- };
- }
- void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
- llvm::Function *Fn,
- const FunctionArgList &Args) {
- if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
- // Naked functions don't have prologues.
- return;
- // If this is an implicit-return-zero function, go ahead and
- // initialize the return value. TODO: it might be nice to have
- // a more general mechanism for this that didn't require synthesized
- // return statements.
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
- if (FD->hasImplicitReturnZero()) {
- QualType RetTy = FD->getReturnType().getUnqualifiedType();
- llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
- llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
- Builder.CreateStore(Zero, ReturnValue);
- }
- }
- // FIXME: We no longer need the types from FunctionArgList; lift up and
- // simplify.
- ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
- assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
- // If we're using inalloca, all the memory arguments are GEPs off of the last
- // parameter, which is a pointer to the complete memory area.
- Address ArgStruct = Address::invalid();
- if (IRFunctionArgs.hasInallocaArg()) {
- ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
- FI.getArgStruct(), FI.getArgStructAlignment());
- assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
- }
- // Name the struct return parameter.
- if (IRFunctionArgs.hasSRetArg()) {
- auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
- AI->setName("agg.result");
- AI->addAttr(llvm::Attribute::NoAlias);
- }
- // Track if we received the parameter as a pointer (indirect, byval, or
- // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
- // into a local alloca for us.
- SmallVector<ParamValue, 16> ArgVals;
- ArgVals.reserve(Args.size());
- // Create a pointer value for every parameter declaration. This usually
- // entails copying one or more LLVM IR arguments into an alloca. Don't push
- // any cleanups or do anything that might unwind. We do that separately, so
- // we can push the cleanups in the correct order for the ABI.
- assert(FI.arg_size() == Args.size() &&
- "Mismatch between function signature & arguments.");
- unsigned ArgNo = 0;
- CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
- for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
- i != e; ++i, ++info_it, ++ArgNo) {
- const VarDecl *Arg = *i;
- const ABIArgInfo &ArgI = info_it->info;
- bool isPromoted =
- isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
- // We are converting from ABIArgInfo type to VarDecl type directly, unless
- // the parameter is promoted. In this case we convert to
- // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
- QualType Ty = isPromoted ? info_it->type : Arg->getType();
- assert(hasScalarEvaluationKind(Ty) ==
- hasScalarEvaluationKind(Arg->getType()));
- unsigned FirstIRArg, NumIRArgs;
- std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
- switch (ArgI.getKind()) {
- case ABIArgInfo::InAlloca: {
- assert(NumIRArgs == 0);
- auto FieldIndex = ArgI.getInAllocaFieldIndex();
- Address V =
- Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
- if (ArgI.getInAllocaIndirect())
- V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty),
- getContext().getTypeAlignInChars(Ty));
- ArgVals.push_back(ParamValue::forIndirect(V));
- break;
- }
- case ABIArgInfo::Indirect:
- case ABIArgInfo::IndirectAliased: {
- assert(NumIRArgs == 1);
- Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty),
- ArgI.getIndirectAlign());
- if (!hasScalarEvaluationKind(Ty)) {
- // Aggregates and complex variables are accessed by reference. All we
- // need to do is realign the value, if requested. Also, if the address
- // may be aliased, copy it to ensure that the parameter variable is
- // mutable and has a unique adress, as C requires.
- Address V = ParamAddr;
- if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
- Address AlignedTemp = CreateMemTemp(Ty, "coerce");
- // Copy from the incoming argument pointer to the temporary with the
- // appropriate alignment.
- //
- // FIXME: We should have a common utility for generating an aggregate
- // copy.
- CharUnits Size = getContext().getTypeSizeInChars(Ty);
- Builder.CreateMemCpy(
- AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
- ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
- llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
- V = AlignedTemp;
- }
- ArgVals.push_back(ParamValue::forIndirect(V));
- } else {
- // Load scalar value from indirect argument.
- llvm::Value *V =
- EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- ArgVals.push_back(ParamValue::forDirect(V));
- }
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- auto AI = Fn->getArg(FirstIRArg);
- llvm::Type *LTy = ConvertType(Arg->getType());
- // Prepare parameter attributes. So far, only attributes for pointer
- // parameters are prepared. See
- // http://llvm.org/docs/LangRef.html#paramattrs.
- if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
- ArgI.getCoerceToType()->isPointerTy()) {
- assert(NumIRArgs == 1);
- if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
- // Set `nonnull` attribute if any.
- if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
- PVD->getFunctionScopeIndex()) &&
- !CGM.getCodeGenOpts().NullPointerIsValid)
- AI->addAttr(llvm::Attribute::NonNull);
- QualType OTy = PVD->getOriginalType();
- if (const auto *ArrTy =
- getContext().getAsConstantArrayType(OTy)) {
- // A C99 array parameter declaration with the static keyword also
- // indicates dereferenceability, and if the size is constant we can
- // use the dereferenceable attribute (which requires the size in
- // bytes).
- if (ArrTy->getSizeModifier() == ArrayType::Static) {
- QualType ETy = ArrTy->getElementType();
- llvm::Align Alignment =
- CGM.getNaturalTypeAlignment(ETy).getAsAlign();
- AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
- uint64_t ArrSize = ArrTy->getSize().getZExtValue();
- if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
- ArrSize) {
- llvm::AttrBuilder Attrs(getLLVMContext());
- Attrs.addDereferenceableAttr(
- getContext().getTypeSizeInChars(ETy).getQuantity() *
- ArrSize);
- AI->addAttrs(Attrs);
- } else if (getContext().getTargetInfo().getNullPointerValue(
- ETy.getAddressSpace()) == 0 &&
- !CGM.getCodeGenOpts().NullPointerIsValid) {
- AI->addAttr(llvm::Attribute::NonNull);
- }
- }
- } else if (const auto *ArrTy =
- getContext().getAsVariableArrayType(OTy)) {
- // For C99 VLAs with the static keyword, we don't know the size so
- // we can't use the dereferenceable attribute, but in addrspace(0)
- // we know that it must be nonnull.
- if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
- QualType ETy = ArrTy->getElementType();
- llvm::Align Alignment =
- CGM.getNaturalTypeAlignment(ETy).getAsAlign();
- AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment));
- if (!getTypes().getTargetAddressSpace(ETy) &&
- !CGM.getCodeGenOpts().NullPointerIsValid)
- AI->addAttr(llvm::Attribute::NonNull);
- }
- }
- // Set `align` attribute if any.
- const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
- if (!AVAttr)
- if (const auto *TOTy = OTy->getAs<TypedefType>())
- AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
- if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
- // If alignment-assumption sanitizer is enabled, we do *not* add
- // alignment attribute here, but emit normal alignment assumption,
- // so the UBSAN check could function.
- llvm::ConstantInt *AlignmentCI =
- cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
- uint64_t AlignmentInt =
- AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
- if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
- AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
- AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(
- llvm::Align(AlignmentInt)));
- }
- }
- }
- // Set 'noalias' if an argument type has the `restrict` qualifier.
- if (Arg->getType().isRestrictQualified())
- AI->addAttr(llvm::Attribute::NoAlias);
- }
- // Prepare the argument value. If we have the trivial case, handle it
- // with no muss and fuss.
- if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
- ArgI.getCoerceToType() == ConvertType(Ty) &&
- ArgI.getDirectOffset() == 0) {
- assert(NumIRArgs == 1);
- // LLVM expects swifterror parameters to be used in very restricted
- // ways. Copy the value into a less-restricted temporary.
- llvm::Value *V = AI;
- if (FI.getExtParameterInfo(ArgNo).getABI()
- == ParameterABI::SwiftErrorResult) {
- QualType pointeeTy = Ty->getPointeeType();
- assert(pointeeTy->isPointerType());
- Address temp =
- CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
- Address arg(V, ConvertTypeForMem(pointeeTy),
- getContext().getTypeAlignInChars(pointeeTy));
- llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
- Builder.CreateStore(incomingErrorValue, temp);
- V = temp.getPointer();
- // Push a cleanup to copy the value back at the end of the function.
- // The convention does not guarantee that the value will be written
- // back if the function exits with an unwind exception.
- EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
- }
- // Ensure the argument is the correct type.
- if (V->getType() != ArgI.getCoerceToType())
- V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- // Because of merging of function types from multiple decls it is
- // possible for the type of an argument to not match the corresponding
- // type in the function type. Since we are codegening the callee
- // in here, add a cast to the argument type.
- llvm::Type *LTy = ConvertType(Arg->getType());
- if (V->getType() != LTy)
- V = Builder.CreateBitCast(V, LTy);
- ArgVals.push_back(ParamValue::forDirect(V));
- break;
- }
- // VLST arguments are coerced to VLATs at the function boundary for
- // ABI consistency. If this is a VLST that was coerced to
- // a VLAT at the function boundary and the types match up, use
- // llvm.vector.extract to convert back to the original VLST.
- if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
- llvm::Value *Coerced = Fn->getArg(FirstIRArg);
- if (auto *VecTyFrom =
- dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
- // If we are casting a scalable 16 x i1 predicate vector to a fixed i8
- // vector, bitcast the source and use a vector extract.
- auto PredType =
- llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
- if (VecTyFrom == PredType &&
- VecTyTo->getElementType() == Builder.getInt8Ty()) {
- VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2);
- Coerced = Builder.CreateBitCast(Coerced, VecTyFrom);
- }
- if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
- llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
- assert(NumIRArgs == 1);
- Coerced->setName(Arg->getName() + ".coerce");
- ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
- VecTyTo, Coerced, Zero, "castFixedSve")));
- break;
- }
- }
- }
- Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
- Arg->getName());
- // Pointer to store into.
- Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
- // Fast-isel and the optimizer generally like scalar values better than
- // FCAs, so we flatten them if this is safe to do for this argument.
- llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
- if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
- STy->getNumElements() > 1) {
- uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
- llvm::Type *DstTy = Ptr.getElementType();
- uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
- Address AddrToStoreInto = Address::invalid();
- if (SrcSize <= DstSize) {
- AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
- } else {
- AddrToStoreInto =
- CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
- }
- assert(STy->getNumElements() == NumIRArgs);
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- auto AI = Fn->getArg(FirstIRArg + i);
- AI->setName(Arg->getName() + ".coerce" + Twine(i));
- Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
- Builder.CreateStore(AI, EltPtr);
- }
- if (SrcSize > DstSize) {
- Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
- }
- } else {
- // Simple case, just do a coerced store of the argument into the alloca.
- assert(NumIRArgs == 1);
- auto AI = Fn->getArg(FirstIRArg);
- AI->setName(Arg->getName() + ".coerce");
- CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
- }
- // Match to what EmitParmDecl is expecting for this type.
- if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
- llvm::Value *V =
- EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- ArgVals.push_back(ParamValue::forDirect(V));
- } else {
- ArgVals.push_back(ParamValue::forIndirect(Alloca));
- }
- break;
- }
- case ABIArgInfo::CoerceAndExpand: {
- // Reconstruct into a temporary.
- Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
- ArgVals.push_back(ParamValue::forIndirect(alloca));
- auto coercionType = ArgI.getCoerceAndExpandType();
- alloca = Builder.CreateElementBitCast(alloca, coercionType);
- unsigned argIndex = FirstIRArg;
- for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
- llvm::Type *eltType = coercionType->getElementType(i);
- if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
- continue;
- auto eltAddr = Builder.CreateStructGEP(alloca, i);
- auto elt = Fn->getArg(argIndex++);
- Builder.CreateStore(elt, eltAddr);
- }
- assert(argIndex == FirstIRArg + NumIRArgs);
- break;
- }
- case ABIArgInfo::Expand: {
- // If this structure was expanded into multiple arguments then
- // we need to create a temporary and reconstruct it from the
- // arguments.
- Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
- LValue LV = MakeAddrLValue(Alloca, Ty);
- ArgVals.push_back(ParamValue::forIndirect(Alloca));
- auto FnArgIter = Fn->arg_begin() + FirstIRArg;
- ExpandTypeFromArgs(Ty, LV, FnArgIter);
- assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
- for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
- auto AI = Fn->getArg(FirstIRArg + i);
- AI->setName(Arg->getName() + "." + Twine(i));
- }
- break;
- }
- case ABIArgInfo::Ignore:
- assert(NumIRArgs == 0);
- // Initialize the local variable appropriately.
- if (!hasScalarEvaluationKind(Ty)) {
- ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
- } else {
- llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
- ArgVals.push_back(ParamValue::forDirect(U));
- }
- break;
- }
- }
- if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
- for (int I = Args.size() - 1; I >= 0; --I)
- EmitParmDecl(*Args[I], ArgVals[I], I + 1);
- } else {
- for (unsigned I = 0, E = Args.size(); I != E; ++I)
- EmitParmDecl(*Args[I], ArgVals[I], I + 1);
- }
- }
- static void eraseUnusedBitCasts(llvm::Instruction *insn) {
- while (insn->use_empty()) {
- llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
- if (!bitcast) return;
- // This is "safe" because we would have used a ConstantExpr otherwise.
- insn = cast<llvm::Instruction>(bitcast->getOperand(0));
- bitcast->eraseFromParent();
- }
- }
- /// Try to emit a fused autorelease of a return result.
- static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
- llvm::Value *result) {
- // We must be immediately followed the cast.
- llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
- if (BB->empty()) return nullptr;
- if (&BB->back() != result) return nullptr;
- llvm::Type *resultType = result->getType();
- // result is in a BasicBlock and is therefore an Instruction.
- llvm::Instruction *generator = cast<llvm::Instruction>(result);
- SmallVector<llvm::Instruction *, 4> InstsToKill;
- // Look for:
- // %generator = bitcast %type1* %generator2 to %type2*
- while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
- // We would have emitted this as a constant if the operand weren't
- // an Instruction.
- generator = cast<llvm::Instruction>(bitcast->getOperand(0));
- // Require the generator to be immediately followed by the cast.
- if (generator->getNextNode() != bitcast)
- return nullptr;
- InstsToKill.push_back(bitcast);
- }
- // Look for:
- // %generator = call i8* @objc_retain(i8* %originalResult)
- // or
- // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
- llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
- if (!call) return nullptr;
- bool doRetainAutorelease;
- if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
- doRetainAutorelease = true;
- } else if (call->getCalledOperand() ==
- CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
- doRetainAutorelease = false;
- // If we emitted an assembly marker for this call (and the
- // ARCEntrypoints field should have been set if so), go looking
- // for that call. If we can't find it, we can't do this
- // optimization. But it should always be the immediately previous
- // instruction, unless we needed bitcasts around the call.
- if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
- llvm::Instruction *prev = call->getPrevNode();
- assert(prev);
- if (isa<llvm::BitCastInst>(prev)) {
- prev = prev->getPrevNode();
- assert(prev);
- }
- assert(isa<llvm::CallInst>(prev));
- assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
- CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
- InstsToKill.push_back(prev);
- }
- } else {
- return nullptr;
- }
- result = call->getArgOperand(0);
- InstsToKill.push_back(call);
- // Keep killing bitcasts, for sanity. Note that we no longer care
- // about precise ordering as long as there's exactly one use.
- while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
- if (!bitcast->hasOneUse()) break;
- InstsToKill.push_back(bitcast);
- result = bitcast->getOperand(0);
- }
- // Delete all the unnecessary instructions, from latest to earliest.
- for (auto *I : InstsToKill)
- I->eraseFromParent();
- // Do the fused retain/autorelease if we were asked to.
- if (doRetainAutorelease)
- result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
- // Cast back to the result type.
- return CGF.Builder.CreateBitCast(result, resultType);
- }
- /// If this is a +1 of the value of an immutable 'self', remove it.
- static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
- llvm::Value *result) {
- // This is only applicable to a method with an immutable 'self'.
- const ObjCMethodDecl *method =
- dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
- if (!method) return nullptr;
- const VarDecl *self = method->getSelfDecl();
- if (!self->getType().isConstQualified()) return nullptr;
- // Look for a retain call.
- llvm::CallInst *retainCall =
- dyn_cast<llvm::CallInst>(result->stripPointerCasts());
- if (!retainCall || retainCall->getCalledOperand() !=
- CGF.CGM.getObjCEntrypoints().objc_retain)
- return nullptr;
- // Look for an ordinary load of 'self'.
- llvm::Value *retainedValue = retainCall->getArgOperand(0);
- llvm::LoadInst *load =
- dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
- if (!load || load->isAtomic() || load->isVolatile() ||
- load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
- return nullptr;
- // Okay! Burn it all down. This relies for correctness on the
- // assumption that the retain is emitted as part of the return and
- // that thereafter everything is used "linearly".
- llvm::Type *resultType = result->getType();
- eraseUnusedBitCasts(cast<llvm::Instruction>(result));
- assert(retainCall->use_empty());
- retainCall->eraseFromParent();
- eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
- return CGF.Builder.CreateBitCast(load, resultType);
- }
- /// Emit an ARC autorelease of the result of a function.
- ///
- /// \return the value to actually return from the function
- static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
- llvm::Value *result) {
- // If we're returning 'self', kill the initial retain. This is a
- // heuristic attempt to "encourage correctness" in the really unfortunate
- // case where we have a return of self during a dealloc and we desperately
- // need to avoid the possible autorelease.
- if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
- return self;
- // At -O0, try to emit a fused retain/autorelease.
- if (CGF.shouldUseFusedARCCalls())
- if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
- return fused;
- return CGF.EmitARCAutoreleaseReturnValue(result);
- }
- /// Heuristically search for a dominating store to the return-value slot.
- static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
- // Check if a User is a store which pointerOperand is the ReturnValue.
- // We are looking for stores to the ReturnValue, not for stores of the
- // ReturnValue to some other location.
- auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
- auto *SI = dyn_cast<llvm::StoreInst>(U);
- if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() ||
- SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType())
- return nullptr;
- // These aren't actually possible for non-coerced returns, and we
- // only care about non-coerced returns on this code path.
- assert(!SI->isAtomic() && !SI->isVolatile());
- return SI;
- };
- // If there are multiple uses of the return-value slot, just check
- // for something immediately preceding the IP. Sometimes this can
- // happen with how we generate implicit-returns; it can also happen
- // with noreturn cleanups.
- if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
- llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
- if (IP->empty()) return nullptr;
- // Look at directly preceding instruction, skipping bitcasts and lifetime
- // markers.
- for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) {
- if (isa<llvm::BitCastInst>(&I))
- continue;
- if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I))
- if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end)
- continue;
- return GetStoreIfValid(&I);
- }
- return nullptr;
- }
- llvm::StoreInst *store =
- GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
- if (!store) return nullptr;
- // Now do a first-and-dirty dominance check: just walk up the
- // single-predecessors chain from the current insertion point.
- llvm::BasicBlock *StoreBB = store->getParent();
- llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
- while (IP != StoreBB) {
- if (!(IP = IP->getSinglePredecessor()))
- return nullptr;
- }
- // Okay, the store's basic block dominates the insertion point; we
- // can do our thing.
- return store;
- }
- // Helper functions for EmitCMSEClearRecord
- // Set the bits corresponding to a field having width `BitWidth` and located at
- // offset `BitOffset` (from the least significant bit) within a storage unit of
- // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
- // Use little-endian layout, i.e.`Bits[0]` is the LSB.
- static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
- int BitWidth, int CharWidth) {
- assert(CharWidth <= 64);
- assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
- int Pos = 0;
- if (BitOffset >= CharWidth) {
- Pos += BitOffset / CharWidth;
- BitOffset = BitOffset % CharWidth;
- }
- const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
- if (BitOffset + BitWidth >= CharWidth) {
- Bits[Pos++] |= (Used << BitOffset) & Used;
- BitWidth -= CharWidth - BitOffset;
- BitOffset = 0;
- }
- while (BitWidth >= CharWidth) {
- Bits[Pos++] = Used;
- BitWidth -= CharWidth;
- }
- if (BitWidth > 0)
- Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
- }
- // Set the bits corresponding to a field having width `BitWidth` and located at
- // offset `BitOffset` (from the least significant bit) within a storage unit of
- // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
- // `Bits` corresponds to one target byte. Use target endian layout.
- static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
- int StorageSize, int BitOffset, int BitWidth,
- int CharWidth, bool BigEndian) {
- SmallVector<uint64_t, 8> TmpBits(StorageSize);
- setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
- if (BigEndian)
- std::reverse(TmpBits.begin(), TmpBits.end());
- for (uint64_t V : TmpBits)
- Bits[StorageOffset++] |= V;
- }
- static void setUsedBits(CodeGenModule &, QualType, int,
- SmallVectorImpl<uint64_t> &);
- // Set the bits in `Bits`, which correspond to the value representations of
- // the actual members of the record type `RTy`. Note that this function does
- // not handle base classes, virtual tables, etc, since they cannot happen in
- // CMSE function arguments or return. The bit mask corresponds to the target
- // memory layout, i.e. it's endian dependent.
- static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
- SmallVectorImpl<uint64_t> &Bits) {
- ASTContext &Context = CGM.getContext();
- int CharWidth = Context.getCharWidth();
- const RecordDecl *RD = RTy->getDecl()->getDefinition();
- const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
- const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
- int Idx = 0;
- for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
- const FieldDecl *F = *I;
- if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
- F->getType()->isIncompleteArrayType())
- continue;
- if (F->isBitField()) {
- const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
- setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
- BFI.StorageSize / CharWidth, BFI.Offset,
- BFI.Size, CharWidth,
- CGM.getDataLayout().isBigEndian());
- continue;
- }
- setUsedBits(CGM, F->getType(),
- Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
- }
- }
- // Set the bits in `Bits`, which correspond to the value representations of
- // the elements of an array type `ATy`.
- static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
- int Offset, SmallVectorImpl<uint64_t> &Bits) {
- const ASTContext &Context = CGM.getContext();
- QualType ETy = Context.getBaseElementType(ATy);
- int Size = Context.getTypeSizeInChars(ETy).getQuantity();
- SmallVector<uint64_t, 4> TmpBits(Size);
- setUsedBits(CGM, ETy, 0, TmpBits);
- for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
- auto Src = TmpBits.begin();
- auto Dst = Bits.begin() + Offset + I * Size;
- for (int J = 0; J < Size; ++J)
- *Dst++ |= *Src++;
- }
- }
- // Set the bits in `Bits`, which correspond to the value representations of
- // the type `QTy`.
