123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897 |
- /*
- * Copyright 2008-2009 Katholieke Universiteit Leuven
- * Copyright 2010 INRIA Saclay
- *
- * Use of this software is governed by the MIT license
- *
- * Written by Sven Verdoolaege, K.U.Leuven, Departement
- * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
- * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
- * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
- */
- #include <isl_mat_private.h>
- #include <isl_vec_private.h>
- #include <isl_seq.h>
- #include "isl_map_private.h"
- #include "isl_equalities.h"
- #include <isl_val_private.h>
- /* Given a set of modulo constraints
- *
- * c + A y = 0 mod d
- *
- * this function computes a particular solution y_0
- *
- * The input is given as a matrix B = [ c A ] and a vector d.
- *
- * The output is matrix containing the solution y_0 or
- * a zero-column matrix if the constraints admit no integer solution.
- *
- * The given set of constrains is equivalent to
- *
- * c + A y = -D x
- *
- * with D = diag d and x a fresh set of variables.
- * Reducing both c and A modulo d does not change the
- * value of y in the solution and may lead to smaller coefficients.
- * Let M = [ D A ] and [ H 0 ] = M U, the Hermite normal form of M.
- * Then
- * [ x ]
- * M [ y ] = - c
- * and so
- * [ x ]
- * [ H 0 ] U^{-1} [ y ] = - c
- * Let
- * [ A ] [ x ]
- * [ B ] = U^{-1} [ y ]
- * then
- * H A + 0 B = -c
- *
- * so B may be chosen arbitrarily, e.g., B = 0, and then
- *
- * [ x ] = [ -c ]
- * U^{-1} [ y ] = [ 0 ]
- * or
- * [ x ] [ -c ]
- * [ y ] = U [ 0 ]
- * specifically,
- *
- * y = U_{2,1} (-c)
- *
- * If any of the coordinates of this y are non-integer
- * then the constraints admit no integer solution and
- * a zero-column matrix is returned.
- */
- static __isl_give isl_mat *particular_solution(__isl_keep isl_mat *B,
- __isl_keep isl_vec *d)
- {
- int i, j;
- struct isl_mat *M = NULL;
- struct isl_mat *C = NULL;
- struct isl_mat *U = NULL;
- struct isl_mat *H = NULL;
- struct isl_mat *cst = NULL;
- struct isl_mat *T = NULL;
- M = isl_mat_alloc(B->ctx, B->n_row, B->n_row + B->n_col - 1);
- C = isl_mat_alloc(B->ctx, 1 + B->n_row, 1);
- if (!M || !C)
- goto error;
- isl_int_set_si(C->row[0][0], 1);
- for (i = 0; i < B->n_row; ++i) {
- isl_seq_clr(M->row[i], B->n_row);
- isl_int_set(M->row[i][i], d->block.data[i]);
- isl_int_neg(C->row[1 + i][0], B->row[i][0]);
- isl_int_fdiv_r(C->row[1+i][0], C->row[1+i][0], M->row[i][i]);
- for (j = 0; j < B->n_col - 1; ++j)
- isl_int_fdiv_r(M->row[i][B->n_row + j],
- B->row[i][1 + j], M->row[i][i]);
- }
- M = isl_mat_left_hermite(M, 0, &U, NULL);
- if (!M || !U)
- goto error;
- H = isl_mat_sub_alloc(M, 0, B->n_row, 0, B->n_row);
- H = isl_mat_lin_to_aff(H);
- C = isl_mat_inverse_product(H, C);
- if (!C)
- goto error;
- for (i = 0; i < B->n_row; ++i) {
- if (!isl_int_is_divisible_by(C->row[1+i][0], C->row[0][0]))
- break;
- isl_int_divexact(C->row[1+i][0], C->row[1+i][0], C->row[0][0]);
- }
- if (i < B->n_row)
- cst = isl_mat_alloc(B->ctx, B->n_row, 0);
- else
- cst = isl_mat_sub_alloc(C, 1, B->n_row, 0, 1);
- T = isl_mat_sub_alloc(U, B->n_row, B->n_col - 1, 0, B->n_row);
- cst = isl_mat_product(T, cst);
- isl_mat_free(M);
- isl_mat_free(C);
- isl_mat_free(U);
- return cst;
- error:
- isl_mat_free(M);
- isl_mat_free(C);
- isl_mat_free(U);
- return NULL;
- }
- /* Compute and return the matrix
- *
- * U_1^{-1} diag(d_1, 1, ..., 1)
- *
- * with U_1 the unimodular completion of the first (and only) row of B.
