123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576 |
- //===--------- SCEVAffinator.cpp - Create Scops from LLVM IR -------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // Create a polyhedral description for a SCEV value.
- //
- //===----------------------------------------------------------------------===//
- #include "polly/Support/SCEVAffinator.h"
- #include "polly/Options.h"
- #include "polly/ScopInfo.h"
- #include "polly/Support/GICHelper.h"
- #include "polly/Support/SCEVValidator.h"
- #include "isl/aff.h"
- #include "isl/local_space.h"
- #include "isl/set.h"
- #include "isl/val.h"
- using namespace llvm;
- using namespace polly;
- static cl::opt<bool> IgnoreIntegerWrapping(
- "polly-ignore-integer-wrapping",
- cl::desc("Do not build run-time checks to proof absence of integer "
- "wrapping"),
- cl::Hidden, cl::cat(PollyCategory));
- // The maximal number of basic sets we allow during the construction of a
- // piecewise affine function. More complex ones will result in very high
- // compile time.
- static int const MaxDisjunctionsInPwAff = 100;
- // The maximal number of bits for which a general expression is modeled
- // precisely.
- static unsigned const MaxSmallBitWidth = 7;
- /// Add the number of basic sets in @p Domain to @p User
- static isl_stat addNumBasicSets(__isl_take isl_set *Domain,
- __isl_take isl_aff *Aff, void *User) {
- auto *NumBasicSets = static_cast<unsigned *>(User);
- *NumBasicSets += isl_set_n_basic_set(Domain);
- isl_set_free(Domain);
- isl_aff_free(Aff);
- return isl_stat_ok;
- }
- /// Determine if @p PWAC is too complex to continue.
- static bool isTooComplex(PWACtx PWAC) {
- unsigned NumBasicSets = 0;
- isl_pw_aff_foreach_piece(PWAC.first.get(), addNumBasicSets, &NumBasicSets);
- if (NumBasicSets <= MaxDisjunctionsInPwAff)
- return false;
- return true;
- }
- /// Return the flag describing the possible wrapping of @p Expr.
- static SCEV::NoWrapFlags getNoWrapFlags(const SCEV *Expr) {
- if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
- return NAry->getNoWrapFlags();
- return SCEV::NoWrapMask;
- }
- static PWACtx combine(PWACtx PWAC0, PWACtx PWAC1,
- __isl_give isl_pw_aff *(Fn)(__isl_take isl_pw_aff *,
- __isl_take isl_pw_aff *)) {
- PWAC0.first = isl::manage(Fn(PWAC0.first.release(), PWAC1.first.release()));
- PWAC0.second = PWAC0.second.unite(PWAC1.second);
- return PWAC0;
- }
- static __isl_give isl_pw_aff *getWidthExpValOnDomain(unsigned Width,
- __isl_take isl_set *Dom) {
- auto *Ctx = isl_set_get_ctx(Dom);
- auto *WidthVal = isl_val_int_from_ui(Ctx, Width);
- auto *ExpVal = isl_val_2exp(WidthVal);
- return isl_pw_aff_val_on_domain(Dom, ExpVal);
- }
- SCEVAffinator::SCEVAffinator(Scop *S, LoopInfo &LI)
- : S(S), Ctx(S->getIslCtx().get()), SE(*S->getSE()), LI(LI),
- TD(S->getFunction().getParent()->getDataLayout()) {}
- Loop *SCEVAffinator::getScope() { return BB ? LI.getLoopFor(BB) : nullptr; }
- void SCEVAffinator::interpretAsUnsigned(PWACtx &PWAC, unsigned Width) {
- auto *NonNegDom = isl_pw_aff_nonneg_set(PWAC.first.copy());
- auto *NonNegPWA =
- isl_pw_aff_intersect_domain(PWAC.first.copy(), isl_set_copy(NonNegDom));
- auto *ExpPWA = getWidthExpValOnDomain(Width, isl_set_complement(NonNegDom));
- PWAC.first = isl::manage(isl_pw_aff_union_add(
- NonNegPWA, isl_pw_aff_add(PWAC.first.release(), ExpPWA)));
- }
- void SCEVAffinator::takeNonNegativeAssumption(
- PWACtx &PWAC, RecordedAssumptionsTy *RecordedAssumptions) {
- this->RecordedAssumptions = RecordedAssumptions;
- auto *NegPWA = isl_pw_aff_neg(PWAC.first.copy());
- auto *NegDom = isl_pw_aff_pos_set(NegPWA);