- static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
- SmallVectorImpl<uint64_t> &Bits) {
- if (const auto *RTy = QTy->getAs<RecordType>())
- return setUsedBits(CGM, RTy, Offset, Bits);
- ASTContext &Context = CGM.getContext();
- if (const auto *ATy = Context.getAsConstantArrayType(QTy))
- return setUsedBits(CGM, ATy, Offset, Bits);
- int Size = Context.getTypeSizeInChars(QTy).getQuantity();
- if (Size <= 0)
- return;
- std::fill_n(Bits.begin() + Offset, Size,
- (uint64_t(1) << Context.getCharWidth()) - 1);
- }
- static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
- int Pos, int Size, int CharWidth,
- bool BigEndian) {
- assert(Size > 0);
- uint64_t Mask = 0;
- if (BigEndian) {
- for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
- ++P)
- Mask = (Mask << CharWidth) | *P;
- } else {
- auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
- do
- Mask = (Mask << CharWidth) | *--P;
- while (P != End);
- }
- return Mask;
- }
- // Emit code to clear the bits in a record, which aren't a part of any user
- // declared member, when the record is a function return.
- llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
- llvm::IntegerType *ITy,
- QualType QTy) {
- assert(Src->getType() == ITy);
- assert(ITy->getScalarSizeInBits() <= 64);
- const llvm::DataLayout &DataLayout = CGM.getDataLayout();
- int Size = DataLayout.getTypeStoreSize(ITy);
- SmallVector<uint64_t, 4> Bits(Size);
- setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
- int CharWidth = CGM.getContext().getCharWidth();
- uint64_t Mask =
- buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
- return Builder.CreateAnd(Src, Mask, "cmse.clear");
- }
- // Emit code to clear the bits in a record, which aren't a part of any user
- // declared member, when the record is a function argument.
- llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
- llvm::ArrayType *ATy,
- QualType QTy) {
- const llvm::DataLayout &DataLayout = CGM.getDataLayout();
- int Size = DataLayout.getTypeStoreSize(ATy);
- SmallVector<uint64_t, 16> Bits(Size);
- setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
- // Clear each element of the LLVM array.
- int CharWidth = CGM.getContext().getCharWidth();
- int CharsPerElt =
- ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
- int MaskIndex = 0;
- llvm::Value *R = llvm::PoisonValue::get(ATy);
- for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
- uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
- DataLayout.isBigEndian());
- MaskIndex += CharsPerElt;
- llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
- llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
- R = Builder.CreateInsertValue(R, T1, I);
- }
- return R;
- }
- void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
- bool EmitRetDbgLoc,
- SourceLocation EndLoc) {
- if (FI.isNoReturn()) {
- // Noreturn functions don't return.
- EmitUnreachable(EndLoc);
- return;
- }
- if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
- // Naked functions don't have epilogues.
- Builder.CreateUnreachable();
- return;
- }
- // Functions with no result always return void.
- if (!ReturnValue.isValid()) {
- Builder.CreateRetVoid();
- return;
- }
- llvm::DebugLoc RetDbgLoc;
- llvm::Value *RV = nullptr;
- QualType RetTy = FI.getReturnType();
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- switch (RetAI.getKind()) {
- case ABIArgInfo::InAlloca:
- // Aggregates get evaluated directly into the destination. Sometimes we
- // need to return the sret value in a register, though.
- assert(hasAggregateEvaluationKind(RetTy));
- if (RetAI.getInAllocaSRet()) {
- llvm::Function::arg_iterator EI = CurFn->arg_end();
- --EI;
- llvm::Value *ArgStruct = &*EI;
- llvm::Value *SRet = Builder.CreateStructGEP(
- FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex());
- llvm::Type *Ty =
- cast<llvm::GetElementPtrInst>(SRet)->getResultElementType();
- RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret");
- }
- break;
- case ABIArgInfo::Indirect: {
- auto AI = CurFn->arg_begin();
- if (RetAI.isSRetAfterThis())
- ++AI;
- switch (getEvaluationKind(RetTy)) {
- case TEK_Complex: {
- ComplexPairTy RT =
- EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
- EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
- /*isInit*/ true);
- break;
- }
- case TEK_Aggregate:
- // Do nothing; aggregates get evaluated directly into the destination.
- break;
- case TEK_Scalar: {
- LValueBaseInfo BaseInfo;
- TBAAAccessInfo TBAAInfo;
- CharUnits Alignment =
- CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo);
- Address ArgAddr(&*AI, ConvertType(RetTy), Alignment);
- LValue ArgVal =
- LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo);
- EmitStoreOfScalar(
- Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true);
- break;
- }
- }
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
- RetAI.getDirectOffset() == 0) {
- // The internal return value temp always will have pointer-to-return-type
- // type, just do a load.
- // If there is a dominating store to ReturnValue, we can elide
- // the load, zap the store, and usually zap the alloca.
- if (llvm::StoreInst *SI =
- findDominatingStoreToReturnValue(*this)) {
- // Reuse the debug location from the store unless there is
- // cleanup code to be emitted between the store and return
- // instruction.
- if (EmitRetDbgLoc && !AutoreleaseResult)
- RetDbgLoc = SI->getDebugLoc();
- // Get the stored value and nuke the now-dead store.
- RV = SI->getValueOperand();
- SI->eraseFromParent();
- // Otherwise, we have to do a simple load.
- } else {
- RV = Builder.CreateLoad(ReturnValue);
- }
- } else {
- // If the value is offset in memory, apply the offset now.
- Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
- RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
- }
- // In ARC, end functions that return a retainable type with a call
- // to objc_autoreleaseReturnValue.
- if (AutoreleaseResult) {
- #ifndef NDEBUG
- // Type::isObjCRetainabletype has to be called on a QualType that hasn't
- // been stripped of the typedefs, so we cannot use RetTy here. Get the
- // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
- // CurCodeDecl or BlockInfo.
- QualType RT;
- if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
- RT = FD->getReturnType();
- else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
- RT = MD->getReturnType();
- else if (isa<BlockDecl>(CurCodeDecl))
- RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
- else
- llvm_unreachable("Unexpected function/method type");
- assert(getLangOpts().ObjCAutoRefCount &&
- !FI.isReturnsRetained() &&
- RT->isObjCRetainableType());
- #endif
- RV = emitAutoreleaseOfResult(*this, RV);
- }
- break;
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::CoerceAndExpand: {
- auto coercionType = RetAI.getCoerceAndExpandType();
- // Load all of the coerced elements out into results.
- llvm::SmallVector<llvm::Value*, 4> results;
- Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
- for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
- auto coercedEltType = coercionType->getElementType(i);
- if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
- continue;
- auto eltAddr = Builder.CreateStructGEP(addr, i);
- auto elt = Builder.CreateLoad(eltAddr);
- results.push_back(elt);
- }
- // If we have one result, it's the single direct result type.
- if (results.size() == 1) {
- RV = results[0];
- // Otherwise, we need to make a first-class aggregate.
- } else {
- // Construct a return type that lacks padding elements.
- llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
- RV = llvm::PoisonValue::get(returnType);
- for (unsigned i = 0, e = results.size(); i != e; ++i) {
- RV = Builder.CreateInsertValue(RV, results[i], i);
- }
- }
- break;
- }
- case ABIArgInfo::Expand:
- case ABIArgInfo::IndirectAliased:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- llvm::Instruction *Ret;
- if (RV) {
- if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
- // For certain return types, clear padding bits, as they may reveal
- // sensitive information.
- // Small struct/union types are passed as integers.
- auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
- if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
- RV = EmitCMSEClearRecord(RV, ITy, RetTy);
- }
- EmitReturnValueCheck(RV);
- Ret = Builder.CreateRet(RV);
- } else {
- Ret = Builder.CreateRetVoid();
- }
- if (RetDbgLoc)
- Ret->setDebugLoc(std::move(RetDbgLoc));
- }
- void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
- // A current decl may not be available when emitting vtable thunks.
- if (!CurCodeDecl)
- return;
- // If the return block isn't reachable, neither is this check, so don't emit
- // it.
- if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
- return;
- ReturnsNonNullAttr *RetNNAttr = nullptr;
- if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
- RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
- if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
- return;
- // Prefer the returns_nonnull attribute if it's present.
- SourceLocation AttrLoc;
- SanitizerMask CheckKind;
- SanitizerHandler Handler;
- if (RetNNAttr) {
- assert(!requiresReturnValueNullabilityCheck() &&
- "Cannot check nullability and the nonnull attribute");
- AttrLoc = RetNNAttr->getLocation();
- CheckKind = SanitizerKind::ReturnsNonnullAttribute;
- Handler = SanitizerHandler::NonnullReturn;
- } else {
- if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
- if (auto *TSI = DD->getTypeSourceInfo())
- if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
- AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
- CheckKind = SanitizerKind::NullabilityReturn;
- Handler = SanitizerHandler::NullabilityReturn;
- }
- SanitizerScope SanScope(this);
- // Make sure the "return" source location is valid. If we're checking a
- // nullability annotation, make sure the preconditions for the check are met.
- llvm::BasicBlock *Check = createBasicBlock("nullcheck");
- llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
- llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
- llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
- if (requiresReturnValueNullabilityCheck())
- CanNullCheck =
- Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
- Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
- EmitBlock(Check);
- // Now do the null check.
- llvm::Value *Cond = Builder.CreateIsNotNull(RV);
- llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
- llvm::Value *DynamicData[] = {SLocPtr};
- EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
- EmitBlock(NoCheck);
- #ifndef NDEBUG
- // The return location should not be used after the check has been emitted.
- ReturnLocation = Address::invalid();
- #endif
- }
- static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
- const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
- return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
- }
- static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
- QualType Ty) {
- // FIXME: Generate IR in one pass, rather than going back and fixing up these
- // placeholders.
- llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
- llvm::Type *IRPtrTy = IRTy->getPointerTo();
- llvm::Value *Placeholder = llvm::PoisonValue::get(IRPtrTy->getPointerTo());
- // FIXME: When we generate this IR in one pass, we shouldn't need
- // this win32-specific alignment hack.
- CharUnits Align = CharUnits::fromQuantity(4);
- Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
- return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align),
- Ty.getQualifiers(),
- AggValueSlot::IsNotDestructed,
- AggValueSlot::DoesNotNeedGCBarriers,
- AggValueSlot::IsNotAliased,
- AggValueSlot::DoesNotOverlap);
- }
- void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
- const VarDecl *param,
- SourceLocation loc) {
- // StartFunction converted the ABI-lowered parameter(s) into a
- // local alloca. We need to turn that into an r-value suitable
- // for EmitCall.
- Address local = GetAddrOfLocalVar(param);
- QualType type = param->getType();
- if (isInAllocaArgument(CGM.getCXXABI(), type)) {
- CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
- }
- // GetAddrOfLocalVar returns a pointer-to-pointer for references,
- // but the argument needs to be the original pointer.