- * The columns of this matrix generate the lattice that satisfies
- * the single (linear) modulo constraint.
- */
- static __isl_take isl_mat *parameter_compression_1(__isl_keep isl_mat *B,
- __isl_keep isl_vec *d)
- {
- struct isl_mat *U;
- U = isl_mat_alloc(B->ctx, B->n_col - 1, B->n_col - 1);
- if (!U)
- return NULL;
- isl_seq_cpy(U->row[0], B->row[0] + 1, B->n_col - 1);
- U = isl_mat_unimodular_complete(U, 1);
- U = isl_mat_right_inverse(U);
- if (!U)
- return NULL;
- isl_mat_col_mul(U, 0, d->block.data[0], 0);
- U = isl_mat_lin_to_aff(U);
- return U;
- }
- /* Compute a common lattice of solutions to the linear modulo
- * constraints specified by B and d.
- * See also the documentation of isl_mat_parameter_compression.
- * We put the matrix
- *
- * A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
- *
- * on a common denominator. This denominator D is the lcm of modulos d.
- * Since L_i = U_i^{-1} diag(d_i, 1, ... 1), we have
- * L_i^{-T} = U_i^T diag(d_i, 1, ... 1)^{-T} = U_i^T diag(1/d_i, 1, ..., 1).
- * Putting this on the common denominator, we have
- * D * L_i^{-T} = U_i^T diag(D/d_i, D, ..., D).
- */
- static __isl_give isl_mat *parameter_compression_multi(__isl_keep isl_mat *B,
- __isl_keep isl_vec *d)
- {
- int i, j, k;
- isl_int D;
- struct isl_mat *A = NULL, *U = NULL;
- struct isl_mat *T;
- unsigned size;
- isl_int_init(D);
- isl_vec_lcm(d, &D);
- size = B->n_col - 1;
- A = isl_mat_alloc(B->ctx, size, B->n_row * size);
- U = isl_mat_alloc(B->ctx, size, size);
- if (!U || !A)
- goto error;
- for (i = 0; i < B->n_row; ++i) {
- isl_seq_cpy(U->row[0], B->row[i] + 1, size);
- U = isl_mat_unimodular_complete(U, 1);
- if (!U)
- goto error;
- isl_int_divexact(D, D, d->block.data[i]);
- for (k = 0; k < U->n_col; ++k)
- isl_int_mul(A->row[k][i*size+0], D, U->row[0][k]);
- isl_int_mul(D, D, d->block.data[i]);
- for (j = 1; j < U->n_row; ++j)
- for (k = 0; k < U->n_col; ++k)
- isl_int_mul(A->row[k][i*size+j],
- D, U->row[j][k]);
- }
- A = isl_mat_left_hermite(A, 0, NULL, NULL);
- T = isl_mat_sub_alloc(A, 0, A->n_row, 0, A->n_row);
- T = isl_mat_lin_to_aff(T);
- if (!T)
- goto error;
- isl_int_set(T->row[0][0], D);
- T = isl_mat_right_inverse(T);
- if (!T)
- goto error;
- isl_assert(T->ctx, isl_int_is_one(T->row[0][0]), goto error);
- T = isl_mat_transpose(T);
- isl_mat_free(A);
- isl_mat_free(U);
- isl_int_clear(D);
- return T;
- error:
- isl_mat_free(A);
- isl_mat_free(U);
- isl_int_clear(D);
- return NULL;
- }
- /* Given a set of modulo constraints
- *
- * c + A y = 0 mod d
- *
- * this function returns an affine transformation T,
- *
- * y = T y'
- *
- * that bijectively maps the integer vectors y' to integer
- * vectors y that satisfy the modulo constraints.
- *
- * This function is inspired by Section 2.5.3
- * of B. Meister, "Stating and Manipulating Periodicity in the Polytope
- * Model. Applications to Program Analysis and Optimization".
- * However, the implementation only follows the algorithm of that
- * section for computing a particular solution and not for computing
- * a general homogeneous solution. The latter is incomplete and
- * may remove some valid solutions.
- * Instead, we use an adaptation of the algorithm in Section 7 of
- * B. Meister, S. Verdoolaege, "Polynomial Approximations in the Polytope
- * Model: Bringing the Power of Quasi-Polynomials to the Masses".
- *
- * The input is given as a matrix B = [ c A ] and a vector d.
- * Each element of the vector d corresponds to a row in B.
