123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912 |
- /*
- * Copyright 2008-2009 Katholieke Universiteit Leuven
- *
- * Use of this software is governed by the MIT license
- *
- * Written by Sven Verdoolaege, K.U.Leuven, Departement
- * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
- */
- #include <isl_ctx_private.h>
- #include <isl_map_private.h>
- #include <isl/ilp.h>
- #include <isl/union_set.h>
- #include "isl_sample.h"
- #include <isl_seq.h>
- #include "isl_equalities.h"
- #include <isl_aff_private.h>
- #include <isl_local_space_private.h>
- #include <isl_mat_private.h>
- #include <isl_val_private.h>
- #include <isl_vec_private.h>
- #include <isl_lp_private.h>
- #include <isl_ilp_private.h>
- /* Given a basic set "bset", construct a basic set U such that for
- * each element x in U, the whole unit box positioned at x is inside
- * the given basic set.
- * Note that U may not contain all points that satisfy this property.
- *
- * We simply add the sum of all negative coefficients to the constant
- * term. This ensures that if x satisfies the resulting constraints,
- * then x plus any sum of unit vectors satisfies the original constraints.
- */
- static __isl_give isl_basic_set *unit_box_base_points(
- __isl_take isl_basic_set *bset)
- {
- int i, j, k;
- struct isl_basic_set *unit_box = NULL;
- isl_size total;
- if (!bset)
- goto error;
- if (bset->n_eq != 0) {
- isl_space *space = isl_basic_set_get_space(bset);
- isl_basic_set_free(bset);
- return isl_basic_set_empty(space);
- }
- total = isl_basic_set_dim(bset, isl_dim_all);
- if (total < 0)
- goto error;
- unit_box = isl_basic_set_alloc_space(isl_basic_set_get_space(bset),
- 0, 0, bset->n_ineq);
- for (i = 0; i < bset->n_ineq; ++i) {
- k = isl_basic_set_alloc_inequality(unit_box);
- if (k < 0)
- goto error;
- isl_seq_cpy(unit_box->ineq[k], bset->ineq[i], 1 + total);
- for (j = 0; j < total; ++j) {
- if (isl_int_is_nonneg(unit_box->ineq[k][1 + j]))
- continue;
- isl_int_add(unit_box->ineq[k][0],
- unit_box->ineq[k][0], unit_box->ineq[k][1 + j]);
- }
- }
- isl_basic_set_free(bset);
- return unit_box;
- error:
- isl_basic_set_free(bset);
- isl_basic_set_free(unit_box);
- return NULL;
- }
- /* Find an integer point in "bset", preferably one that is
- * close to minimizing "f".
- *
- * We first check if we can easily put unit boxes inside bset.
- * If so, we take the best base point of any of the unit boxes we can find
- * and round it up to the nearest integer.
- * If not, we simply pick any integer point in "bset".
- */
- static __isl_give isl_vec *initial_solution(__isl_keep isl_basic_set *bset,
- isl_int *f)
- {
- enum isl_lp_result res;
- struct isl_basic_set *unit_box;
- struct isl_vec *sol;
- unit_box = unit_box_base_points(isl_basic_set_copy(bset));
- res = isl_basic_set_solve_lp(unit_box, 0, f, bset->ctx->one,
- NULL, NULL, &sol);
- if (res == isl_lp_ok) {
- isl_basic_set_free(unit_box);
- return isl_vec_ceil(sol);
- }
- isl_basic_set_free(unit_box);
- return isl_basic_set_sample_vec(isl_basic_set_copy(bset));
- }
- /* Restrict "bset" to those points with values for f in the interval [l, u].
- */
- static __isl_give isl_basic_set *add_bounds(__isl_take isl_basic_set *bset,
- isl_int *f, isl_int l, isl_int u)
- {
- int k;
- isl_size total;
- total = isl_basic_set_dim(bset, isl_dim_all);
- if (total < 0)
- return isl_basic_set_free(bset);
- bset = isl_basic_set_extend_constraints(bset, 0, 2);
- k = isl_basic_set_alloc_inequality(bset);
- if (k < 0)
- goto error;
- isl_seq_cpy(bset->ineq[k], f, 1 + total);
- isl_int_sub(bset->ineq[k][0], bset->ineq[k][0], l);
- k = isl_basic_set_alloc_inequality(bset);
- if (k < 0)
- goto error;
- isl_seq_neg(bset->ineq[k], f, 1 + total);
- isl_int_add(bset->ineq[k][0], bset->ineq[k][0], u);
- return bset;
- error:
- isl_basic_set_free(bset);
- return NULL;
- }
- /* Find an integer point in "bset" that minimizes f (in any) such that
- * the value of f lies inside the interval [l, u].
