123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335 |
- /*
- * Copyright 2008-2009 Katholieke Universiteit Leuven
- *
- * Use of this software is governed by the MIT license
- *
- * Written by Sven Verdoolaege, K.U.Leuven, Departement
- * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
- */
- #include <isl_ctx_private.h>
- #include <isl_map_private.h>
- #include "isl_sample.h"
- #include <isl/vec.h>
- #include <isl/mat.h>
- #include <isl_seq.h>
- #include "isl_equalities.h"
- #include "isl_tab.h"
- #include "isl_basis_reduction.h"
- #include <isl_factorization.h>
- #include <isl_point_private.h>
- #include <isl_options_private.h>
- #include <isl_vec_private.h>
- #include <bset_from_bmap.c>
- #include <set_to_map.c>
- static __isl_give isl_vec *empty_sample(__isl_take isl_basic_set *bset)
- {
- struct isl_vec *vec;
- vec = isl_vec_alloc(bset->ctx, 0);
- isl_basic_set_free(bset);
- return vec;
- }
- /* Construct a zero sample of the same dimension as bset.
- * As a special case, if bset is zero-dimensional, this
- * function creates a zero-dimensional sample point.
- */
- static __isl_give isl_vec *zero_sample(__isl_take isl_basic_set *bset)
- {
- isl_size dim;
- struct isl_vec *sample;
- dim = isl_basic_set_dim(bset, isl_dim_all);
- if (dim < 0)
- goto error;
- sample = isl_vec_alloc(bset->ctx, 1 + dim);
- if (sample) {
- isl_int_set_si(sample->el[0], 1);
- isl_seq_clr(sample->el + 1, dim);
- }
- isl_basic_set_free(bset);
- return sample;
- error:
- isl_basic_set_free(bset);
- return NULL;
- }
- static __isl_give isl_vec *interval_sample(__isl_take isl_basic_set *bset)
- {
- int i;
- isl_int t;
- struct isl_vec *sample;
- bset = isl_basic_set_simplify(bset);
- if (!bset)
- return NULL;
- if (isl_basic_set_plain_is_empty(bset))
- return empty_sample(bset);
- if (bset->n_eq == 0 && bset->n_ineq == 0)
- return zero_sample(bset);
- sample = isl_vec_alloc(bset->ctx, 2);
- if (!sample)
- goto error;
- if (!bset)
- return NULL;
- isl_int_set_si(sample->block.data[0], 1);
- if (bset->n_eq > 0) {
- isl_assert(bset->ctx, bset->n_eq == 1, goto error);
- isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
- if (isl_int_is_one(bset->eq[0][1]))
- isl_int_neg(sample->el[1], bset->eq[0][0]);
- else {
- isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
- goto error);
- isl_int_set(sample->el[1], bset->eq[0][0]);
- }
- isl_basic_set_free(bset);
- return sample;
- }
- isl_int_init(t);
- if (isl_int_is_one(bset->ineq[0][1]))
- isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
- else
- isl_int_set(sample->block.data[1], bset->ineq[0][0]);
- for (i = 1; i < bset->n_ineq; ++i) {
- isl_seq_inner_product(sample->block.data,
- bset->ineq[i], 2, &t);
- if (isl_int_is_neg(t))
- break;
- }
- isl_int_clear(t);
- if (i < bset->n_ineq) {
- isl_vec_free(sample);
- return empty_sample(bset);
- }
- isl_basic_set_free(bset);
- return sample;
- error:
- isl_basic_set_free(bset);
- isl_vec_free(sample);
- return NULL;
- }
- /* Find a sample integer point, if any, in bset, which is known
- * to have equalities. If bset contains no integer points, then
- * return a zero-length vector.
- * We simply remove the known equalities, compute a sample
- * in the resulting bset, using the specified recurse function,
- * and then transform the sample back to the original space.
- */
- static __isl_give isl_vec *sample_eq(__isl_take isl_basic_set *bset,
- __isl_give isl_vec *(*recurse)(__isl_take isl_basic_set *))
- {
- struct isl_mat *T;
- struct isl_vec *sample;
- if (!bset)
- return NULL;
- bset = isl_basic_set_remove_equalities(bset, &T, NULL);
- sample = recurse(bset);
- if (!sample || sample->size == 0)
- isl_mat_free(T);
- else
- sample = isl_mat_vec_product(T, sample);
- return sample;
- }
- /* Return a matrix containing the equalities of the tableau
- * in constraint form. The tableau is assumed to have
- * an associated bset that has been kept up-to-date.