- if (type->isReferenceType()) {
- args.add(RValue::get(Builder.CreateLoad(local)), type);
- // In ARC, move out of consumed arguments so that the release cleanup
- // entered by StartFunction doesn't cause an over-release. This isn't
- // optimal -O0 code generation, but it should get cleaned up when
- // optimization is enabled. This also assumes that delegate calls are
- // performed exactly once for a set of arguments, but that should be safe.
- } else if (getLangOpts().ObjCAutoRefCount &&
- param->hasAttr<NSConsumedAttr>() &&
- type->isObjCRetainableType()) {
- llvm::Value *ptr = Builder.CreateLoad(local);
- auto null =
- llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
- Builder.CreateStore(null, local);
- args.add(RValue::get(ptr), type);
- // For the most part, we just need to load the alloca, except that
- // aggregate r-values are actually pointers to temporaries.
- } else {
- args.add(convertTempToRValue(local, type, loc), type);
- }
- // Deactivate the cleanup for the callee-destructed param that was pushed.
- if (type->isRecordType() && !CurFuncIsThunk &&
- type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
- param->needsDestruction(getContext())) {
- EHScopeStack::stable_iterator cleanup =
- CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
- assert(cleanup.isValid() &&
- "cleanup for callee-destructed param not recorded");
- // This unreachable is a temporary marker which will be removed later.
- llvm::Instruction *isActive = Builder.CreateUnreachable();
- args.addArgCleanupDeactivation(cleanup, isActive);
- }
- }
- static bool isProvablyNull(llvm::Value *addr) {
- return isa<llvm::ConstantPointerNull>(addr);
- }
- /// Emit the actual writing-back of a writeback.
- static void emitWriteback(CodeGenFunction &CGF,
- const CallArgList::Writeback &writeback) {
- const LValue &srcLV = writeback.Source;
- Address srcAddr = srcLV.getAddress(CGF);
- assert(!isProvablyNull(srcAddr.getPointer()) &&
- "shouldn't have writeback for provably null argument");
- llvm::BasicBlock *contBB = nullptr;
- // If the argument wasn't provably non-null, we need to null check
- // before doing the store.
- bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
- CGF.CGM.getDataLayout());
- if (!provablyNonNull) {
- llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
- contBB = CGF.createBasicBlock("icr.done");
- llvm::Value *isNull =
- CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
- CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
- CGF.EmitBlock(writebackBB);
- }
- // Load the value to writeback.
- llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
- // Cast it back, in case we're writing an id to a Foo* or something.
- value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
- "icr.writeback-cast");
- // Perform the writeback.
- // If we have a "to use" value, it's something we need to emit a use
- // of. This has to be carefully threaded in: if it's done after the
- // release it's potentially undefined behavior (and the optimizer
- // will ignore it), and if it happens before the retain then the
- // optimizer could move the release there.
- if (writeback.ToUse) {
- assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
- // Retain the new value. No need to block-copy here: the block's
- // being passed up the stack.
- value = CGF.EmitARCRetainNonBlock(value);
- // Emit the intrinsic use here.
- CGF.EmitARCIntrinsicUse(writeback.ToUse);
- // Load the old value (primitively).
- llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
- // Put the new value in place (primitively).
- CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
- // Release the old value.
- CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
- // Otherwise, we can just do a normal lvalue store.
- } else {
- CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
- }
- // Jump to the continuation block.
- if (!provablyNonNull)
- CGF.EmitBlock(contBB);
- }
- static void emitWritebacks(CodeGenFunction &CGF,
- const CallArgList &args) {
- for (const auto &I : args.writebacks())
- emitWriteback(CGF, I);
- }
- static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
- const CallArgList &CallArgs) {
- ArrayRef<CallArgList::CallArgCleanup> Cleanups =
- CallArgs.getCleanupsToDeactivate();
- // Iterate in reverse to increase the likelihood of popping the cleanup.
- for (const auto &I : llvm::reverse(Cleanups)) {
- CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
- I.IsActiveIP->eraseFromParent();
- }
- }
- static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
- if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
- if (uop->getOpcode() == UO_AddrOf)
- return uop->getSubExpr();
- return nullptr;
- }
- /// Emit an argument that's being passed call-by-writeback. That is,
- /// we are passing the address of an __autoreleased temporary; it
- /// might be copy-initialized with the current value of the given
- /// address, but it will definitely be copied out of after the call.
- static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
- const ObjCIndirectCopyRestoreExpr *CRE) {
- LValue srcLV;
- // Make an optimistic effort to emit the address as an l-value.
- // This can fail if the argument expression is more complicated.
- if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
- srcLV = CGF.EmitLValue(lvExpr);
- // Otherwise, just emit it as a scalar.
- } else {
- Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
- QualType srcAddrType =
- CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
- srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
- }
- Address srcAddr = srcLV.getAddress(CGF);
- // The dest and src types don't necessarily match in LLVM terms
- // because of the crazy ObjC compatibility rules.
- llvm::PointerType *destType =
- cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
- llvm::Type *destElemType =
- CGF.ConvertTypeForMem(CRE->getType()->getPointeeType());
- // If the address is a constant null, just pass the appropriate null.
- if (isProvablyNull(srcAddr.getPointer())) {
- args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
- CRE->getType());
- return;
- }
- // Create the temporary.
- Address temp =
- CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp");
- // Loading an l-value can introduce a cleanup if the l-value is __weak,
- // and that cleanup will be conditional if we can't prove that the l-value
- // isn't null, so we need to register a dominating point so that the cleanups
- // system will make valid IR.
- CodeGenFunction::ConditionalEvaluation condEval(CGF);
- // Zero-initialize it if we're not doing a copy-initialization.
- bool shouldCopy = CRE->shouldCopy();
- if (!shouldCopy) {
- llvm::Value *null =
- llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType));
- CGF.Builder.CreateStore(null, temp);
- }
- llvm::BasicBlock *contBB = nullptr;
- llvm::BasicBlock *originBB = nullptr;
- // If the address is *not* known to be non-null, we need to switch.
- llvm::Value *finalArgument;
- bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
- CGF.CGM.getDataLayout());
- if (provablyNonNull) {
- finalArgument = temp.getPointer();
- } else {
- llvm::Value *isNull =
- CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
- finalArgument = CGF.Builder.CreateSelect(isNull,
- llvm::ConstantPointerNull::get(destType),
- temp.getPointer(), "icr.argument");
- // If we need to copy, then the load has to be conditional, which
- // means we need control flow.
- if (shouldCopy) {
- originBB = CGF.Builder.GetInsertBlock();
- contBB = CGF.createBasicBlock("icr.cont");
- llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
- CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
- CGF.EmitBlock(copyBB);
- condEval.begin(CGF);
- }
- }
- llvm::Value *valueToUse = nullptr;
- // Perform a copy if necessary.
- if (shouldCopy) {
- RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
- assert(srcRV.isScalar());
- llvm::Value *src = srcRV.getScalarVal();
- src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast");
- // Use an ordinary store, not a store-to-lvalue.
- CGF.Builder.CreateStore(src, temp);
- // If optimization is enabled, and the value was held in a
- // __strong variable, we need to tell the optimizer that this
- // value has to stay alive until we're doing the store back.
- // This is because the temporary is effectively unretained,
- // and so otherwise we can violate the high-level semantics.
- if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
- srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
- valueToUse = src;
- }
- }
- // Finish the control flow if we needed it.
- if (shouldCopy && !provablyNonNull) {
- llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
- CGF.EmitBlock(contBB);
- // Make a phi for the value to intrinsically use.
- if (valueToUse) {
- llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
- "icr.to-use");
- phiToUse->addIncoming(valueToUse, copyBB);
- phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
- originBB);
- valueToUse = phiToUse;
- }
- condEval.end(CGF);
- }
- args.addWriteback(srcLV, temp, valueToUse);
- args.add(RValue::get(finalArgument), CRE->getType());
- }
- void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
- assert(!StackBase);
- // Save the stack.
- llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
- StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
- }
- void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
- if (StackBase) {
- // Restore the stack after the call.
- llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
- CGF.Builder.CreateCall(F, StackBase);
- }
- }
- void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
- SourceLocation ArgLoc,
- AbstractCallee AC,
- unsigned ParmNum) {
- if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
- SanOpts.has(SanitizerKind::NullabilityArg)))
- return;
- // The param decl may be missing in a variadic function.
- auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
- unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
- // Prefer the nonnull attribute if it's present.
- const NonNullAttr *NNAttr = nullptr;
- if (SanOpts.has(SanitizerKind::NonnullAttribute))
- NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
- bool CanCheckNullability = false;
- if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
- auto Nullability = PVD->getType()->getNullability();
- CanCheckNullability = Nullability &&
- *Nullability == NullabilityKind::NonNull &&
- PVD->getTypeSourceInfo();
- }
- if (!NNAttr && !CanCheckNullability)
- return;
- SourceLocation AttrLoc;
- SanitizerMask CheckKind;
- SanitizerHandler Handler;
- if (NNAttr) {
- AttrLoc = NNAttr->getLocation();
- CheckKind = SanitizerKind::NonnullAttribute;
- Handler = SanitizerHandler::NonnullArg;
- } else {
- AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
- CheckKind = SanitizerKind::NullabilityArg;
- Handler = SanitizerHandler::NullabilityArg;
- }
- SanitizerScope SanScope(this);
- llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
- llvm::Constant *StaticData[] = {
- EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
- llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
- };
- EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, std::nullopt);
- }
- // Check if the call is going to use the inalloca convention. This needs to
- // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
- // later, so we can't check it directly.
- static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
- ArrayRef<QualType> ArgTypes) {
- // The Swift calling conventions don't go through the target-specific
- // argument classification, they never use inalloca.
- // TODO: Consider limiting inalloca use to only calling conventions supported
- // by MSVC.
- if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync)
- return false;
- if (!CGM.getTarget().getCXXABI().isMicrosoft())
- return false;
- return llvm::any_of(ArgTypes, [&](QualType Ty) {
- return isInAllocaArgument(CGM.getCXXABI(), Ty);
- });
- }
- #ifndef NDEBUG
- // Determine whether the given argument is an Objective-C method
- // that may have type parameters in its signature.
- static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
- const DeclContext *dc = method->getDeclContext();
- if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
- return classDecl->getTypeParamListAsWritten();
- }
- if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
- return catDecl->getTypeParamList();
- }
- return false;
- }
- #endif
- /// EmitCallArgs - Emit call arguments for a function.
- void CodeGenFunction::EmitCallArgs(
- CallArgList &Args, PrototypeWrapper Prototype,
- llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
- AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
- SmallVector<QualType, 16> ArgTypes;
- assert((ParamsToSkip == 0 || Prototype.P) &&
- "Can't skip parameters if type info is not provided");
- // This variable only captures *explicitly* written conventions, not those
- // applied by default via command line flags or target defaults, such as
- // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
- // require knowing if this is a C++ instance method or being able to see
- // unprototyped FunctionTypes.
- CallingConv ExplicitCC = CC_C;
- // First, if a prototype was provided, use those argument types.