- * Return this integer point if it can be found.
- * Otherwise, return sol.
- *
- * We perform a number of steps until l > u.
- * In each step, we look for an integer point with value in either
- * the whole interval [l, u] or half of the interval [l, l+floor(u-l-1/2)].
- * The choice depends on whether we have found an integer point in the
- * previous step. If so, we look for the next point in half of the remaining
- * interval.
- * If we find a point, the current solution is updated and u is set
- * to its value minus 1.
- * If no point can be found, we update l to the upper bound of the interval
- * we checked (u or l+floor(u-l-1/2)) plus 1.
- */
- static __isl_give isl_vec *solve_ilp_search(__isl_keep isl_basic_set *bset,
- isl_int *f, isl_int *opt, __isl_take isl_vec *sol, isl_int l, isl_int u)
- {
- isl_int tmp;
- int divide = 1;
- isl_int_init(tmp);
- while (isl_int_le(l, u)) {
- struct isl_basic_set *slice;
- struct isl_vec *sample;
- if (!divide)
- isl_int_set(tmp, u);
- else {
- isl_int_sub(tmp, u, l);
- isl_int_fdiv_q_ui(tmp, tmp, 2);
- isl_int_add(tmp, tmp, l);
- }
- slice = add_bounds(isl_basic_set_copy(bset), f, l, tmp);
- sample = isl_basic_set_sample_vec(slice);
- if (!sample) {
- isl_vec_free(sol);
- sol = NULL;
- break;
- }
- if (sample->size > 0) {
- isl_vec_free(sol);
- sol = sample;
- isl_seq_inner_product(f, sol->el, sol->size, opt);
- isl_int_sub_ui(u, *opt, 1);
- divide = 1;
- } else {
- isl_vec_free(sample);
- if (!divide)
- break;
- isl_int_add_ui(l, tmp, 1);
- divide = 0;
- }
- }
- isl_int_clear(tmp);
- return sol;
- }
- /* Find an integer point in "bset" that minimizes f (if any).
- * If sol_p is not NULL then the integer point is returned in *sol_p.
- * The optimal value of f is returned in *opt.
- *
- * The algorithm maintains a currently best solution and an interval [l, u]
- * of values of f for which integer solutions could potentially still be found.
- * The initial value of the best solution so far is any solution.
- * The initial value of l is minimal value of f over the rationals
- * (rounded up to the nearest integer).
- * The initial value of u is the value of f at the initial solution minus 1.
- *
- * We then call solve_ilp_search to perform a binary search on the interval.
- */
- static enum isl_lp_result solve_ilp(__isl_keep isl_basic_set *bset,
- isl_int *f, isl_int *opt, __isl_give isl_vec **sol_p)
- {
- enum isl_lp_result res;
- isl_int l, u;
- struct isl_vec *sol;
- res = isl_basic_set_solve_lp(bset, 0, f, bset->ctx->one,
- opt, NULL, &sol);
- if (res == isl_lp_ok && isl_int_is_one(sol->el[0])) {
- if (sol_p)
- *sol_p = sol;
- else
- isl_vec_free(sol);
- return isl_lp_ok;
- }
- isl_vec_free(sol);
- if (res == isl_lp_error || res == isl_lp_empty)
- return res;
- sol = initial_solution(bset, f);
- if (!sol)
- return isl_lp_error;
- if (sol->size == 0) {
- isl_vec_free(sol);
- return isl_lp_empty;
- }
- if (res == isl_lp_unbounded) {
- isl_vec_free(sol);
- return isl_lp_unbounded;
- }
- isl_int_init(l);
- isl_int_init(u);
- isl_int_set(l, *opt);
- isl_seq_inner_product(f, sol->el, sol->size, opt);
- isl_int_sub_ui(u, *opt, 1);
- sol = solve_ilp_search(bset, f, opt, sol, l, u);
- if (!sol)
- res = isl_lp_error;
- isl_int_clear(l);
- isl_int_clear(u);
- if (sol_p)
- *sol_p = sol;
- else
- isl_vec_free(sol);
- return res;
- }
- static enum isl_lp_result solve_ilp_with_eq(__isl_keep isl_basic_set *bset,
- int max, isl_int *f, isl_int *opt, __isl_give isl_vec **sol_p)
- {
- isl_size dim;
- enum isl_lp_result res;
- struct isl_mat *T = NULL;
- struct isl_vec *v;
- bset = isl_basic_set_copy(bset);
- dim = isl_basic_set_dim(bset, isl_dim_all);
- if (dim < 0)
- goto error;
- v = isl_vec_alloc(bset->ctx, 1 + dim);
- if (!v)
- goto error;
- isl_seq_cpy(v->el, f, 1 + dim);