- */
- static struct isl_mat *tab_equalities(struct isl_tab *tab)
- {
- int i, j;
- int n_eq;
- struct isl_mat *eq;
- struct isl_basic_set *bset;
- if (!tab)
- return NULL;
- bset = isl_tab_peek_bset(tab);
- isl_assert(tab->mat->ctx, bset, return NULL);
- n_eq = tab->n_var - tab->n_col + tab->n_dead;
- if (tab->empty || n_eq == 0)
- return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var);
- if (n_eq == tab->n_var)
- return isl_mat_identity(tab->mat->ctx, tab->n_var);
- eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var);
- if (!eq)
- return NULL;
- for (i = 0, j = 0; i < tab->n_con; ++i) {
- if (tab->con[i].is_row)
- continue;
- if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead)
- continue;
- if (i < bset->n_eq)
- isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var);
- else
- isl_seq_cpy(eq->row[j],
- bset->ineq[i - bset->n_eq] + 1, tab->n_var);
- ++j;
- }
- isl_assert(bset->ctx, j == n_eq, goto error);
- return eq;
- error:
- isl_mat_free(eq);
- return NULL;
- }
- /* Compute and return an initial basis for the bounded tableau "tab".
- *
- * If the tableau is either full-dimensional or zero-dimensional,
- * the we simply return an identity matrix.
- * Otherwise, we construct a basis whose first directions correspond
- * to equalities.
- */
- static struct isl_mat *initial_basis(struct isl_tab *tab)
- {
- int n_eq;
- struct isl_mat *eq;
- struct isl_mat *Q;
- tab->n_unbounded = 0;
- tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead;
- if (tab->empty || n_eq == 0 || n_eq == tab->n_var)
- return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var);
- eq = tab_equalities(tab);
- eq = isl_mat_left_hermite(eq, 0, NULL, &Q);
- if (!eq)
- return NULL;
- isl_mat_free(eq);
- Q = isl_mat_lin_to_aff(Q);
- return Q;
- }
- /* Compute the minimum of the current ("level") basis row over "tab"
- * and store the result in position "level" of "min".
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- */
- static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab,
- __isl_keep isl_vec *min, int level)
- {
- return isl_tab_min(tab, tab->basis->row[1 + level],
- ctx->one, &min->el[level], NULL, 0);
- }
- /* Compute the maximum of the current ("level") basis row over "tab"
- * and store the result in position "level" of "max".
- *
- * This function assumes that at least one more row and at least
- * one more element in the constraint array are available in the tableau.
- */
- static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab,
- __isl_keep isl_vec *max, int level)
- {
- enum isl_lp_result res;
- unsigned dim = tab->n_var;
- isl_seq_neg(tab->basis->row[1 + level] + 1,
- tab->basis->row[1 + level] + 1, dim);
- res = isl_tab_min(tab, tab->basis->row[1 + level],
- ctx->one, &max->el[level], NULL, 0);
- isl_seq_neg(tab->basis->row[1 + level] + 1,
- tab->basis->row[1 + level] + 1, dim);
- isl_int_neg(max->el[level], max->el[level]);
- return res;
- }
- /* Perform a greedy search for an integer point in the set represented
- * by "tab", given that the minimal rational value (rounded up to the
- * nearest integer) at "level" is smaller than the maximal rational
- * value (rounded down to the nearest integer).
- *
- * Return 1 if we have found an integer point (if tab->n_unbounded > 0
- * then we may have only found integer values for the bounded dimensions
- * and it is the responsibility of the caller to extend this solution
- * to the unbounded dimensions).
- * Return 0 if greedy search did not result in a solution.
- * Return -1 if some error occurred.
- *
- * We assign a value half-way between the minimum and the maximum
- * to the current dimension and check if the minimal value of the
- * next dimension is still smaller than (or equal) to the maximal value.
- * We continue this process until either
- * - the minimal value (rounded up) is greater than the maximal value
- * (rounded down). In this case, greedy search has failed.
- * - we have exhausted all bounded dimensions, meaning that we have
- * found a solution.
- * - the sample value of the tableau is integral.
- * - some error has occurred.
- */
- static int greedy_search(isl_ctx *ctx, struct isl_tab *tab,
- __isl_keep isl_vec *min, __isl_keep isl_vec *max, int level)
- {
- struct isl_tab_undo *snap;
- enum isl_lp_result res;
- snap = isl_tab_snap(tab);
- do {
- isl_int_add(tab->basis->row[1 + level][0],
- min->el[level], max->el[level]);
- isl_int_fdiv_q_ui(tab->basis->row[1 + level][0],
- tab->basis->row[1 + level][0], 2);
- isl_int_neg(tab->basis->row[1 + level][0],
- tab->basis->row[1 + level][0]);
- if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
- return -1;
- isl_int_set_si(tab->basis->row[1 + level][0], 0);
- if (++level >= tab->n_var - tab->n_unbounded)
- return 1;
- if (isl_tab_sample_is_integer(tab))
- return 1;
- res = compute_min(ctx, tab, min, level);
- if (res == isl_lp_error)
- return -1;
- if (res != isl_lp_ok)
- isl_die(ctx, isl_error_internal,
- "expecting bounded rational solution",
- return -1);
- res = compute_max(ctx, tab, max, level);
- if (res == isl_lp_error)
- return -1;
- if (res != isl_lp_ok)
- isl_die(ctx, isl_error_internal,
- "expecting bounded rational solution",
- return -1);
- } while (isl_int_le(min->el[level], max->el[level]));
- if (isl_tab_rollback(tab, snap) < 0)
- return -1;
- return 0;
- }
- /* Given a tableau representing a set, find and return
- * an integer point in the set, if there is any.