- PWAC.second =
- isl::manage(isl_set_union(PWAC.second.release(), isl_set_copy(NegDom)));
- auto *Restriction = BB ? NegDom : isl_set_params(NegDom);
- auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
- recordAssumption(RecordedAssumptions, UNSIGNED, isl::manage(Restriction), DL,
- AS_RESTRICTION, BB);
- }
- PWACtx SCEVAffinator::getPWACtxFromPWA(isl::pw_aff PWA) {
- return std::make_pair(PWA, isl::set::empty(isl::space(Ctx, 0, NumIterators)));
- }
- PWACtx SCEVAffinator::getPwAff(const SCEV *Expr, BasicBlock *BB,
- RecordedAssumptionsTy *RecordedAssumptions) {
- this->BB = BB;
- this->RecordedAssumptions = RecordedAssumptions;
- if (BB) {
- auto *DC = S->getDomainConditions(BB).release();
- NumIterators = isl_set_n_dim(DC);
- isl_set_free(DC);
- } else
- NumIterators = 0;
- return visit(Expr);
- }
- PWACtx SCEVAffinator::checkForWrapping(const SCEV *Expr, PWACtx PWAC) const {
- // If the SCEV flags do contain NSW (no signed wrap) then PWA already
- // represents Expr in modulo semantic (it is not allowed to overflow), thus we
- // are done. Otherwise, we will compute:
- // PWA = ((PWA + 2^(n-1)) mod (2 ^ n)) - 2^(n-1)
- // whereas n is the number of bits of the Expr, hence:
- // n = bitwidth(ExprType)
- if (IgnoreIntegerWrapping || (getNoWrapFlags(Expr) & SCEV::FlagNSW))
- return PWAC;
- isl::pw_aff PWAMod = addModuloSemantic(PWAC.first, Expr->getType());
- isl::set NotEqualSet = PWAC.first.ne_set(PWAMod);
- PWAC.second = PWAC.second.unite(NotEqualSet).coalesce();
- const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
- if (!BB)
- NotEqualSet = NotEqualSet.params();
- NotEqualSet = NotEqualSet.coalesce();
- if (!NotEqualSet.is_empty())
- recordAssumption(RecordedAssumptions, WRAPPING, NotEqualSet, Loc,
- AS_RESTRICTION, BB);
- return PWAC;
- }
- isl::pw_aff SCEVAffinator::addModuloSemantic(isl::pw_aff PWA,
- Type *ExprType) const {
- unsigned Width = TD.getTypeSizeInBits(ExprType);
- auto ModVal = isl::val::int_from_ui(Ctx, Width);
- ModVal = ModVal.pow2();
- isl::set Domain = PWA.domain();
- isl::pw_aff AddPW =
- isl::manage(getWidthExpValOnDomain(Width - 1, Domain.release()));
- return PWA.add(AddPW).mod(ModVal).sub(AddPW);
- }
- bool SCEVAffinator::hasNSWAddRecForLoop(Loop *L) const {
- for (const auto &CachedPair : CachedExpressions) {
- auto *AddRec = dyn_cast<SCEVAddRecExpr>(CachedPair.first.first);
- if (!AddRec)
- continue;
- if (AddRec->getLoop() != L)
- continue;
- if (AddRec->getNoWrapFlags() & SCEV::FlagNSW)
- return true;
- }
- return false;
- }
- bool SCEVAffinator::computeModuloForExpr(const SCEV *Expr) {
- unsigned Width = TD.getTypeSizeInBits(Expr->getType());
- // We assume nsw expressions never overflow.
- if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
- if (NAry->getNoWrapFlags() & SCEV::FlagNSW)
- return false;
- return Width <= MaxSmallBitWidth;
- }
- PWACtx SCEVAffinator::visit(const SCEV *Expr) {
- auto Key = std::make_pair(Expr, BB);
- PWACtx PWAC = CachedExpressions[Key];
- if (!PWAC.first.is_null())
- return PWAC;
- auto ConstantAndLeftOverPair = extractConstantFactor(Expr, SE);
- auto *Factor = ConstantAndLeftOverPair.first;
- Expr = ConstantAndLeftOverPair.second;
- auto *Scope = getScope();
- S->addParams(getParamsInAffineExpr(&S->getRegion(), Scope, Expr, SE));
- // In case the scev is a valid parameter, we do not further analyze this
- // expression, but create a new parameter in the isl_pw_aff. This allows us
- // to treat subexpressions that we cannot translate into an piecewise affine
- // expression, as constant parameters of the piecewise affine expression.