- bool IsVariadic = false;
- if (Prototype.P) {
- const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
- if (MD) {
- IsVariadic = MD->isVariadic();
- ExplicitCC = getCallingConventionForDecl(
- MD, CGM.getTarget().getTriple().isOSWindows());
- ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
- MD->param_type_end());
- } else {
- const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
- IsVariadic = FPT->isVariadic();
- ExplicitCC = FPT->getExtInfo().getCC();
- ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
- FPT->param_type_end());
- }
- #ifndef NDEBUG
- // Check that the prototyped types match the argument expression types.
- bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
- CallExpr::const_arg_iterator Arg = ArgRange.begin();
- for (QualType Ty : ArgTypes) {
- assert(Arg != ArgRange.end() && "Running over edge of argument list!");
- assert(
- (isGenericMethod || Ty->isVariablyModifiedType() ||
- Ty.getNonReferenceType()->isObjCRetainableType() ||
- getContext()
- .getCanonicalType(Ty.getNonReferenceType())
- .getTypePtr() ==
- getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
- "type mismatch in call argument!");
- ++Arg;
- }
- // Either we've emitted all the call args, or we have a call to variadic
- // function.
- assert((Arg == ArgRange.end() || IsVariadic) &&
- "Extra arguments in non-variadic function!");
- #endif
- }
- // If we still have any arguments, emit them using the type of the argument.
- for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size()))
- ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
- assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
- // We must evaluate arguments from right to left in the MS C++ ABI,
- // because arguments are destroyed left to right in the callee. As a special
- // case, there are certain language constructs that require left-to-right
- // evaluation, and in those cases we consider the evaluation order requirement
- // to trump the "destruction order is reverse construction order" guarantee.
- bool LeftToRight =
- CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
- ? Order == EvaluationOrder::ForceLeftToRight
- : Order != EvaluationOrder::ForceRightToLeft;
- auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
- RValue EmittedArg) {
- if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
- return;
- auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
- if (PS == nullptr)
- return;
- const auto &Context = getContext();
- auto SizeTy = Context.getSizeType();
- auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
- assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
- llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
- EmittedArg.getScalarVal(),
- PS->isDynamic());
- Args.add(RValue::get(V), SizeTy);
- // If we're emitting args in reverse, be sure to do so with
- // pass_object_size, as well.
- if (!LeftToRight)
- std::swap(Args.back(), *(&Args.back() - 1));
- };
- // Insert a stack save if we're going to need any inalloca args.
- if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
- assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
- "inalloca only supported on x86");
- Args.allocateArgumentMemory(*this);
- }
- // Evaluate each argument in the appropriate order.
- size_t CallArgsStart = Args.size();
- for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
- unsigned Idx = LeftToRight ? I : E - I - 1;
- CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
- unsigned InitialArgSize = Args.size();
- // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
- // the argument and parameter match or the objc method is parameterized.
- assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
- getContext().hasSameUnqualifiedType((*Arg)->getType(),
- ArgTypes[Idx]) ||
- (isa<ObjCMethodDecl>(AC.getDecl()) &&
- isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
- "Argument and parameter types don't match");
- EmitCallArg(Args, *Arg, ArgTypes[Idx]);
- // In particular, we depend on it being the last arg in Args, and the
- // objectsize bits depend on there only being one arg if !LeftToRight.
- assert(InitialArgSize + 1 == Args.size() &&
- "The code below depends on only adding one arg per EmitCallArg");
- (void)InitialArgSize;
- // Since pointer argument are never emitted as LValue, it is safe to emit
- // non-null argument check for r-value only.
- if (!Args.back().hasLValue()) {
- RValue RVArg = Args.back().getKnownRValue();
- EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
- ParamsToSkip + Idx);
- // @llvm.objectsize should never have side-effects and shouldn't need
- // destruction/cleanups, so we can safely "emit" it after its arg,
- // regardless of right-to-leftness
- MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
- }
- }
- if (!LeftToRight) {
- // Un-reverse the arguments we just evaluated so they match up with the LLVM
- // IR function.
- std::reverse(Args.begin() + CallArgsStart, Args.end());
- }
- }
- namespace {
- struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
- DestroyUnpassedArg(Address Addr, QualType Ty)
- : Addr(Addr), Ty(Ty) {}
- Address Addr;
- QualType Ty;
- void Emit(CodeGenFunction &CGF, Flags flags) override {
- QualType::DestructionKind DtorKind = Ty.isDestructedType();
- if (DtorKind == QualType::DK_cxx_destructor) {
- const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
- assert(!Dtor->isTrivial());
- CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
- /*Delegating=*/false, Addr, Ty);
- } else {
- CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
- }
- }
- };
- struct DisableDebugLocationUpdates {
- CodeGenFunction &CGF;
- bool disabledDebugInfo;
- DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
- if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
- CGF.disableDebugInfo();
- }
- ~DisableDebugLocationUpdates() {
- if (disabledDebugInfo)
- CGF.enableDebugInfo();
- }
- };
- } // end anonymous namespace
- RValue CallArg::getRValue(CodeGenFunction &CGF) const {
- if (!HasLV)
- return RV;
- LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
- CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
- LV.isVolatile());
- IsUsed = true;
- return RValue::getAggregate(Copy.getAddress(CGF));
- }
- void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
- LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
- if (!HasLV && RV.isScalar())
- CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
- else if (!HasLV && RV.isComplex())
- CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
- else {
- auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
- LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
- // We assume that call args are never copied into subobjects.
- CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
- HasLV ? LV.isVolatileQualified()
- : RV.isVolatileQualified());
- }
- IsUsed = true;
- }
- void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
- QualType type) {
- DisableDebugLocationUpdates Dis(*this, E);
- if (const ObjCIndirectCopyRestoreExpr *CRE
- = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
- assert(getLangOpts().ObjCAutoRefCount);
- return emitWritebackArg(*this, args, CRE);
- }
- assert(type->isReferenceType() == E->isGLValue() &&
- "reference binding to unmaterialized r-value!");
- if (E->isGLValue()) {
- assert(E->getObjectKind() == OK_Ordinary);
- return args.add(EmitReferenceBindingToExpr(E), type);
- }
- bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
- // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
- // However, we still have to push an EH-only cleanup in case we unwind before
- // we make it to the call.
- if (type->isRecordType() &&
- type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
- // If we're using inalloca, use the argument memory. Otherwise, use a
- // temporary.
- AggValueSlot Slot = args.isUsingInAlloca()
- ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp");
- bool DestroyedInCallee = true, NeedsEHCleanup = true;
- if (const auto *RD = type->getAsCXXRecordDecl())
- DestroyedInCallee = RD->hasNonTrivialDestructor();
- else
- NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
- if (DestroyedInCallee)
- Slot.setExternallyDestructed();
- EmitAggExpr(E, Slot);
- RValue RV = Slot.asRValue();
- args.add(RV, type);
- if (DestroyedInCallee && NeedsEHCleanup) {
- // Create a no-op GEP between the placeholder and the cleanup so we can
- // RAUW it successfully. It also serves as a marker of the first
- // instruction where the cleanup is active.
- pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
- type);
- // This unreachable is a temporary marker which will be removed later.
- llvm::Instruction *IsActive = Builder.CreateUnreachable();
- args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive);
- }
- return;
- }
- if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
- cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
- LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
- assert(L.isSimple());
- args.addUncopiedAggregate(L, type);
- return;
- }
- args.add(EmitAnyExprToTemp(E), type);
- }
- QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
- // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
- // implicitly widens null pointer constants that are arguments to varargs
- // functions to pointer-sized ints.
- if (!getTarget().getTriple().isOSWindows())
- return Arg->getType();
- if (Arg->getType()->isIntegerType() &&
- getContext().getTypeSize(Arg->getType()) <
- getContext().getTargetInfo().getPointerWidth(LangAS::Default) &&
- Arg->isNullPointerConstant(getContext(),
- Expr::NPC_ValueDependentIsNotNull)) {
- return getContext().getIntPtrType();
- }
- return Arg->getType();
- }
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- void
- CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
- if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
- !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
- Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
- CGM.getNoObjCARCExceptionsMetadata());
- }
- /// Emits a call to the given no-arguments nounwind runtime function.
- llvm::CallInst *
- CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
- const llvm::Twine &name) {
- return EmitNounwindRuntimeCall(callee, std::nullopt, name);
- }
- /// Emits a call to the given nounwind runtime function.
- llvm::CallInst *
- CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
- ArrayRef<llvm::Value *> args,
- const llvm::Twine &name) {
- llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
- call->setDoesNotThrow();
- return call;
- }
- /// Emits a simple call (never an invoke) to the given no-arguments
- /// runtime function.
- llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
- const llvm::Twine &name) {
- return EmitRuntimeCall(callee, std::nullopt, name);
- }
- // Calls which may throw must have operand bundles indicating which funclet
- // they are nested within.
- SmallVector<llvm::OperandBundleDef, 1>
- CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
- // There is no need for a funclet operand bundle if we aren't inside a
- // funclet.
- if (!CurrentFuncletPad)
- return (SmallVector<llvm::OperandBundleDef, 1>());
- // Skip intrinsics which cannot throw (as long as they don't lower into
- // regular function calls in the course of IR transformations).
- if (auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts())) {
- if (CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) {
- auto IID = CalleeFn->getIntrinsicID();
- if (!llvm::IntrinsicInst::mayLowerToFunctionCall(IID))
- return (SmallVector<llvm::OperandBundleDef, 1>());
- }
- }
- SmallVector<llvm::OperandBundleDef, 1> BundleList;
- BundleList.emplace_back("funclet", CurrentFuncletPad);
- return BundleList;
- }
- /// Emits a simple call (never an invoke) to the given runtime function.
- llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
- ArrayRef<llvm::Value *> args,
- const llvm::Twine &name) {
- llvm::CallInst *call = Builder.CreateCall(
- callee, args, getBundlesForFunclet(callee.getCallee()), name);
- call->setCallingConv(getRuntimeCC());
- return call;
- }
- /// Emits a call or invoke to the given noreturn runtime function.
- void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
- llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
- SmallVector<llvm::OperandBundleDef, 1> BundleList =
- getBundlesForFunclet(callee.getCallee());
- if (getInvokeDest()) {
- llvm::InvokeInst *invoke =
- Builder.CreateInvoke(callee,
- getUnreachableBlock(),
- getInvokeDest(),
- args,
- BundleList);
- invoke->setDoesNotReturn();
- invoke->setCallingConv(getRuntimeCC());
- } else {
- llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
- call->setDoesNotReturn();
- call->setCallingConv(getRuntimeCC());
- Builder.CreateUnreachable();
- }
- }
- /// Emits a call or invoke instruction to the given nullary runtime function.
- llvm::CallBase *
- CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
- const Twine &name) {
- return EmitRuntimeCallOrInvoke(callee, std::nullopt, name);
- }
- /// Emits a call or invoke instruction to the given runtime function.
- llvm::CallBase *
- CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
- ArrayRef<llvm::Value *> args,
- const Twine &name) {
- llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
- call->setCallingConv(getRuntimeCC());
- return call;
- }
- /// Emits a call or invoke instruction to the given function, depending
- /// on the current state of the EH stack.
- llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
- ArrayRef<llvm::Value *> Args,
- const Twine &Name) {
- llvm::BasicBlock *InvokeDest = getInvokeDest();
- SmallVector<llvm::OperandBundleDef, 1> BundleList =
- getBundlesForFunclet(Callee.getCallee());
- llvm::CallBase *Inst;
- if (!InvokeDest)
- Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
- else {
- llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
- Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
- Name);
- EmitBlock(ContBB);
- }
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- if (CGM.getLangOpts().ObjCAutoRefCount)
- AddObjCARCExceptionMetadata(Inst);
- return Inst;
- }
- void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
- llvm::Value *New) {
- DeferredReplacements.push_back(
- std::make_pair(llvm::WeakTrackingVH(Old), New));
- }
- namespace {
- /// Specify given \p NewAlign as the alignment of return value attribute. If
- /// such attribute already exists, re-set it to the maximal one of two options.
- [[nodiscard]] llvm::AttributeList
- maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
- const llvm::AttributeList &Attrs,
- llvm::Align NewAlign) {
- llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
- if (CurAlign >= NewAlign)
- return Attrs;
- llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
- return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment)
- .addRetAttribute(Ctx, AlignAttr);
- }
- template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
- protected:
- CodeGenFunction &CGF;
- /// We do nothing if this is, or becomes, nullptr.
- const AlignedAttrTy *AA = nullptr;
- llvm::Value *Alignment = nullptr; // May or may not be a constant.
- llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
- AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
- : CGF(CGF_) {
- if (!FuncDecl)
- return;
- AA = FuncDecl->getAttr<AlignedAttrTy>();
- }
- public:
- /// If we can, materialize the alignment as an attribute on return value.
- [[nodiscard]] llvm::AttributeList
- TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
- if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
- return Attrs;
- const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
- if (!AlignmentCI)
- return Attrs;
- // We may legitimately have non-power-of-2 alignment here.
- // If so, this is UB land, emit it via `@llvm.assume` instead.
- if (!AlignmentCI->getValue().isPowerOf2())
- return Attrs;
- llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
- CGF.getLLVMContext(), Attrs,
- llvm::Align(
- AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
- AA = nullptr; // We're done. Disallow doing anything else.
- return NewAttrs;
- }
- /// Emit alignment assumption.
- /// This is a general fallback that we take if either there is an offset,
- /// or the alignment is variable or we are sanitizing for alignment.
- void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
- if (!AA)
- return;
- CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
- AA->getLocation(), Alignment, OffsetCI);
- AA = nullptr; // We're done. Disallow doing anything else.
- }
- };
- /// Helper data structure to emit `AssumeAlignedAttr`.
- class AssumeAlignedAttrEmitter final
- : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
- public:
- AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
- : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
- if (!AA)
- return;
- // It is guaranteed that the alignment/offset are constants.
- Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
- if (Expr *Offset = AA->getOffset()) {
- OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
- if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
- OffsetCI = nullptr;
- }
- }
- };
- /// Helper data structure to emit `AllocAlignAttr`.
- class AllocAlignAttrEmitter final
- : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
- public:
- AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
- const CallArgList &CallArgs)
- : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
- if (!AA)
- return;
- // Alignment may or may not be a constant, and that is okay.
- Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
- .getRValue(CGF)
- .getScalarVal();
- }
- };
- } // namespace
- static unsigned getMaxVectorWidth(const llvm::Type *Ty) {
- if (auto *VT = dyn_cast<llvm::VectorType>(Ty))
- return VT->getPrimitiveSizeInBits().getKnownMinValue();
- if (auto *AT = dyn_cast<llvm::ArrayType>(Ty))
- return getMaxVectorWidth(AT->getElementType());
- unsigned MaxVectorWidth = 0;
- if (auto *ST = dyn_cast<llvm::StructType>(Ty))
- for (auto *I : ST->elements())
- MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I));
- return MaxVectorWidth;
- }
- RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
- const CGCallee &Callee,
- ReturnValueSlot ReturnValue,
- const CallArgList &CallArgs,
- llvm::CallBase **callOrInvoke, bool IsMustTail,
- SourceLocation Loc) {
- // FIXME: We no longer need the types from CallArgs; lift up and simplify.
- assert(Callee.isOrdinary() || Callee.isVirtual());
- // Handle struct-return functions by passing a pointer to the
- // location that we would like to return into.
- QualType RetTy = CallInfo.getReturnType();
- const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
- llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
- const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
- // We can only guarantee that a function is called from the correct
- // context/function based on the appropriate target attributes,
- // so only check in the case where we have both always_inline and target
- // since otherwise we could be making a conditional call after a check for
- // the proper cpu features (and it won't cause code generation issues due to
- // function based code generation).
- if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
- TargetDecl->hasAttr<TargetAttr>())
- checkTargetFeatures(Loc, FD);
- // Some architectures (such as x86-64) have the ABI changed based on
- // attribute-target/features. Give them a chance to diagnose.
- CGM.getTargetCodeGenInfo().checkFunctionCallABI(
- CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
- }
- #ifndef NDEBUG
- if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
- // For an inalloca varargs function, we don't expect CallInfo to match the
- // function pointer's type, because the inalloca struct a will have extra
- // fields in it for the varargs parameters. Code later in this function
- // bitcasts the function pointer to the type derived from CallInfo.
- //
- // In other cases, we assert that the types match up (until pointers stop
- // having pointee types).
- if (Callee.isVirtual())
- assert(IRFuncTy == Callee.getVirtualFunctionType());
- else {
- llvm::PointerType *PtrTy =
- llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType());
- assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy));
- }
- }
- #endif
- // 1. Set up the arguments.
- // If we're using inalloca, insert the allocation after the stack save.
- // FIXME: Do this earlier rather than hacking it in here!
- Address ArgMemory = Address::invalid();
- if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
- const llvm::DataLayout &DL = CGM.getDataLayout();
- llvm::Instruction *IP = CallArgs.getStackBase();
- llvm::AllocaInst *AI;
- if (IP) {
- IP = IP->getNextNode();
- AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
- "argmem", IP);
- } else {
- AI = CreateTempAlloca(ArgStruct, "argmem");
- }
- auto Align = CallInfo.getArgStructAlignment();
- AI->setAlignment(Align.getAsAlign());
- AI->setUsedWithInAlloca(true);
- assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
- ArgMemory = Address(AI, ArgStruct, Align);
- }
- ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
- SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
- // If the call returns a temporary with struct return, create a temporary
- // alloca to hold the result, unless one is given to us.
- Address SRetPtr = Address::invalid();
- Address SRetAlloca = Address::invalid();
- llvm::Value *UnusedReturnSizePtr = nullptr;
- if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
- if (!ReturnValue.isNull()) {
- SRetPtr = ReturnValue.getValue();
- } else {
- SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
- if (HaveInsertPoint() && ReturnValue.isUnused()) {
- llvm::TypeSize size =
- CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
- UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
- }
- }
- if (IRFunctionArgs.hasSRetArg()) {
- IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
- } else if (RetAI.isInAlloca()) {
- Address Addr =
- Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
- Builder.CreateStore(SRetPtr.getPointer(), Addr);
- }
- }
- Address swiftErrorTemp = Address::invalid();
- Address swiftErrorArg = Address::invalid();
- // When passing arguments using temporary allocas, we need to add the
- // appropriate lifetime markers. This vector keeps track of all the lifetime
- // markers that need to be ended right after the call.
- SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
- // Translate all of the arguments as necessary to match the IR lowering.
- assert(CallInfo.arg_size() == CallArgs.size() &&
- "Mismatch between function signature & arguments.");
- unsigned ArgNo = 0;
- CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
- for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
- I != E; ++I, ++info_it, ++ArgNo) {
- const ABIArgInfo &ArgInfo = info_it->info;
- // Insert a padding argument to ensure proper alignment.
- if (IRFunctionArgs.hasPaddingArg(ArgNo))
- IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
- llvm::UndefValue::get(ArgInfo.getPaddingType());
- unsigned FirstIRArg, NumIRArgs;
- std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
- bool ArgHasMaybeUndefAttr =
- IsArgumentMaybeUndef(TargetDecl, CallInfo.getNumRequiredArgs(), ArgNo);
- switch (ArgInfo.getKind()) {
- case ABIArgInfo::InAlloca: {
- assert(NumIRArgs == 0);
- assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
- if (I->isAggregate()) {
- Address Addr = I->hasLValue()
- ? I->getKnownLValue().getAddress(*this)
- : I->getKnownRValue().getAggregateAddress();
- llvm::Instruction *Placeholder =
- cast<llvm::Instruction>(Addr.getPointer());
- if (!ArgInfo.getInAllocaIndirect()) {
- // Replace the placeholder with the appropriate argument slot GEP.
- CGBuilderTy::InsertPoint IP = Builder.saveIP();
- Builder.SetInsertPoint(Placeholder);
- Addr = Builder.CreateStructGEP(ArgMemory,
- ArgInfo.getInAllocaFieldIndex());
- Builder.restoreIP(IP);
- } else {
- // For indirect things such as overaligned structs, replace the
- // placeholder with a regular aggregate temporary alloca. Store the
- // address of this alloca into the struct.
- Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
- Address ArgSlot = Builder.CreateStructGEP(
- ArgMemory, ArgInfo.getInAllocaFieldIndex());
- Builder.CreateStore(Addr.getPointer(), ArgSlot);
- }
- deferPlaceholderReplacement(Placeholder, Addr.getPointer());
- } else if (ArgInfo.getInAllocaIndirect()) {
- // Make a temporary alloca and store the address of it into the argument
- // struct.
- Address Addr = CreateMemTempWithoutCast(
- I->Ty, getContext().getTypeAlignInChars(I->Ty),
- "indirect-arg-temp");
- I->copyInto(*this, Addr);
- Address ArgSlot =
- Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
- Builder.CreateStore(Addr.getPointer(), ArgSlot);
- } else {
- // Store the RValue into the argument struct.
- Address Addr =
- Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
- // There are some cases where a trivial bitcast is not avoidable. The
- // definition of a type later in a translation unit may change it's type
- // from {}* to (%struct.foo*)*.
- Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty));
- I->copyInto(*this, Addr);
- }
- break;
- }
- case ABIArgInfo::Indirect:
- case ABIArgInfo::IndirectAliased: {
- assert(NumIRArgs == 1);
- if (!I->isAggregate()) {
- // Make a temporary alloca to pass the argument.
- Address Addr = CreateMemTempWithoutCast(
- I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
- llvm::Value *Val = Addr.getPointer();
- if (ArgHasMaybeUndefAttr)
- Val = Builder.CreateFreeze(Addr.getPointer());
- IRCallArgs[FirstIRArg] = Val;
- I->copyInto(*this, Addr);
- } else {
- // We want to avoid creating an unnecessary temporary+copy here;
- // however, we need one in three cases:
- // 1. If the argument is not byval, and we are required to copy the
- // source. (This case doesn't occur on any common architecture.)
- // 2. If the argument is byval, RV is not sufficiently aligned, and
- // we cannot force it to be sufficiently aligned.
- // 3. If the argument is byval, but RV is not located in default
- // or alloca address space.