- bset = isl_basic_set_remove_equalities(bset, &T, NULL);
- v = isl_vec_mat_product(v, isl_mat_copy(T));
- if (!v)
- goto error;
- res = isl_basic_set_solve_ilp(bset, max, v->el, opt, sol_p);
- isl_vec_free(v);
- if (res == isl_lp_ok && sol_p) {
- *sol_p = isl_mat_vec_product(T, *sol_p);
- if (!*sol_p)
- res = isl_lp_error;
- } else
- isl_mat_free(T);
- isl_basic_set_free(bset);
- return res;
- error:
- isl_mat_free(T);
- isl_basic_set_free(bset);
- return isl_lp_error;
- }
- /* Find an integer point in "bset" that minimizes (or maximizes if max is set)
- * f (if any).
- * If sol_p is not NULL then the integer point is returned in *sol_p.
- * The optimal value of f is returned in *opt.
- *
- * If there is any equality among the points in "bset", then we first
- * project it out. Otherwise, we continue with solve_ilp above.
- */
- enum isl_lp_result isl_basic_set_solve_ilp(__isl_keep isl_basic_set *bset,
- int max, isl_int *f, isl_int *opt, __isl_give isl_vec **sol_p)
- {
- isl_size dim;
- enum isl_lp_result res;
- if (sol_p)
- *sol_p = NULL;
- if (isl_basic_set_check_no_params(bset) < 0)
- return isl_lp_error;
- if (isl_basic_set_plain_is_empty(bset))
- return isl_lp_empty;
- if (bset->n_eq)
- return solve_ilp_with_eq(bset, max, f, opt, sol_p);
- dim = isl_basic_set_dim(bset, isl_dim_all);
- if (dim < 0)
- return isl_lp_error;
- if (max)
- isl_seq_neg(f, f, 1 + dim);
- res = solve_ilp(bset, f, opt, sol_p);
- if (max) {
- isl_seq_neg(f, f, 1 + dim);
- isl_int_neg(*opt, *opt);
- }
- return res;
- }
- static enum isl_lp_result basic_set_opt(__isl_keep isl_basic_set *bset, int max,
- __isl_keep isl_aff *obj, isl_int *opt)
- {
- enum isl_lp_result res;
- if (!obj)
- return isl_lp_error;
- bset = isl_basic_set_copy(bset);
- bset = isl_basic_set_underlying_set(bset);
- res = isl_basic_set_solve_ilp(bset, max, obj->v->el + 1, opt, NULL);
- isl_basic_set_free(bset);
- return res;
- }
- enum isl_lp_result isl_basic_set_opt(__isl_keep isl_basic_set *bset, int max,
- __isl_keep isl_aff *obj, isl_int *opt)
- {
- int *exp1 = NULL;
- int *exp2 = NULL;
- isl_ctx *ctx;
- isl_mat *bset_div = NULL;
- isl_mat *div = NULL;
- enum isl_lp_result res;
- isl_size bset_n_div, obj_n_div;
- if (!bset || !obj)
- return isl_lp_error;
- ctx = isl_aff_get_ctx(obj);
- if (!isl_space_is_equal(bset->dim, obj->ls->dim))
- isl_die(ctx, isl_error_invalid,
- "spaces don't match", return isl_lp_error);
- if (!isl_int_is_one(obj->v->el[0]))
- isl_die(ctx, isl_error_unsupported,
- "expecting integer affine expression",
- return isl_lp_error);
- bset_n_div = isl_basic_set_dim(bset, isl_dim_div);
- obj_n_div = isl_aff_dim(obj, isl_dim_div);
- if (bset_n_div < 0 || obj_n_div < 0)
- return isl_lp_error;
- if (bset_n_div == 0 && obj_n_div == 0)
- return basic_set_opt(bset, max, obj, opt);
- bset = isl_basic_set_copy(bset);
- obj = isl_aff_copy(obj);
- bset_div = isl_basic_set_get_divs(bset);
- exp1 = isl_alloc_array(ctx, int, bset_n_div);
- exp2 = isl_alloc_array(ctx, int, obj_n_div);
- if (!bset_div || (bset_n_div && !exp1) || (obj_n_div && !exp2))
- goto error;
- div = isl_merge_divs(bset_div, obj->ls->div, exp1, exp2);
- bset = isl_basic_set_expand_divs(bset, isl_mat_copy(div), exp1);
- obj = isl_aff_expand_divs(obj, isl_mat_copy(div), exp2);
- res = basic_set_opt(bset, max, obj, opt);
- isl_mat_free(bset_div);
- isl_mat_free(div);
- free(exp1);
- free(exp2);
- isl_basic_set_free(bset);
- isl_aff_free(obj);
- return res;
- error:
- isl_mat_free(div);
- isl_mat_free(bset_div);
- free(exp1);
- free(exp2);
- isl_basic_set_free(bset);
- isl_aff_free(obj);
- return isl_lp_error;
- }
- /* Compute the minimum (maximum if max is set) of the integer affine
- * expression obj over the points in set and put the result in *opt.