- if (isl_id *Id = S->getIdForParam(Expr).release()) {
- isl_space *Space = isl_space_set_alloc(Ctx.get(), 1, NumIterators);
- Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);
- isl_set *Domain = isl_set_universe(isl_space_copy(Space));
- isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
- Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);
- PWAC = getPWACtxFromPWA(isl::manage(isl_pw_aff_alloc(Domain, Affine)));
- } else {
- PWAC = SCEVVisitor<SCEVAffinator, PWACtx>::visit(Expr);
- if (computeModuloForExpr(Expr))
- PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
- else
- PWAC = checkForWrapping(Expr, PWAC);
- }
- if (!Factor->getType()->isIntegerTy(1)) {
- PWAC = combine(PWAC, visitConstant(Factor), isl_pw_aff_mul);
- if (computeModuloForExpr(Key.first))
- PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
- }
- // For compile time reasons we need to simplify the PWAC before we cache and
- // return it.
- PWAC.first = PWAC.first.coalesce();
- if (!computeModuloForExpr(Key.first))
- PWAC = checkForWrapping(Key.first, PWAC);
- CachedExpressions[Key] = PWAC;
- return PWAC;
- }
- PWACtx SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
- ConstantInt *Value = Expr->getValue();
- isl_val *v;
- // LLVM does not define if an integer value is interpreted as a signed or
- // unsigned value. Hence, without further information, it is unknown how
- // this value needs to be converted to GMP. At the moment, we only support
- // signed operations. So we just interpret it as signed. Later, there are
- // two options:
- //
- // 1. We always interpret any value as signed and convert the values on
- // demand.
- // 2. We pass down the signedness of the calculation and use it to interpret
- // this constant correctly.
- v = isl_valFromAPInt(Ctx.get(), Value->getValue(), /* isSigned */ true);
- isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
- isl_local_space *ls = isl_local_space_from_space(Space);
- return getPWACtxFromPWA(
- isl::manage(isl_pw_aff_from_aff(isl_aff_val_on_domain(ls, v))));
- }
- PWACtx SCEVAffinator::visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) {
- return visit(Expr->getOperand(0));
- }
- PWACtx SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
- // Truncate operations are basically modulo operations, thus we can
- // model them that way. However, for large types we assume the operand
- // to fit in the new type size instead of introducing a modulo with a very
- // large constant.
- auto *Op = Expr->getOperand();
- auto OpPWAC = visit(Op);
- unsigned Width = TD.getTypeSizeInBits(Expr->getType());
- if (computeModuloForExpr(Expr))
- return OpPWAC;
- auto *Dom = OpPWAC.first.domain().release();
- auto *ExpPWA = getWidthExpValOnDomain(Width - 1, Dom);
- auto *GreaterDom =
- isl_pw_aff_ge_set(OpPWAC.first.copy(), isl_pw_aff_copy(ExpPWA));
- auto *SmallerDom =
- isl_pw_aff_lt_set(OpPWAC.first.copy(), isl_pw_aff_neg(ExpPWA));
- auto *OutOfBoundsDom = isl_set_union(SmallerDom, GreaterDom);
- OpPWAC.second = OpPWAC.second.unite(isl::manage_copy(OutOfBoundsDom));
- if (!BB) {
- assert(isl_set_dim(OutOfBoundsDom, isl_dim_set) == 0 &&
- "Expected a zero dimensional set for non-basic-block domains");
- OutOfBoundsDom = isl_set_params(OutOfBoundsDom);
- }
- recordAssumption(RecordedAssumptions, UNSIGNED, isl::manage(OutOfBoundsDom),
- DebugLoc(), AS_RESTRICTION, BB);
- return OpPWAC;
- }
- PWACtx SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
- // A zero-extended value can be interpreted as a piecewise defined signed
- // value. If the value was non-negative it stays the same, otherwise it
- // is the sum of the original value and 2^n where n is the bit-width of
- // the original (or operand) type. Examples:
- // zext i8 127 to i32 -> { [127] }
- // zext i8 -1 to i32 -> { [256 + (-1)] } = { [255] }
- // zext i8 %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }
- //
- // However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
- // truncate) to represent some forms of modulo computation. The left-hand side
- // of the condition in the code below would result in the SCEV
- // "zext i1 <false, +, true>for.body" which is just another description
- // of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".