- Address Addr = I->hasLValue()
- ? I->getKnownLValue().getAddress(*this)
- : I->getKnownRValue().getAggregateAddress();
- llvm::Value *V = Addr.getPointer();
- CharUnits Align = ArgInfo.getIndirectAlign();
- const llvm::DataLayout *TD = &CGM.getDataLayout();
- assert((FirstIRArg >= IRFuncTy->getNumParams() ||
- IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
- TD->getAllocaAddrSpace()) &&
- "indirect argument must be in alloca address space");
- bool NeedCopy = false;
- if (Addr.getAlignment() < Align &&
- llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
- Align.getAsAlign()) {
- NeedCopy = true;
- } else if (I->hasLValue()) {
- auto LV = I->getKnownLValue();
- auto AS = LV.getAddressSpace();
- if (!ArgInfo.getIndirectByVal() ||
- (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
- NeedCopy = true;
- }
- if (!getLangOpts().OpenCL) {
- if ((ArgInfo.getIndirectByVal() &&
- (AS != LangAS::Default &&
- AS != CGM.getASTAllocaAddressSpace()))) {
- NeedCopy = true;
- }
- }
- // For OpenCL even if RV is located in default or alloca address space
- // we don't want to perform address space cast for it.
- else if ((ArgInfo.getIndirectByVal() &&
- Addr.getType()->getAddressSpace() != IRFuncTy->
- getParamType(FirstIRArg)->getPointerAddressSpace())) {
- NeedCopy = true;
- }
- }
- if (NeedCopy) {
- // Create an aligned temporary, and copy to it.
- Address AI = CreateMemTempWithoutCast(
- I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
- llvm::Value *Val = AI.getPointer();
- if (ArgHasMaybeUndefAttr)
- Val = Builder.CreateFreeze(AI.getPointer());
- IRCallArgs[FirstIRArg] = Val;
- // Emit lifetime markers for the temporary alloca.
- llvm::TypeSize ByvalTempElementSize =
- CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
- llvm::Value *LifetimeSize =
- EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
- // Add cleanup code to emit the end lifetime marker after the call.
- if (LifetimeSize) // In case we disabled lifetime markers.
- CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
- // Generate the copy.
- I->copyInto(*this, AI);
- } else {
- // Skip the extra memcpy call.
- auto *T = llvm::PointerType::getWithSamePointeeType(
- cast<llvm::PointerType>(V->getType()),
- CGM.getDataLayout().getAllocaAddrSpace());
- llvm::Value *Val = getTargetHooks().performAddrSpaceCast(
- *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
- true);
- if (ArgHasMaybeUndefAttr)
- Val = Builder.CreateFreeze(Val);
- IRCallArgs[FirstIRArg] = Val;
- }
- }
- break;
- }
- case ABIArgInfo::Ignore:
- assert(NumIRArgs == 0);
- break;
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
- ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
- ArgInfo.getDirectOffset() == 0) {
- assert(NumIRArgs == 1);
- llvm::Value *V;
- if (!I->isAggregate())
- V = I->getKnownRValue().getScalarVal();
- else
- V = Builder.CreateLoad(
- I->hasLValue() ? I->getKnownLValue().getAddress(*this)
- : I->getKnownRValue().getAggregateAddress());
- // Implement swifterror by copying into a new swifterror argument.
- // We'll write back in the normal path out of the call.
- if (CallInfo.getExtParameterInfo(ArgNo).getABI()
- == ParameterABI::SwiftErrorResult) {
- assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
- QualType pointeeTy = I->Ty->getPointeeType();
- swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy),
- getContext().getTypeAlignInChars(pointeeTy));
- swiftErrorTemp =
- CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
- V = swiftErrorTemp.getPointer();
- cast<llvm::AllocaInst>(V)->setSwiftError(true);
- llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
- Builder.CreateStore(errorValue, swiftErrorTemp);
- }
- // We might have to widen integers, but we should never truncate.
- if (ArgInfo.getCoerceToType() != V->getType() &&
- V->getType()->isIntegerTy())
- V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
- // If the argument doesn't match, perform a bitcast to coerce it. This
- // can happen due to trivial type mismatches.
- if (FirstIRArg < IRFuncTy->getNumParams() &&
- V->getType() != IRFuncTy->getParamType(FirstIRArg))
- V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
- if (ArgHasMaybeUndefAttr)
- V = Builder.CreateFreeze(V);
- IRCallArgs[FirstIRArg] = V;
- break;
- }
- // FIXME: Avoid the conversion through memory if possible.
- Address Src = Address::invalid();
- if (!I->isAggregate()) {
- Src = CreateMemTemp(I->Ty, "coerce");
- I->copyInto(*this, Src);
- } else {
- Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
- : I->getKnownRValue().getAggregateAddress();
- }
- // If the value is offset in memory, apply the offset now.
- Src = emitAddressAtOffset(*this, Src, ArgInfo);
- // Fast-isel and the optimizer generally like scalar values better than
- // FCAs, so we flatten them if this is safe to do for this argument.
- llvm::StructType *STy =
- dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
- if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
- llvm::Type *SrcTy = Src.getElementType();
- uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
- uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
- // If the source type is smaller than the destination type of the
- // coerce-to logic, copy the source value into a temp alloca the size
- // of the destination type to allow loading all of it. The bits past
- // the source value are left undef.
- if (SrcSize < DstSize) {
- Address TempAlloca
- = CreateTempAlloca(STy, Src.getAlignment(),
- Src.getName() + ".coerce");
- Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
- Src = TempAlloca;
- } else {
- Src = Builder.CreateElementBitCast(Src, STy);
- }
- assert(NumIRArgs == STy->getNumElements());
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- Address EltPtr = Builder.CreateStructGEP(Src, i);
- llvm::Value *LI = Builder.CreateLoad(EltPtr);
- if (ArgHasMaybeUndefAttr)
- LI = Builder.CreateFreeze(LI);
- IRCallArgs[FirstIRArg + i] = LI;
- }
- } else {
- // In the simple case, just pass the coerced loaded value.
- assert(NumIRArgs == 1);
- llvm::Value *Load =
- CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
- if (CallInfo.isCmseNSCall()) {
- // For certain parameter types, clear padding bits, as they may reveal
- // sensitive information.
- // Small struct/union types are passed as integer arrays.
- auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
- if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
- Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
- }
- if (ArgHasMaybeUndefAttr)
- Load = Builder.CreateFreeze(Load);
- IRCallArgs[FirstIRArg] = Load;
- }
- break;
- }
- case ABIArgInfo::CoerceAndExpand: {
- auto coercionType = ArgInfo.getCoerceAndExpandType();
- auto layout = CGM.getDataLayout().getStructLayout(coercionType);
- llvm::Value *tempSize = nullptr;
- Address addr = Address::invalid();
- Address AllocaAddr = Address::invalid();
- if (I->isAggregate()) {
- addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
- : I->getKnownRValue().getAggregateAddress();
- } else {
- RValue RV = I->getKnownRValue();
- assert(RV.isScalar()); // complex should always just be direct
- llvm::Type *scalarType = RV.getScalarVal()->getType();
- auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
- auto scalarAlign = CGM.getDataLayout().getPrefTypeAlign(scalarType);
- // Materialize to a temporary.
- addr = CreateTempAlloca(
- RV.getScalarVal()->getType(),
- CharUnits::fromQuantity(std::max(layout->getAlignment(), scalarAlign)),
- "tmp",
- /*ArraySize=*/nullptr, &AllocaAddr);
- tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
- Builder.CreateStore(RV.getScalarVal(), addr);
- }
- addr = Builder.CreateElementBitCast(addr, coercionType);
- unsigned IRArgPos = FirstIRArg;
- for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
- llvm::Type *eltType = coercionType->getElementType(i);
- if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
- Address eltAddr = Builder.CreateStructGEP(addr, i);
- llvm::Value *elt = Builder.CreateLoad(eltAddr);
- if (ArgHasMaybeUndefAttr)
- elt = Builder.CreateFreeze(elt);
- IRCallArgs[IRArgPos++] = elt;
- }
- assert(IRArgPos == FirstIRArg + NumIRArgs);
- if (tempSize) {
- EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
- }
- break;
- }
- case ABIArgInfo::Expand: {
- unsigned IRArgPos = FirstIRArg;
- ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
- assert(IRArgPos == FirstIRArg + NumIRArgs);
- break;
- }
- }
- }
- const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
- llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
- // If we're using inalloca, set up that argument.
- if (ArgMemory.isValid()) {
- llvm::Value *Arg = ArgMemory.getPointer();
- if (CallInfo.isVariadic()) {
- // When passing non-POD arguments by value to variadic functions, we will
- // end up with a variadic prototype and an inalloca call site. In such
- // cases, we can't do any parameter mismatch checks. Give up and bitcast
- // the callee.
- unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
- CalleePtr =
- Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
- } else {
- llvm::Type *LastParamTy =
- IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
- if (Arg->getType() != LastParamTy) {
- #ifndef NDEBUG
- // Assert that these structs have equivalent element types.
- llvm::StructType *FullTy = CallInfo.getArgStruct();
- if (!LastParamTy->isOpaquePointerTy()) {
- llvm::StructType *DeclaredTy = cast<llvm::StructType>(
- LastParamTy->getNonOpaquePointerElementType());
- assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
- for (auto DI = DeclaredTy->element_begin(),
- DE = DeclaredTy->element_end(),
- FI = FullTy->element_begin();
- DI != DE; ++DI, ++FI)
- assert(*DI == *FI);
- }
- #endif
- Arg = Builder.CreateBitCast(Arg, LastParamTy);
- }
- }
- assert(IRFunctionArgs.hasInallocaArg());
- IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
- }
- // 2. Prepare the function pointer.
- // If the callee is a bitcast of a non-variadic function to have a
- // variadic function pointer type, check to see if we can remove the
- // bitcast. This comes up with unprototyped functions.
- //
- // This makes the IR nicer, but more importantly it ensures that we
- // can inline the function at -O0 if it is marked always_inline.
- auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
- llvm::Value *Ptr) -> llvm::Function * {
- if (!CalleeFT->isVarArg())
- return nullptr;
- // Get underlying value if it's a bitcast
- if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
- if (CE->getOpcode() == llvm::Instruction::BitCast)
- Ptr = CE->getOperand(0);
- }
- llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
- if (!OrigFn)
- return nullptr;
- llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
- // If the original type is variadic, or if any of the component types
- // disagree, we cannot remove the cast.
- if (OrigFT->isVarArg() ||
- OrigFT->getNumParams() != CalleeFT->getNumParams() ||
- OrigFT->getReturnType() != CalleeFT->getReturnType())
- return nullptr;
- for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
- if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
- return nullptr;
- return OrigFn;
- };
- if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
- CalleePtr = OrigFn;
- IRFuncTy = OrigFn->getFunctionType();
- }
- // 3. Perform the actual call.
- // Deactivate any cleanups that we're supposed to do immediately before
- // the call.
- if (!CallArgs.getCleanupsToDeactivate().empty())
- deactivateArgCleanupsBeforeCall(*this, CallArgs);
- // Assert that the arguments we computed match up. The IR verifier
- // will catch this, but this is a common enough source of problems
- // during IRGen changes that it's way better for debugging to catch
- // it ourselves here.