- *
- * We perform a depth first search
- * for an integer point, by scanning all possible values in the range
- * attained by a basis vector, where an initial basis may have been set
- * by the calling function. Otherwise an initial basis that exploits
- * the equalities in the tableau is created.
- * tab->n_zero is currently ignored and is clobbered by this function.
- *
- * The tableau is allowed to have unbounded direction, but then
- * the calling function needs to set an initial basis, with the
- * unbounded directions last and with tab->n_unbounded set
- * to the number of unbounded directions.
- * Furthermore, the calling functions needs to add shifted copies
- * of all constraints involving unbounded directions to ensure
- * that any feasible rational value in these directions can be rounded
- * up to yield a feasible integer value.
- * In particular, let B define the given basis x' = B x
- * and let T be the inverse of B, i.e., X = T x'.
- * Let a x + c >= 0 be a constraint of the set represented by the tableau,
- * or a T x' + c >= 0 in terms of the given basis. Assume that
- * the bounded directions have an integer value, then we can safely
- * round up the values for the unbounded directions if we make sure
- * that x' not only satisfies the original constraint, but also
- * the constraint "a T x' + c + s >= 0" with s the sum of all
- * negative values in the last n_unbounded entries of "a T".
- * The calling function therefore needs to add the constraint
- * a x + c + s >= 0. The current function then scans the first
- * directions for an integer value and once those have been found,
- * it can compute "T ceil(B x)" to yield an integer point in the set.
- * Note that during the search, the first rows of B may be changed
- * by a basis reduction, but the last n_unbounded rows of B remain
- * unaltered and are also not mixed into the first rows.
- *
- * The search is implemented iteratively. "level" identifies the current
- * basis vector. "init" is true if we want the first value at the current
- * level and false if we want the next value.
- *
- * At the start of each level, we first check if we can find a solution
- * using greedy search. If not, we continue with the exhaustive search.
- *
- * The initial basis is the identity matrix. If the range in some direction
- * contains more than one integer value, we perform basis reduction based
- * on the value of ctx->opt->gbr
- * - ISL_GBR_NEVER: never perform basis reduction
- * - ISL_GBR_ONCE: only perform basis reduction the first
- * time such a range is encountered
- * - ISL_GBR_ALWAYS: always perform basis reduction when
- * such a range is encountered
- *
- * When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
- * reduction computation to return early. That is, as soon as it
- * finds a reasonable first direction.
- */
- __isl_give isl_vec *isl_tab_sample(struct isl_tab *tab)
- {
- unsigned dim;
- unsigned gbr;
- struct isl_ctx *ctx;
- struct isl_vec *sample;
- struct isl_vec *min;
- struct isl_vec *max;
- enum isl_lp_result res;
- int level;
- int init;
- int reduced;
- struct isl_tab_undo **snap;
- if (!tab)
- return NULL;
- if (tab->empty)
- return isl_vec_alloc(tab->mat->ctx, 0);
- if (!tab->basis)
- tab->basis = initial_basis(tab);
- if (!tab->basis)
- return NULL;
- isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,
- return NULL);
- isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,
- return NULL);
- ctx = tab->mat->ctx;
- dim = tab->n_var;
- gbr = ctx->opt->gbr;
- if (tab->n_unbounded == tab->n_var) {
- sample = isl_tab_get_sample_value(tab);
- sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample);
- sample = isl_vec_ceil(sample);
- sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis),
- sample);
- return sample;
- }
- if (isl_tab_extend_cons(tab, dim + 1) < 0)
- return NULL;
- min = isl_vec_alloc(ctx, dim);
- max = isl_vec_alloc(ctx, dim);
- snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);
- if (!min || !max || !snap)
- goto error;
- level = 0;
- init = 1;
- reduced = 0;
- while (level >= 0) {
- if (init) {
- int choice;
- res = compute_min(ctx, tab, min, level);
- if (res == isl_lp_error)
- goto error;
- if (res != isl_lp_ok)
- isl_die(ctx, isl_error_internal,
- "expecting bounded rational solution",
- goto error);
- if (isl_tab_sample_is_integer(tab))
- break;
- res = compute_max(ctx, tab, max, level);
- if (res == isl_lp_error)
- goto error;
- if (res != isl_lp_ok)