- *
- * The parameters are assumed to have been aligned.
- */
- static enum isl_lp_result isl_set_opt_aligned(__isl_keep isl_set *set, int max,
- __isl_keep isl_aff *obj, isl_int *opt)
- {
- int i;
- enum isl_lp_result res;
- int empty = 1;
- isl_int opt_i;
- if (!set || !obj)
- return isl_lp_error;
- if (set->n == 0)
- return isl_lp_empty;
- res = isl_basic_set_opt(set->p[0], max, obj, opt);
- if (res == isl_lp_error || res == isl_lp_unbounded)
- return res;
- if (set->n == 1)
- return res;
- if (res == isl_lp_ok)
- empty = 0;
- isl_int_init(opt_i);
- for (i = 1; i < set->n; ++i) {
- res = isl_basic_set_opt(set->p[i], max, obj, &opt_i);
- if (res == isl_lp_error || res == isl_lp_unbounded) {
- isl_int_clear(opt_i);
- return res;
- }
- if (res == isl_lp_empty)
- continue;
- empty = 0;
- if (max ? isl_int_gt(opt_i, *opt) : isl_int_lt(opt_i, *opt))
- isl_int_set(*opt, opt_i);
- }
- isl_int_clear(opt_i);
- return empty ? isl_lp_empty : isl_lp_ok;
- }
- /* Compute the minimum (maximum if max is set) of the integer affine
- * expression obj over the points in set and put the result in *opt.
- */
- enum isl_lp_result isl_set_opt(__isl_keep isl_set *set, int max,
- __isl_keep isl_aff *obj, isl_int *opt)
- {
- enum isl_lp_result res;
- isl_bool aligned;
- if (!set || !obj)
- return isl_lp_error;
- aligned = isl_set_space_has_equal_params(set, obj->ls->dim);
- if (aligned < 0)
- return isl_lp_error;
- if (aligned)
- return isl_set_opt_aligned(set, max, obj, opt);
- set = isl_set_copy(set);
- obj = isl_aff_copy(obj);
- set = isl_set_align_params(set, isl_aff_get_domain_space(obj));
- obj = isl_aff_align_params(obj, isl_set_get_space(set));
- res = isl_set_opt_aligned(set, max, obj, opt);
- isl_set_free(set);
- isl_aff_free(obj);
- return res;
- }
- /* Convert the result of a function that returns an isl_lp_result
- * to an isl_val. The numerator of "v" is set to the optimal value
- * if lp_res is isl_lp_ok. "max" is set if a maximum was computed.
- *
- * Return "v" with denominator set to 1 if lp_res is isl_lp_ok.
- * Return NULL on error.
- * Return a NaN if lp_res is isl_lp_empty.
- * Return infinity or negative infinity if lp_res is isl_lp_unbounded,
- * depending on "max".