- //
- // for (i = 0; i < N; i++)
- // if (i & 1 != 0 /* == i % 2 */)
- // /* do something */
- //
- // If we do not make the modulo explicit but only use the mechanism described
- // above we will get the very restrictive assumption "N < 3", because for all
- // values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
- // Alternatively, we can make the modulo in the operand explicit in the
- // resulting piecewise function and thereby avoid the assumption on N. For the
- // example this would result in the following piecewise affine function:
- // { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
- // [i0] -> [(0)] : 2*floor((i0)/2) = i0 }
- // To this end we can first determine if the (immediate) operand of the
- // zero-extend can wrap and, in case it might, we will use explicit modulo
- // semantic to compute the result instead of emitting non-wrapping
- // assumptions.
- //
- // Note that operands with large bit-widths are less likely to be negative
- // because it would result in a very large access offset or loop bound after
- // the zero-extend. To this end one can optimistically assume the operand to
- // be positive and avoid the piecewise definition if the bit-width is bigger
- // than some threshold (here MaxZextSmallBitWidth).
- //
- // We choose to go with a hybrid solution of all modeling techniques described
- // above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
- // wrapping explicitly and use a piecewise defined function. However, if the
- // bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
- // assumptions and assume the "former negative" piece will not exist.
- auto *Op = Expr->getOperand();
- auto OpPWAC = visit(Op);
- // If the width is to big we assume the negative part does not occur.
- if (!computeModuloForExpr(Op)) {
- takeNonNegativeAssumption(OpPWAC, RecordedAssumptions);
- return OpPWAC;
- }
- // If the width is small build the piece for the non-negative part and
- // the one for the negative part and unify them.
- unsigned Width = TD.getTypeSizeInBits(Op->getType());
- interpretAsUnsigned(OpPWAC, Width);
- return OpPWAC;
- }
- PWACtx SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
- // As all values are represented as signed, a sign extension is a noop.
- return visit(Expr->getOperand());
- }
- PWACtx SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
- PWACtx Sum = visit(Expr->getOperand(0));
- for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
- Sum = combine(Sum, visit(Expr->getOperand(i)), isl_pw_aff_add);
- if (isTooComplex(Sum))
- return complexityBailout();
- }
- return Sum;
- }
- PWACtx SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
- PWACtx Prod = visit(Expr->getOperand(0));
- for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
- Prod = combine(Prod, visit(Expr->getOperand(i)), isl_pw_aff_mul);
- if (isTooComplex(Prod))
- return complexityBailout();
- }
- return Prod;
- }
- PWACtx SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
- assert(Expr->isAffine() && "Only affine AddRecurrences allowed");
- auto Flags = Expr->getNoWrapFlags();
- // Directly generate isl_pw_aff for Expr if 'start' is zero.
- if (Expr->getStart()->isZero()) {
- assert(S->contains(Expr->getLoop()) &&
- "Scop does not contain the loop referenced in this AddRec");
- PWACtx Step = visit(Expr->getOperand(1));
- isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
- isl_local_space *LocalSpace = isl_local_space_from_space(Space);
- unsigned loopDimension = S->getRelativeLoopDepth(Expr->getLoop());
- isl_aff *LAff = isl_aff_set_coefficient_si(
- isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
- isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);
- Step.first = Step.first.mul(isl::manage(LPwAff));
- return Step;
- }
- // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
- // if 'start' is not zero.
- // TODO: Using the original SCEV no-wrap flags is not always safe, however
- // as our code generation is reordering the expression anyway it doesn't
- // really matter.
- const SCEV *ZeroStartExpr =
- SE.getAddRecExpr(SE.getConstant(Expr->getStart()->getType(), 0),
- Expr->getStepRecurrence(SE), Expr->getLoop(), Flags);
- PWACtx Result = visit(ZeroStartExpr);
- PWACtx Start = visit(Expr->getStart());
- Result = combine(Result, Start, isl_pw_aff_add);
- return Result;
- }
- PWACtx SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
- PWACtx Max = visit(Expr->getOperand(0));
- for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
- Max = combine(Max, visit(Expr->getOperand(i)), isl_pw_aff_max);
- if (isTooComplex(Max))
- return complexityBailout();
- }
- return Max;
- }
- PWACtx SCEVAffinator::visitSMinExpr(const SCEVSMinExpr *Expr) {
- PWACtx Min = visit(Expr->getOperand(0));
- for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
- Min = combine(Min, visit(Expr->getOperand(i)), isl_pw_aff_min);
- if (isTooComplex(Min))
- return complexityBailout();
- }
- return Min;
- }
- PWACtx SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
- llvm_unreachable("SCEVUMaxExpr not yet supported");
- }
- PWACtx SCEVAffinator::visitUMinExpr(const SCEVUMinExpr *Expr) {
- llvm_unreachable("SCEVUMinExpr not yet supported");
- }
- PWACtx
- SCEVAffinator::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
- llvm_unreachable("SCEVSequentialUMinExpr not yet supported");
- }
- PWACtx SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
- // The handling of unsigned division is basically the same as for signed
- // division, except the interpretation of the operands. As the divisor
- // has to be constant in both cases we can simply interpret it as an
- // unsigned value without additional complexity in the representation.