- #ifndef NDEBUG
- assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
- for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
- // Inalloca argument can have different type.
- if (IRFunctionArgs.hasInallocaArg() &&
- i == IRFunctionArgs.getInallocaArgNo())
- continue;
- if (i < IRFuncTy->getNumParams())
- assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
- }
- #endif
- // Update the largest vector width if any arguments have vector types.
- for (unsigned i = 0; i < IRCallArgs.size(); ++i)
- LargestVectorWidth = std::max(LargestVectorWidth,
- getMaxVectorWidth(IRCallArgs[i]->getType()));
- // Compute the calling convention and attributes.
- unsigned CallingConv;
- llvm::AttributeList Attrs;
- CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
- Callee.getAbstractInfo(), Attrs, CallingConv,
- /*AttrOnCallSite=*/true,
- /*IsThunk=*/false);
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
- if (FD->hasAttr<StrictFPAttr>())
- // All calls within a strictfp function are marked strictfp
- Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
- // Add call-site nomerge attribute if exists.
- if (InNoMergeAttributedStmt)
- Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge);
- // Add call-site noinline attribute if exists.
- if (InNoInlineAttributedStmt)
- Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
- // Add call-site always_inline attribute if exists.
- if (InAlwaysInlineAttributedStmt)
- Attrs =
- Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
- // Apply some call-site-specific attributes.
- // TODO: work this into building the attribute set.
- // Apply always_inline to all calls within flatten functions.
- // FIXME: should this really take priority over __try, below?
- if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
- !InNoInlineAttributedStmt &&
- !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
- Attrs =
- Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline);
- }
- // Disable inlining inside SEH __try blocks.
- if (isSEHTryScope()) {
- Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline);
- }
- // Decide whether to use a call or an invoke.
- bool CannotThrow;
- if (currentFunctionUsesSEHTry()) {
- // SEH cares about asynchronous exceptions, so everything can "throw."
- CannotThrow = false;
- } else if (isCleanupPadScope() &&
- EHPersonality::get(*this).isMSVCXXPersonality()) {
- // The MSVC++ personality will implicitly terminate the program if an
- // exception is thrown during a cleanup outside of a try/catch.
- // We don't need to model anything in IR to get this behavior.
- CannotThrow = true;
- } else {
- // Otherwise, nounwind call sites will never throw.
- CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind);
- if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
- if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
- CannotThrow = true;
- }
- // If we made a temporary, be sure to clean up after ourselves. Note that we
- // can't depend on being inside of an ExprWithCleanups, so we need to manually
- // pop this cleanup later on. Being eager about this is OK, since this
- // temporary is 'invisible' outside of the callee.
- if (UnusedReturnSizePtr)
- pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
- UnusedReturnSizePtr);
- llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
- SmallVector<llvm::OperandBundleDef, 1> BundleList =
- getBundlesForFunclet(CalleePtr);
- if (SanOpts.has(SanitizerKind::KCFI) &&
- !isa_and_nonnull<FunctionDecl>(TargetDecl))
- EmitKCFIOperandBundle(ConcreteCallee, BundleList);
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
- if (FD->hasAttr<StrictFPAttr>())
- // All calls within a strictfp function are marked strictfp
- Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP);
- AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
- Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
- AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
- Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
- // Emit the actual call/invoke instruction.
- llvm::CallBase *CI;
- if (!InvokeDest) {
- CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
- } else {
- llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
- CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
- BundleList);
- EmitBlock(Cont);
- }
- if (callOrInvoke)
- *callOrInvoke = CI;
- // If this is within a function that has the guard(nocf) attribute and is an
- // indirect call, add the "guard_nocf" attribute to this call to indicate that
- // Control Flow Guard checks should not be added, even if the call is inlined.
- if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
- if (const auto *A = FD->getAttr<CFGuardAttr>()) {
- if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
- Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf");
- }
- }
- // Apply the attributes and calling convention.
- CI->setAttributes(Attrs);
- CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
- // Apply various metadata.
- if (!CI->getType()->isVoidTy())
- CI->setName("call");
- // Update largest vector width from the return type.
- LargestVectorWidth =
- std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType()));
- // Insert instrumentation or attach profile metadata at indirect call sites.
- // For more details, see the comment before the definition of
- // IPVK_IndirectCallTarget in InstrProfData.inc.
- if (!CI->getCalledFunction())
- PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
- CI, CalleePtr);
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- if (CGM.getLangOpts().ObjCAutoRefCount)
- AddObjCARCExceptionMetadata(CI);
- // Set tail call kind if necessary.
- if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
- if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
- Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
- else if (IsMustTail)
- Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
- }
- // Add metadata for calls to MSAllocator functions
- if (getDebugInfo() && TargetDecl &&
- TargetDecl->hasAttr<MSAllocatorAttr>())
- getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
- // Add metadata if calling an __attribute__((error(""))) or warning fn.
- if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) {
- llvm::ConstantInt *Line =
- llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding());
- llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line);
- llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD});
- CI->setMetadata("srcloc", MDT);
- }
- // 4. Finish the call.
- // If the call doesn't return, finish the basic block and clear the
- // insertion point; this allows the rest of IRGen to discard
- // unreachable code.
- if (CI->doesNotReturn()) {
- if (UnusedReturnSizePtr)
- PopCleanupBlock();
- // Strip away the noreturn attribute to better diagnose unreachable UB.
- if (SanOpts.has(SanitizerKind::Unreachable)) {
- // Also remove from function since CallBase::hasFnAttr additionally checks
- // attributes of the called function.
- if (auto *F = CI->getCalledFunction())
- F->removeFnAttr(llvm::Attribute::NoReturn);
- CI->removeFnAttr(llvm::Attribute::NoReturn);
- // Avoid incompatibility with ASan which relies on the `noreturn`
- // attribute to insert handler calls.
- if (SanOpts.hasOneOf(SanitizerKind::Address |
- SanitizerKind::KernelAddress)) {
- SanitizerScope SanScope(this);
- llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
- Builder.SetInsertPoint(CI);
- auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
- llvm::FunctionCallee Fn =
- CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
- EmitNounwindRuntimeCall(Fn);
- }
- }
- EmitUnreachable(Loc);
- Builder.ClearInsertionPoint();
- // FIXME: For now, emit a dummy basic block because expr emitters in
- // generally are not ready to handle emitting expressions at unreachable
- // points.
- EnsureInsertPoint();
- // Return a reasonable RValue.
- return GetUndefRValue(RetTy);
- }
- // If this is a musttail call, return immediately. We do not branch to the
- // epilogue in this case.
- if (IsMustTail) {
- for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end();
- ++it) {
- EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it);
- if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn()))
- CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups");
- }
- if (CI->getType()->isVoidTy())
- Builder.CreateRetVoid();
- else
- Builder.CreateRet(CI);
- Builder.ClearInsertionPoint();
- EnsureInsertPoint();
- return GetUndefRValue(RetTy);
- }
- // Perform the swifterror writeback.
- if (swiftErrorTemp.isValid()) {
- llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
- Builder.CreateStore(errorResult, swiftErrorArg);
- }
- // Emit any call-associated writebacks immediately. Arguably this
- // should happen after any return-value munging.
- if (CallArgs.hasWritebacks())
- emitWritebacks(*this, CallArgs);
- // The stack cleanup for inalloca arguments has to run out of the normal
- // lexical order, so deactivate it and run it manually here.
- CallArgs.freeArgumentMemory(*this);
- // Extract the return value.
- RValue Ret = [&] {
- switch (RetAI.getKind()) {
- case ABIArgInfo::CoerceAndExpand: {
- auto coercionType = RetAI.getCoerceAndExpandType();
- Address addr = SRetPtr;
- addr = Builder.CreateElementBitCast(addr, coercionType);
- assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
- bool requiresExtract = isa<llvm::StructType>(CI->getType());
- unsigned unpaddedIndex = 0;
- for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
- llvm::Type *eltType = coercionType->getElementType(i);
- if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
- Address eltAddr = Builder.CreateStructGEP(addr, i);
- llvm::Value *elt = CI;
- if (requiresExtract)
- elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
- else
- assert(unpaddedIndex == 0);
- Builder.CreateStore(elt, eltAddr);
- }
- // FALLTHROUGH
- [[fallthrough]];
- }
- case ABIArgInfo::InAlloca:
- case ABIArgInfo::Indirect: {
- RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
- if (UnusedReturnSizePtr)
- PopCleanupBlock();
- return ret;
- }
- case ABIArgInfo::Ignore:
- // If we are ignoring an argument that had a result, make sure to
- // construct the appropriate return value for our caller.
- return GetUndefRValue(RetTy);
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- llvm::Type *RetIRTy = ConvertType(RetTy);
- if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
- switch (getEvaluationKind(RetTy)) {
- case TEK_Complex: {
- llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
- llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
- return RValue::getComplex(std::make_pair(Real, Imag));
- }
- case TEK_Aggregate: {
- Address DestPtr = ReturnValue.getValue();
- bool DestIsVolatile = ReturnValue.isVolatile();
- if (!DestPtr.isValid()) {
- DestPtr = CreateMemTemp(RetTy, "agg.tmp");
- DestIsVolatile = false;
- }
- EmitAggregateStore(CI, DestPtr, DestIsVolatile);
- return RValue::getAggregate(DestPtr);
- }
- case TEK_Scalar: {
- // If the argument doesn't match, perform a bitcast to coerce it. This
- // can happen due to trivial type mismatches.
- llvm::Value *V = CI;
- if (V->getType() != RetIRTy)
- V = Builder.CreateBitCast(V, RetIRTy);
- return RValue::get(V);
- }
- }
- llvm_unreachable("bad evaluation kind");
- }
- Address DestPtr = ReturnValue.getValue();
- bool DestIsVolatile = ReturnValue.isVolatile();
- if (!DestPtr.isValid()) {
- DestPtr = CreateMemTemp(RetTy, "coerce");
- DestIsVolatile = false;
- }
- // If the value is offset in memory, apply the offset now.
- Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
- CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
- return convertTempToRValue(DestPtr, RetTy, SourceLocation());
- }
- case ABIArgInfo::Expand:
- case ABIArgInfo::IndirectAliased:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- llvm_unreachable("Unhandled ABIArgInfo::Kind");
- } ();
- // Emit the assume_aligned check on the return value.
- if (Ret.isScalar() && TargetDecl) {
- AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
- AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
- }
- // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
- // we can't use the full cleanup mechanism.
- for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
- LifetimeEnd.Emit(*this, /*Flags=*/{});
- if (!ReturnValue.isExternallyDestructed() &&
- RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
- pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
- RetTy);
- return Ret;
- }
- CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
- if (isVirtual()) {
- const CallExpr *CE = getVirtualCallExpr();
- return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
- CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
- CE ? CE->getBeginLoc() : SourceLocation());
- }
- return *this;
- }
- /* VarArg handling */
- Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
- VAListAddr = VE->isMicrosoftABI()
- ? EmitMSVAListRef(VE->getSubExpr())
- : EmitVAListRef(VE->getSubExpr());
- QualType Ty = VE->getType();
- if (VE->isMicrosoftABI())
- return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
- return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
- }
|