- isl_die(ctx, isl_error_internal,
- "expecting bounded rational solution",
- goto error);
- if (isl_tab_sample_is_integer(tab))
- break;
- choice = isl_int_lt(min->el[level], max->el[level]);
- if (choice) {
- int g;
- g = greedy_search(ctx, tab, min, max, level);
- if (g < 0)
- goto error;
- if (g)
- break;
- }
- if (!reduced && choice &&
- ctx->opt->gbr != ISL_GBR_NEVER) {
- unsigned gbr_only_first;
- if (ctx->opt->gbr == ISL_GBR_ONCE)
- ctx->opt->gbr = ISL_GBR_NEVER;
- tab->n_zero = level;
- gbr_only_first = ctx->opt->gbr_only_first;
- ctx->opt->gbr_only_first =
- ctx->opt->gbr == ISL_GBR_ALWAYS;
- tab = isl_tab_compute_reduced_basis(tab);
- ctx->opt->gbr_only_first = gbr_only_first;
- if (!tab || !tab->basis)
- goto error;
- reduced = 1;
- continue;
- }
- reduced = 0;
- snap[level] = isl_tab_snap(tab);
- } else
- isl_int_add_ui(min->el[level], min->el[level], 1);
- if (isl_int_gt(min->el[level], max->el[level])) {
- level--;
- init = 0;
- if (level >= 0)
- if (isl_tab_rollback(tab, snap[level]) < 0)
- goto error;
- continue;
- }
- isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
- if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
- goto error;
- isl_int_set_si(tab->basis->row[1 + level][0], 0);
- if (level + tab->n_unbounded < dim - 1) {
- ++level;
- init = 1;
- continue;
- }
- break;
- }
- if (level >= 0) {
- sample = isl_tab_get_sample_value(tab);
- if (!sample)
- goto error;
- if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) {
- sample = isl_mat_vec_product(isl_mat_copy(tab->basis),
- sample);
- sample = isl_vec_ceil(sample);
- sample = isl_mat_vec_inverse_product(
- isl_mat_copy(tab->basis), sample);
- }
- } else
- sample = isl_vec_alloc(ctx, 0);
- ctx->opt->gbr = gbr;
- isl_vec_free(min);
- isl_vec_free(max);
- free(snap);
- return sample;
- error:
- ctx->opt->gbr = gbr;
- isl_vec_free(min);
- isl_vec_free(max);
- free(snap);
- return NULL;
- }
- static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset);
- /* Internal data for factored_sample.
- * "sample" collects the sample and may get reset to a zero-length vector
- * signaling the absence of a sample vector.
- * "pos" is the position of the contribution of the next factor.
- */
- struct isl_factored_sample_data {
- isl_vec *sample;
- int pos;
- };
- /* isl_factorizer_every_factor_basic_set callback that extends
- * the sample in data->sample with the contribution
- * of the factor "bset".
- * If "bset" turns out to be empty, then the product is empty too and
- * no further factors need to be considered.
- */
- static isl_bool factor_sample(__isl_keep isl_basic_set *bset, void *user)
- {
- struct isl_factored_sample_data *data = user;
- isl_vec *sample;
- isl_size n;
- n = isl_basic_set_dim(bset, isl_dim_set);
- if (n < 0)
- return isl_bool_error;
- sample = sample_bounded(isl_basic_set_copy(bset));
- if (!sample)
- return isl_bool_error;
- if (sample->size == 0) {
- isl_vec_free(data->sample);
- data->sample = sample;
- return isl_bool_false;
- }
- isl_seq_cpy(data->sample->el + data->pos, sample->el + 1, n);
- isl_vec_free(sample);
- data->pos += n;
- return isl_bool_true;
- }
- /* Compute a sample point of the given basic set, based on the given,
- * non-trivial factorization.
- */
- static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset,
- __isl_take isl_factorizer *f)
- {
- struct isl_factored_sample_data data = { NULL };
- isl_ctx *ctx;
- isl_size total;
- isl_bool every;
- ctx = isl_basic_set_get_ctx(bset);
- total = isl_basic_set_dim(bset, isl_dim_all);
- if (!ctx || total < 0)
- goto error;
- data.sample = isl_vec_alloc(ctx, 1 + total);
- if (!data.sample)
- goto error;
- isl_int_set_si(data.sample->el[0], 1);
- data.pos = 1;
- every = isl_factorizer_every_factor_basic_set(f, &factor_sample, &data);
- if (every < 0) {
- data.sample = isl_vec_free(data.sample);
- } else if (every) {
- isl_morph *morph;
- morph = isl_morph_inverse(isl_morph_copy(f->morph));
- data.sample = isl_morph_vec(morph, data.sample);
- }
- isl_basic_set_free(bset);
- isl_factorizer_free(f);
- return data.sample;
- error:
- isl_basic_set_free(bset);
- isl_factorizer_free(f);
- isl_vec_free(data.sample);
- return NULL;
- }
- /* Given a basic set that is known to be bounded, find and return
- * an integer point in the basic set, if there is any.
- *
- * After handling some trivial cases, we construct a tableau
- * and then use isl_tab_sample to find a sample, passing it
- * the identity matrix as initial basis.