- */
- static __isl_give isl_val *convert_lp_result(enum isl_lp_result lp_res,
- __isl_take isl_val *v, int max)
- {
- isl_ctx *ctx;
- if (lp_res == isl_lp_ok) {
- isl_int_set_si(v->d, 1);
- return isl_val_normalize(v);
- }
- ctx = isl_val_get_ctx(v);
- isl_val_free(v);
- if (lp_res == isl_lp_error)
- return NULL;
- if (lp_res == isl_lp_empty)
- return isl_val_nan(ctx);
- if (max)
- return isl_val_infty(ctx);
- else
- return isl_val_neginfty(ctx);
- }
- /* Return the minimum (maximum if max is set) of the integer affine
- * expression "obj" over the points in "bset".
- *
- * Return infinity or negative infinity if the optimal value is unbounded and
- * NaN if "bset" is empty.
- *
- * Call isl_basic_set_opt and translate the results.
- */
- __isl_give isl_val *isl_basic_set_opt_val(__isl_keep isl_basic_set *bset,
- int max, __isl_keep isl_aff *obj)
- {
- isl_ctx *ctx;
- isl_val *res;
- enum isl_lp_result lp_res;
- if (!bset || !obj)
- return NULL;
- ctx = isl_aff_get_ctx(obj);
- res = isl_val_alloc(ctx);
- if (!res)
- return NULL;
- lp_res = isl_basic_set_opt(bset, max, obj, &res->n);
- return convert_lp_result(lp_res, res, max);
- }
- /* Return the maximum of the integer affine
- * expression "obj" over the points in "bset".
- *
- * Return infinity or negative infinity if the optimal value is unbounded and
- * NaN if "bset" is empty.
- */
- __isl_give isl_val *isl_basic_set_max_val(__isl_keep isl_basic_set *bset,
- __isl_keep isl_aff *obj)
- {
- return isl_basic_set_opt_val(bset, 1, obj);
- }
- /* Return the minimum (maximum if max is set) of the integer affine
- * expression "obj" over the points in "set".
- *
- * Return infinity or negative infinity if the optimal value is unbounded and
- * NaN if "set" is empty.
- *
- * Call isl_set_opt and translate the results.
- */
- __isl_give isl_val *isl_set_opt_val(__isl_keep isl_set *set, int max,
- __isl_keep isl_aff *obj)
- {
- isl_ctx *ctx;
- isl_val *res;
- enum isl_lp_result lp_res;
- if (!set || !obj)
- return NULL;
- ctx = isl_aff_get_ctx(obj);
- res = isl_val_alloc(ctx);
- if (!res)
- return NULL;
- lp_res = isl_set_opt(set, max, obj, &res->n);
- return convert_lp_result(lp_res, res, max);
- }
- /* Return the minimum of the integer affine
- * expression "obj" over the points in "set".
- *
- * Return infinity or negative infinity if the optimal value is unbounded and
- * NaN if "set" is empty.
- */
- __isl_give isl_val *isl_set_min_val(__isl_keep isl_set *set,
- __isl_keep isl_aff *obj)
- {
- return isl_set_opt_val(set, 0, obj);
- }
- /* Return the maximum of the integer affine
- * expression "obj" over the points in "set".
- *
- * Return infinity or negative infinity if the optimal value is unbounded and
- * NaN if "set" is empty.
- */
- __isl_give isl_val *isl_set_max_val(__isl_keep isl_set *set,
- __isl_keep isl_aff *obj)
- {
- return isl_set_opt_val(set, 1, obj);
- }
- /* Return the optimum (min or max depending on "max") of "v1" and "v2",
- * where either may be NaN, signifying an uninitialized value.
- * That is, if either is NaN, then return the other one.
- */
- static __isl_give isl_val *val_opt(__isl_take isl_val *v1,
- __isl_take isl_val *v2, int max)
- {
- if (!v1 || !v2)
- goto error;
- if (isl_val_is_nan(v1)) {
- isl_val_free(v1);
- return v2;
- }
- if (isl_val_is_nan(v2)) {
- isl_val_free(v2);
- return v1;
- }
- if (max)
- return isl_val_max(v1, v2);
- else
- return isl_val_min(v1, v2);
- error:
- isl_val_free(v1);
- isl_val_free(v2);
- return NULL;
- }
- /* Internal data structure for isl_pw_aff_opt_val.
- *
- * "max" is set if the maximum should be computed.
- * "res" contains the current optimum and is initialized to NaN.
- */
- struct isl_pw_aff_opt_data {
- int max;
- isl_val *res;
- };
- /* Update the optimum in data->res with respect to the affine function
- * "aff" defined over "set".