- // For the dividend we could choose from the different representation
- // schemes introduced for zero-extend operations but for now we will
- // simply use an assumption.
- auto *Dividend = Expr->getLHS();
- auto *Divisor = Expr->getRHS();
- assert(isa<SCEVConstant>(Divisor) &&
- "UDiv is no parameter but has a non-constant RHS.");
- auto DividendPWAC = visit(Dividend);
- auto DivisorPWAC = visit(Divisor);
- if (SE.isKnownNegative(Divisor)) {
- // Interpret negative divisors unsigned. This is a special case of the
- // piece-wise defined value described for zero-extends as we already know
- // the actual value of the constant divisor.
- unsigned Width = TD.getTypeSizeInBits(Expr->getType());
- auto *DivisorDom = DivisorPWAC.first.domain().release();
- auto *WidthExpPWA = getWidthExpValOnDomain(Width, DivisorDom);
- DivisorPWAC.first = DivisorPWAC.first.add(isl::manage(WidthExpPWA));
- }
- // TODO: One can represent the dividend as piece-wise function to be more
- // precise but therefor a heuristic is needed.
- // Assume a non-negative dividend.
- takeNonNegativeAssumption(DividendPWAC, RecordedAssumptions);
- DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_div);
- DividendPWAC.first = DividendPWAC.first.floor();
- return DividendPWAC;
- }
- PWACtx SCEVAffinator::visitSDivInstruction(Instruction *SDiv) {
- assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!");
- auto *Scope = getScope();
- auto *Divisor = SDiv->getOperand(1);
- auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
- auto DivisorPWAC = visit(DivisorSCEV);
- assert(isa<SCEVConstant>(DivisorSCEV) &&
- "SDiv is no parameter but has a non-constant RHS.");
- auto *Dividend = SDiv->getOperand(0);
- auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
- auto DividendPWAC = visit(DividendSCEV);
- DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_q);
- return DividendPWAC;
- }
- PWACtx SCEVAffinator::visitSRemInstruction(Instruction *SRem) {
- assert(SRem->getOpcode() == Instruction::SRem && "Assumed SRem instruction!");
- auto *Scope = getScope();
- auto *Divisor = SRem->getOperand(1);
- auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
- auto DivisorPWAC = visit(DivisorSCEV);
- assert(isa<ConstantInt>(Divisor) &&
- "SRem is no parameter but has a non-constant RHS.");
- auto *Dividend = SRem->getOperand(0);
- auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
- auto DividendPWAC = visit(DividendSCEV);
- DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_r);
- return DividendPWAC;
- }
- PWACtx SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
- if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
- switch (I->getOpcode()) {
- case Instruction::IntToPtr:
- return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
- case Instruction::SDiv:
- return visitSDivInstruction(I);
- case Instruction::SRem:
- return visitSRemInstruction(I);
- default:
- break; // Fall through.
- }
- }
- if (isa<ConstantPointerNull>(Expr->getValue())) {
- isl::val v{Ctx, 0};
- isl::space Space{Ctx, 0, NumIterators};
- isl::local_space ls{Space};
- return getPWACtxFromPWA(isl::aff(ls, v));
- }
- llvm_unreachable("Unknowns SCEV was neither a parameter, a constant nor a "
- "valid instruction.");
- }
- PWACtx SCEVAffinator::complexityBailout() {
- // We hit the complexity limit for affine expressions; invalidate the scop
- // and return a constant zero.
- const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
- S->invalidate(COMPLEXITY, Loc);
- return visit(SE.getZero(Type::getInt32Ty(S->getFunction().getContext())));
- }
|