- */
- static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset)
- {
- isl_size dim;
- struct isl_vec *sample;
- struct isl_tab *tab = NULL;
- isl_factorizer *f;
- if (!bset)
- return NULL;
- if (isl_basic_set_plain_is_empty(bset))
- return empty_sample(bset);
- dim = isl_basic_set_dim(bset, isl_dim_all);
- if (dim < 0)
- bset = isl_basic_set_free(bset);
- if (dim == 0)
- return zero_sample(bset);
- if (dim == 1)
- return interval_sample(bset);
- if (bset->n_eq > 0)
- return sample_eq(bset, sample_bounded);
- f = isl_basic_set_factorizer(bset);
- if (!f)
- goto error;
- if (f->n_group != 0)
- return factored_sample(bset, f);
- isl_factorizer_free(f);
- tab = isl_tab_from_basic_set(bset, 1);
- if (tab && tab->empty) {
- isl_tab_free(tab);
- ISL_F_SET(bset, ISL_BASIC_SET_EMPTY);
- sample = isl_vec_alloc(isl_basic_set_get_ctx(bset), 0);
- isl_basic_set_free(bset);
- return sample;
- }
- if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT))
- if (isl_tab_detect_implicit_equalities(tab) < 0)
- goto error;
- sample = isl_tab_sample(tab);
- if (!sample)
- goto error;
- if (sample->size > 0) {
- isl_vec_free(bset->sample);
- bset->sample = isl_vec_copy(sample);
- }
- isl_basic_set_free(bset);
- isl_tab_free(tab);
- return sample;
- error:
- isl_basic_set_free(bset);
- isl_tab_free(tab);
- return NULL;
- }
- /* Given a basic set "bset" and a value "sample" for the first coordinates
- * of bset, plug in these values and drop the corresponding coordinates.
- *
- * We do this by computing the preimage of the transformation
- *
- * [ 1 0 ]
- * x = [ s 0 ] x'
- * [ 0 I ]
- *
- * where [1 s] is the sample value and I is the identity matrix of the
- * appropriate dimension.
- */
- static __isl_give isl_basic_set *plug_in(__isl_take isl_basic_set *bset,
- __isl_take isl_vec *sample)
- {
- int i;
- isl_size total;
- struct isl_mat *T;
- total = isl_basic_set_dim(bset, isl_dim_all);
- if (total < 0 || !sample)
- goto error;
- T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
- if (!T)
- goto error;
- for (i = 0; i < sample->size; ++i) {
- isl_int_set(T->row[i][0], sample->el[i]);
- isl_seq_clr(T->row[i] + 1, T->n_col - 1);
- }
- for (i = 0; i < T->n_col - 1; ++i) {
- isl_seq_clr(T->row[sample->size + i], T->n_col);
- isl_int_set_si(T->row[sample->size + i][1 + i], 1);
- }
- isl_vec_free(sample);
- bset = isl_basic_set_preimage(bset, T);
- return bset;
- error:
- isl_basic_set_free(bset);
- isl_vec_free(sample);
- return NULL;
- }
- /* Given a basic set "bset", return any (possibly non-integer) point
- * in the basic set.
- */
- static __isl_give isl_vec *rational_sample(__isl_take isl_basic_set *bset)
- {
- struct isl_tab *tab;
- struct isl_vec *sample;
- if (!bset)
- return NULL;
- tab = isl_tab_from_basic_set(bset, 0);
- sample = isl_tab_get_sample_value(tab);
- isl_tab_free(tab);
- isl_basic_set_free(bset);
- return sample;
- }
- /* Given a linear cone "cone" and a rational point "vec",
- * construct a polyhedron with shifted copies of the constraints in "cone",
- * i.e., a polyhedron with "cone" as its recession cone, such that each
- * point x in this polyhedron is such that the unit box positioned at x
- * lies entirely inside the affine cone 'vec + cone'.
- * Any rational point in this polyhedron may therefore be rounded up
- * to yield an integer point that lies inside said affine cone.
- *
- * Denote the constraints of cone by "<a_i, x> >= 0" and the rational
- * point "vec" by v/d.
- * Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
- * by <a_i, x> - b/d >= 0.
- * The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
- * We prefer this polyhedron over the actual affine cone because it doesn't
- * require a scaling of the constraints.
- * If each of the vertices of the unit cube positioned at x lies inside
- * this polyhedron, then the whole unit cube at x lies inside the affine cone.
- * We therefore impose that x' = x + \sum e_i, for any selection of unit
- * vectors lies inside the polyhedron, i.e.,
- *
- * <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
- *
- * The most stringent of these constraints is the one that selects
- * all negative a_i, so the polyhedron we are looking for has constraints
- *
- * <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
- *
- * Note that if cone were known to have only non-negative rays
- * (which can be accomplished by a unimodular transformation),
- * then we would only have to check the points x' = x + e_i
- * and we only have to add the smallest negative a_i (if any)
- * instead of the sum of all negative a_i.
- */
- static __isl_give isl_basic_set *shift_cone(__isl_take isl_basic_set *cone,
- __isl_take isl_vec *vec)
- {
- int i, j, k;
- isl_size total;
- struct isl_basic_set *shift = NULL;
- total = isl_basic_set_dim(cone, isl_dim_all);
- if (total < 0 || !vec)
- goto error;
- isl_assert(cone->ctx, cone->n_eq == 0, goto error);
- shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone),
- 0, 0, cone->n_ineq);
- for (i = 0; i < cone->n_ineq; ++i) {
- k = isl_basic_set_alloc_inequality(shift);
- if (k < 0)
- goto error;
- isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
- isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
- &shift->ineq[k][0]);
- isl_int_cdiv_q(shift->ineq[k][0],
- shift->ineq[k][0], vec->el[0]);
- isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
- for (j = 0; j < total; ++j) {
- if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
- continue;
- isl_int_add(shift->ineq[k][0],
- shift->ineq[k][0], shift->ineq[k][1 + j]);
- }
- }
- isl_basic_set_free(cone);
- isl_vec_free(vec);
- return isl_basic_set_finalize(shift);
- error:
- isl_basic_set_free(shift);
- isl_basic_set_free(cone);
- isl_vec_free(vec);
- return NULL;
- }
- /* Given a rational point vec in a (transformed) basic set,
- * such that cone is the recession cone of the original basic set,
- * "round up" the rational point to an integer point.