- */
- static isl_stat piece_opt(__isl_take isl_set *set, __isl_take isl_aff *aff,
- void *user)
- {
- struct isl_pw_aff_opt_data *data = user;
- isl_val *opt;
- opt = isl_set_opt_val(set, data->max, aff);
- isl_set_free(set);
- isl_aff_free(aff);
- data->res = val_opt(data->res, opt, data->max);
- if (!data->res)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Return the minimum (maximum if "max" is set) of the integer piecewise affine
- * expression "pa" over its definition domain.
- *
- * Return infinity or negative infinity if the optimal value is unbounded and
- * NaN if the domain of "pa" is empty.
- *
- * Initialize the result to NaN and then update it for each of the pieces
- * in "pa".
- */
- static __isl_give isl_val *isl_pw_aff_opt_val(__isl_take isl_pw_aff *pa,
- int max)
- {
- struct isl_pw_aff_opt_data data = { max };
- data.res = isl_val_nan(isl_pw_aff_get_ctx(pa));
- if (isl_pw_aff_foreach_piece(pa, &piece_opt, &data) < 0)
- data.res = isl_val_free(data.res);
- isl_pw_aff_free(pa);
- return data.res;
- }
- #undef TYPE
- #define TYPE isl_pw_multi_aff
- #include "isl_ilp_opt_multi_val_templ.c"
- #undef TYPE
- #define TYPE isl_multi_pw_aff
- #include "isl_ilp_opt_multi_val_templ.c"
- /* Internal data structure for isl_union_pw_aff_opt_val.
- *
- * "max" is set if the maximum should be computed.
- * "res" contains the current optimum and is initialized to NaN.
- */
- struct isl_union_pw_aff_opt_data {
- int max;
- isl_val *res;
- };
- /* Update the optimum in data->res with the optimum of "pa".
- */
- static isl_stat pw_aff_opt(__isl_take isl_pw_aff *pa, void *user)
- {
- struct isl_union_pw_aff_opt_data *data = user;
- isl_val *opt;
- opt = isl_pw_aff_opt_val(pa, data->max);
- data->res = val_opt(data->res, opt, data->max);
- if (!data->res)
- return isl_stat_error;
- return isl_stat_ok;
- }
- /* Return the minimum (maximum if "max" is set) of the integer piecewise affine
- * expression "upa" over its definition domain.
- *
- * Return infinity or negative infinity if the optimal value is unbounded and
- * NaN if the domain of the expression is empty.
- *
- * Initialize the result to NaN and then update it
- * for each of the piecewise affine expressions in "upa".
- */
- static __isl_give isl_val *isl_union_pw_aff_opt_val(
- __isl_take isl_union_pw_aff *upa, int max)
- {
- struct isl_union_pw_aff_opt_data data = { max };
- data.res = isl_val_nan(isl_union_pw_aff_get_ctx(upa));
- if (isl_union_pw_aff_foreach_pw_aff(upa, &pw_aff_opt, &data) < 0)
- data.res = isl_val_free(data.res);
- isl_union_pw_aff_free(upa);
- return data.res;
- }
- /* Return the minimum of the integer piecewise affine
- * expression "upa" over its definition domain.
- *
- * Return negative infinity if the optimal value is unbounded and
- * NaN if the domain of the expression is empty.
- */
- __isl_give isl_val *isl_union_pw_aff_min_val(__isl_take isl_union_pw_aff *upa)
- {
- return isl_union_pw_aff_opt_val(upa, 0);
- }
- /* Return the maximum of the integer piecewise affine
- * expression "upa" over its definition domain.
- *
- * Return infinity if the optimal value is unbounded and
- * NaN if the domain of the expression is empty.
- */
- __isl_give isl_val *isl_union_pw_aff_max_val(__isl_take isl_union_pw_aff *upa)
- {
- return isl_union_pw_aff_opt_val(upa, 1);
- }
- /* Return a list of minima (maxima if "max" is set)
- * for each of the expressions in "mupa" over their domains.
- *
- * An element in the list is infinity or negative infinity if the optimal
- * value of the corresponding expression is unbounded and
- * NaN if the domain of the expression is empty.
- *
- * Iterate over all the expressions in "mupa" and collect the results.