- *
- * We first check if the rational point just happens to be integer.
- * If not, we transform the cone in the same way as the basic set,
- * pick a point x in this cone shifted to the rational point such that
- * the whole unit cube at x is also inside this affine cone.
- * Then we simply round up the coordinates of x and return the
- * resulting integer point.
- */
- static __isl_give isl_vec *round_up_in_cone(__isl_take isl_vec *vec,
- __isl_take isl_basic_set *cone, __isl_take isl_mat *U)
- {
- isl_size total;
- if (!vec || !cone || !U)
- goto error;
- isl_assert(vec->ctx, vec->size != 0, goto error);
- if (isl_int_is_one(vec->el[0])) {
- isl_mat_free(U);
- isl_basic_set_free(cone);
- return vec;
- }
- total = isl_basic_set_dim(cone, isl_dim_all);
- if (total < 0)
- goto error;
- cone = isl_basic_set_preimage(cone, U);
- cone = isl_basic_set_remove_dims(cone, isl_dim_set,
- 0, total - (vec->size - 1));
- cone = shift_cone(cone, vec);
- vec = rational_sample(cone);
- vec = isl_vec_ceil(vec);
- return vec;
- error:
- isl_mat_free(U);
- isl_vec_free(vec);
- isl_basic_set_free(cone);
- return NULL;
- }
- /* Concatenate two integer vectors, i.e., two vectors with denominator
- * (stored in element 0) equal to 1.
- */
- static __isl_give isl_vec *vec_concat(__isl_take isl_vec *vec1,
- __isl_take isl_vec *vec2)
- {
- struct isl_vec *vec;
- if (!vec1 || !vec2)
- goto error;
- isl_assert(vec1->ctx, vec1->size > 0, goto error);
- isl_assert(vec2->ctx, vec2->size > 0, goto error);
- isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
- isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
- vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
- if (!vec)
- goto error;
- isl_seq_cpy(vec->el, vec1->el, vec1->size);
- isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
- isl_vec_free(vec1);
- isl_vec_free(vec2);
- return vec;
- error:
- isl_vec_free(vec1);
- isl_vec_free(vec2);
- return NULL;
- }
- /* Give a basic set "bset" with recession cone "cone", compute and
- * return an integer point in bset, if any.
- *
- * If the recession cone is full-dimensional, then we know that
- * bset contains an infinite number of integer points and it is
- * fairly easy to pick one of them.
- * If the recession cone is not full-dimensional, then we first
- * transform bset such that the bounded directions appear as
- * the first dimensions of the transformed basic set.
- * We do this by using a unimodular transformation that transforms
- * the equalities in the recession cone to equalities on the first
- * dimensions.
- *
- * The transformed set is then projected onto its bounded dimensions.
- * Note that to compute this projection, we can simply drop all constraints
- * involving any of the unbounded dimensions since these constraints
- * cannot be combined to produce a constraint on the bounded dimensions.
- * To see this, assume that there is such a combination of constraints
- * that produces a constraint on the bounded dimensions. This means
- * that some combination of the unbounded dimensions has both an upper
- * bound and a lower bound in terms of the bounded dimensions, but then
- * this combination would be a bounded direction too and would have been
- * transformed into a bounded dimensions.
- *
- * We then compute a sample value in the bounded dimensions.
- * If no such value can be found, then the original set did not contain
- * any integer points and we are done.
- * Otherwise, we plug in the value we found in the bounded dimensions,
- * project out these bounded dimensions and end up with a set with
- * a full-dimensional recession cone.
- * A sample point in this set is computed by "rounding up" any
- * rational point in the set.
- *
- * The sample points in the bounded and unbounded dimensions are
- * then combined into a single sample point and transformed back
- * to the original space.
- */
- __isl_give isl_vec *isl_basic_set_sample_with_cone(
- __isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
- {
- isl_size total;
- unsigned cone_dim;
- struct isl_mat *M, *U;
- struct isl_vec *sample;
- struct isl_vec *cone_sample;
- struct isl_ctx *ctx;
- struct isl_basic_set *bounded;
- total = isl_basic_set_dim(cone, isl_dim_all);
- if (!bset || total < 0)
- goto error;
- ctx = isl_basic_set_get_ctx(bset);
- cone_dim = total - cone->n_eq;
- M = isl_mat_sub_alloc6(ctx, cone->eq, 0, cone->n_eq, 1, total);
- M = isl_mat_left_hermite(M, 0, &U, NULL);
- if (!M)
- goto error;
- isl_mat_free(M);
- U = isl_mat_lin_to_aff(U);
- bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
- bounded = isl_basic_set_copy(bset);
- bounded = isl_basic_set_drop_constraints_involving(bounded,
- total - cone_dim, cone_dim);
- bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
- sample = sample_bounded(bounded);
- if (!sample || sample->size == 0) {
- isl_basic_set_free(bset);
- isl_basic_set_free(cone);
- isl_mat_free(U);
- return sample;
- }
- bset = plug_in(bset, isl_vec_copy(sample));
- cone_sample = rational_sample(bset);
- cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
- sample = vec_concat(sample, cone_sample);
- sample = isl_mat_vec_product(U, sample);
- return sample;
- error:
- isl_basic_set_free(cone);
- isl_basic_set_free(bset);
- return NULL;
- }
- static void vec_sum_of_neg(__isl_keep isl_vec *v, isl_int *s)
- {
- int i;
- isl_int_set_si(*s, 0);
- for (i = 0; i < v->size; ++i)
- if (isl_int_is_neg(v->el[i]))
- isl_int_add(*s, *s, v->el[i]);
- }
- /* Given a tableau "tab", a tableau "tab_cone" that corresponds
- * to the recession cone and the inverse of a new basis U = inv(B),
- * with the unbounded directions in B last,
- * add constraints to "tab" that ensure any rational value
- * in the unbounded directions can be rounded up to an integer value.
- *
- * The new basis is given by x' = B x, i.e., x = U x'.
- * For any rational value of the last tab->n_unbounded coordinates
- * in the update tableau, the value that is obtained by rounding
- * up this value should be contained in the original tableau.
- * For any constraint "a x + c >= 0", we therefore need to add
- * a constraint "a x + c + s >= 0", with s the sum of all negative
- * entries in the last elements of "a U".
- *
- * Since we are not interested in the first entries of any of the "a U",
- * we first drop the columns of U that correpond to bounded directions.
- */
- static int tab_shift_cone(struct isl_tab *tab,
- struct isl_tab *tab_cone, struct isl_mat *U)
- {
- int i;
- isl_int v;
- struct isl_basic_set *bset = NULL;
- if (tab && tab->n_unbounded == 0) {
- isl_mat_free(U);
- return 0;
- }
- isl_int_init(v);
- if (!tab || !tab_cone || !U)
- goto error;
- bset = isl_tab_peek_bset(tab_cone);
- U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded);
- for (i = 0; i < bset->n_ineq; ++i) {
- int ok;
- struct isl_vec *row = NULL;
- if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i))
- continue;
- row = isl_vec_alloc(bset->ctx, tab_cone->n_var);
- if (!row)
- goto error;
- isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var);
- row = isl_vec_mat_product(row, isl_mat_copy(U));
- if (!row)
- goto error;
- vec_sum_of_neg(row, &v);
- isl_vec_free(row);
- if (isl_int_is_zero(v))
- continue;
- if (isl_tab_extend_cons(tab, 1) < 0)
- goto error;
- isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v);
- ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0;
- isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v);
- if (!ok)
- goto error;
- }
- isl_mat_free(U);
- isl_int_clear(v);
- return 0;
- error:
- isl_mat_free(U);
- isl_int_clear(v);
- return -1;
- }
- /* Compute and return an initial basis for the possibly
- * unbounded tableau "tab". "tab_cone" is a tableau
- * for the corresponding recession cone.
- * Additionally, add constraints to "tab" that ensure
- * that any rational value for the unbounded directions
- * can be rounded up to an integer value.
- *
- * If the tableau is bounded, i.e., if the recession cone
- * is zero-dimensional, then we just use inital_basis.
- * Otherwise, we construct a basis whose first directions
- * correspond to equalities, followed by bounded directions,
- * i.e., equalities in the recession cone.
- * The remaining directions are then unbounded.
- */
- int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab,
- struct isl_tab *tab_cone)
- {
- struct isl_mat *eq;
- struct isl_mat *cone_eq;
- struct isl_mat *U, *Q;
- if (!tab || !tab_cone)
- return -1;
- if (tab_cone->n_col == tab_cone->n_dead) {
- tab->basis = initial_basis(tab);
- return tab->basis ? 0 : -1;
- }
- eq = tab_equalities(tab);
- if (!eq)
- return -1;
- tab->n_zero = eq->n_row;
- cone_eq = tab_equalities(tab_cone);
- eq = isl_mat_concat(eq, cone_eq);
- if (!eq)
- return -1;
- tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero);
- eq = isl_mat_left_hermite(eq, 0, &U, &Q);
- if (!eq)
- return -1;
- isl_mat_free(eq);
- tab->basis = isl_mat_lin_to_aff(Q);
- if (tab_shift_cone(tab, tab_cone, U) < 0)
- return -1;
- if (!tab->basis)
- return -1;
- return 0;
- }
- /* Compute and return a sample point in bset using generalized basis
- * reduction. We first check if the input set has a non-trivial
- * recession cone. If so, we perform some extra preprocessing in
- * sample_with_cone. Otherwise, we directly perform generalized basis
- * reduction.