- */
- static __isl_give isl_multi_val *isl_multi_union_pw_aff_opt_multi_val(
- __isl_take isl_multi_union_pw_aff *mupa, int max)
- {
- int i;
- isl_size n;
- isl_multi_val *mv;
- n = isl_multi_union_pw_aff_size(mupa);
- if (n < 0)
- mupa = isl_multi_union_pw_aff_free(mupa);
- if (!mupa)
- return NULL;
- mv = isl_multi_val_zero(isl_multi_union_pw_aff_get_space(mupa));
- for (i = 0; i < n; ++i) {
- isl_val *v;
- isl_union_pw_aff *upa;
- upa = isl_multi_union_pw_aff_get_union_pw_aff(mupa, i);
- v = isl_union_pw_aff_opt_val(upa, max);
- mv = isl_multi_val_set_val(mv, i, v);
- }
- isl_multi_union_pw_aff_free(mupa);
- return mv;
- }
- /* Return a list of minima (maxima if "max" is set) over the points in "uset"
- * for each of the expressions in "obj".
- *
- * An element in the list is infinity or negative infinity if the optimal
- * value of the corresponding expression is unbounded and
- * NaN if the intersection of "uset" with the domain of the expression
- * is empty.
- */
- static __isl_give isl_multi_val *isl_union_set_opt_multi_union_pw_aff(
- __isl_keep isl_union_set *uset, int max,
- __isl_keep isl_multi_union_pw_aff *obj)
- {
- uset = isl_union_set_copy(uset);
- obj = isl_multi_union_pw_aff_copy(obj);
- obj = isl_multi_union_pw_aff_intersect_domain(obj, uset);
- return isl_multi_union_pw_aff_opt_multi_val(obj, max);
- }
- /* Return a list of minima over the points in "uset"
- * for each of the expressions in "obj".
- *
- * An element in the list is infinity or negative infinity if the optimal
- * value of the corresponding expression is unbounded and
- * NaN if the intersection of "uset" with the domain of the expression
- * is empty.
- */
- __isl_give isl_multi_val *isl_union_set_min_multi_union_pw_aff(
- __isl_keep isl_union_set *uset, __isl_keep isl_multi_union_pw_aff *obj)
- {
- return isl_union_set_opt_multi_union_pw_aff(uset, 0, obj);
- }
- /* Return a list of minima
- * for each of the expressions in "mupa" over their domains.
- *
- * An element in the list is negative infinity if the optimal
- * value of the corresponding expression is unbounded and
- * NaN if the domain of the expression is empty.
- */
- __isl_give isl_multi_val *isl_multi_union_pw_aff_min_multi_val(
- __isl_take isl_multi_union_pw_aff *mupa)
- {
- return isl_multi_union_pw_aff_opt_multi_val(mupa, 0);
- }
- /* Return a list of maxima
- * for each of the expressions in "mupa" over their domains.
- *
- * An element in the list is infinity if the optimal
- * value of the corresponding expression is unbounded and
- * NaN if the domain of the expression is empty.
- */
- __isl_give isl_multi_val *isl_multi_union_pw_aff_max_multi_val(
- __isl_take isl_multi_union_pw_aff *mupa)
- {
- return isl_multi_union_pw_aff_opt_multi_val(mupa, 1);
- }
- #undef BASE
- #define BASE basic_set
- #include "isl_ilp_opt_val_templ.c"
- /* Return the maximal value attained by the given set dimension,
- * independently of the parameter values and of any other dimensions.
- *
- * Return infinity if the optimal value is unbounded and
- * NaN if "bset" is empty.
- */
- __isl_give isl_val *isl_basic_set_dim_max_val(__isl_take isl_basic_set *bset,
- int pos)
- {
- return isl_basic_set_dim_opt_val(bset, 1, pos);
- }
- #undef BASE
- #define BASE set
- #include "isl_ilp_opt_val_templ.c"
- /* Return the minimal value attained by the given set dimension,
- * independently of the parameter values and of any other dimensions.
- *
- * Return negative infinity if the optimal value is unbounded and
- * NaN if "set" is empty.
- */
- __isl_give isl_val *isl_set_dim_min_val(__isl_take isl_set *set, int pos)
- {
- return isl_set_dim_opt_val(set, 0, pos);
- }
- /* Return the maximal value attained by the given set dimension,
- * independently of the parameter values and of any other dimensions.
- *
- * Return infinity if the optimal value is unbounded and
- * NaN if "set" is empty.
- */
- __isl_give isl_val *isl_set_dim_max_val(__isl_take isl_set *set, int pos)
- {
- return isl_set_dim_opt_val(set, 1, pos);
- }
|