- */
- static __isl_give isl_vec *gbr_sample(__isl_take isl_basic_set *bset)
- {
- isl_size dim;
- struct isl_basic_set *cone;
- dim = isl_basic_set_dim(bset, isl_dim_all);
- if (dim < 0)
- goto error;
- cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
- if (!cone)
- goto error;
- if (cone->n_eq < dim)
- return isl_basic_set_sample_with_cone(bset, cone);
- isl_basic_set_free(cone);
- return sample_bounded(bset);
- error:
- isl_basic_set_free(bset);
- return NULL;
- }
- static __isl_give isl_vec *basic_set_sample(__isl_take isl_basic_set *bset,
- int bounded)
- {
- struct isl_ctx *ctx;
- isl_size dim;
- if (!bset)
- return NULL;
- ctx = bset->ctx;
- if (isl_basic_set_plain_is_empty(bset))
- return empty_sample(bset);
- dim = isl_basic_set_dim(bset, isl_dim_set);
- if (dim < 0 ||
- isl_basic_set_check_no_params(bset) < 0 ||
- isl_basic_set_check_no_locals(bset) < 0)
- goto error;
- if (bset->sample && bset->sample->size == 1 + dim) {
- int contains = isl_basic_set_contains(bset, bset->sample);
- if (contains < 0)
- goto error;
- if (contains) {
- struct isl_vec *sample = isl_vec_copy(bset->sample);
- isl_basic_set_free(bset);
- return sample;
- }
- }
- isl_vec_free(bset->sample);
- bset->sample = NULL;
- if (bset->n_eq > 0)
- return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
- : isl_basic_set_sample_vec);
- if (dim == 0)
- return zero_sample(bset);
- if (dim == 1)
- return interval_sample(bset);
- return bounded ? sample_bounded(bset) : gbr_sample(bset);
- error:
- isl_basic_set_free(bset);
- return NULL;
- }
- __isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
- {
- return basic_set_sample(bset, 0);
- }
- /* Compute an integer sample in "bset", where the caller guarantees
- * that "bset" is bounded.
- */
- __isl_give isl_vec *isl_basic_set_sample_bounded(__isl_take isl_basic_set *bset)
- {
- return basic_set_sample(bset, 1);
- }
- __isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
- {
- int i;
- int k;
- struct isl_basic_set *bset = NULL;
- struct isl_ctx *ctx;
- isl_size dim;
- if (!vec)
- return NULL;
- ctx = vec->ctx;
- isl_assert(ctx, vec->size != 0, goto error);
- bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
- dim = isl_basic_set_dim(bset, isl_dim_set);
- if (dim < 0)
- goto error;
- for (i = dim - 1; i >= 0; --i) {
- k = isl_basic_set_alloc_equality(bset);
- if (k < 0)
- goto error;
- isl_seq_clr(bset->eq[k], 1 + dim);
- isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
- isl_int_set(bset->eq[k][1 + i], vec->el[0]);
- }
- bset->sample = vec;
- return bset;
- error:
- isl_basic_set_free(bset);
- isl_vec_free(vec);
- return NULL;
- }
- __isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
- {
- struct isl_basic_set *bset;
- struct isl_vec *sample_vec;
- bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
- sample_vec = isl_basic_set_sample_vec(bset);
- if (!sample_vec)
- goto error;
- if (sample_vec->size == 0) {
- isl_vec_free(sample_vec);
- return isl_basic_map_set_to_empty(bmap);
- }
- isl_vec_free(bmap->sample);
- bmap->sample = isl_vec_copy(sample_vec);
- bset = isl_basic_set_from_vec(sample_vec);
- return isl_basic_map_overlying_set(bset, bmap);
- error:
- isl_basic_map_free(bmap);
- return NULL;
- }
- __isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset)
- {
- return isl_basic_map_sample(bset);
- }
- __isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
- {
- int i;
- isl_basic_map *sample = NULL;
- if (!map)
- goto error;
- for (i = 0; i < map->n; ++i) {
- sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
- if (!sample)
- goto error;
- if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
- break;
- isl_basic_map_free(sample);
- }
- if (i == map->n)
- sample = isl_basic_map_empty(isl_map_get_space(map));
- isl_map_free(map);
- return sample;
- error:
- isl_map_free(map);
- return NULL;
- }
- __isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
- {
- return bset_from_bmap(isl_map_sample(set_to_map(set)));
- }
- __isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset)
- {
- isl_vec *vec;
- isl_space *space;
- space = isl_basic_set_get_space(bset);
- bset = isl_basic_set_underlying_set(bset);
- vec = isl_basic_set_sample_vec(bset);
- return isl_point_alloc(space, vec);
- }
- __isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set)
- {
- int i;
- isl_point *pnt;
- if (!set)
- return NULL;
- for (i = 0; i < set->n; ++i) {
- pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i]));
- if (!pnt)
- goto error;
- if (!isl_point_is_void(pnt))
- break;
- isl_point_free(pnt);
- }
- if (i == set->n)
- pnt = isl_point_void(isl_set_get_space(set));
- isl_set_free(set);
- return pnt;
- error:
- isl_set_free(set);
- return NULL;
- }
|