- * The output is a lower triangular matrix.
- * If no integer vector y satisfies the given constraints then
- * a matrix with zero columns is returned.
- *
- * We first compute a particular solution y_0 to the given set of
- * modulo constraints in particular_solution. If no such solution
- * exists, then we return a zero-columned transformation matrix.
- * Otherwise, we compute the generic solution to
- *
- * A y = 0 mod d
- *
- * That is we want to compute G such that
- *
- * y = G y''
- *
- * with y'' integer, describes the set of solutions.
- *
- * We first remove the common factors of each row.
- * In particular if gcd(A_i,d_i) != 1, then we divide the whole
- * row i (including d_i) by this common factor. If afterwards gcd(A_i) != 1,
- * then we divide this row of A by the common factor, unless gcd(A_i) = 0.
- * In the later case, we simply drop the row (in both A and d).
- *
- * If there are no rows left in A, then G is the identity matrix. Otherwise,
- * for each row i, we now determine the lattice of integer vectors
- * that satisfies this row. Let U_i be the unimodular extension of the
- * row A_i. This unimodular extension exists because gcd(A_i) = 1.
- * The first component of
- *
- * y' = U_i y
- *
- * needs to be a multiple of d_i. Let y' = diag(d_i, 1, ..., 1) y''.
- * Then,
- *
- * y = U_i^{-1} diag(d_i, 1, ..., 1) y''
- *
- * for arbitrary integer vectors y''. That is, y belongs to the lattice
- * generated by the columns of L_i = U_i^{-1} diag(d_i, 1, ..., 1).
- * If there is only one row, then G = L_1.
- *
- * If there is more than one row left, we need to compute the intersection
- * of the lattices. That is, we need to compute an L such that
- *
- * L = L_i L_i' for all i
- *
- * with L_i' some integer matrices. Let A be constructed as follows
- *
- * A = [ L_1^{-T} L_2^{-T} ... L_k^{-T} ]
- *
- * and computed the Hermite Normal Form of A = [ H 0 ] U
- * Then,
- *
- * L_i^{-T} = H U_{1,i}
- *
- * or
- *
- * H^{-T} = L_i U_{1,i}^T
- *
- * In other words G = L = H^{-T}.
- * To ensure that G is lower triangular, we compute and use its Hermite
- * normal form.
- *
- * The affine transformation matrix returned is then
- *
- * [ 1 0 ]
- * [ y_0 G ]
- *
- * as any y = y_0 + G y' with y' integer is a solution to the original
- * modulo constraints.
- */
- __isl_give isl_mat *isl_mat_parameter_compression(__isl_take isl_mat *B,
- __isl_take isl_vec *d)
- {
- int i;
- struct isl_mat *cst = NULL;
- struct isl_mat *T = NULL;
- isl_int D;
- if (!B || !d)
- goto error;
- isl_assert(B->ctx, B->n_row == d->size, goto error);
- cst = particular_solution(B, d);
- if (!cst)
- goto error;
- if (cst->n_col == 0) {
- T = isl_mat_alloc(B->ctx, B->n_col, 0);
- isl_mat_free(cst);
- isl_mat_free(B);
- isl_vec_free(d);
- return T;
- }
- isl_int_init(D);
- /* Replace a*g*row = 0 mod g*m by row = 0 mod m */
- for (i = 0; i < B->n_row; ++i) {
- isl_seq_gcd(B->row[i] + 1, B->n_col - 1, &D);
- if (isl_int_is_one(D))
- continue;
- if (isl_int_is_zero(D)) {
- B = isl_mat_drop_rows(B, i, 1);
- d = isl_vec_cow(d);
- if (!B || !d)
- goto error2;
- isl_seq_cpy(d->block.data+i, d->block.data+i+1,
- d->size - (i+1));
- d->size--;
- i--;
- continue;
- }
- B = isl_mat_cow(B);
- if (!B)
- goto error2;
- isl_seq_scale_down(B->row[i] + 1, B->row[i] + 1, D, B->n_col-1);
- isl_int_gcd(D, D, d->block.data[i]);
- d = isl_vec_cow(d);
- if (!d)
- goto error2;
- isl_int_divexact(d->block.data[i], d->block.data[i], D);
- }
- isl_int_clear(D);
- if (B->n_row == 0)
- T = isl_mat_identity(B->ctx, B->n_col);
- else if (B->n_row == 1)
- T = parameter_compression_1(B, d);
- else
- T = parameter_compression_multi(B, d);
- T = isl_mat_left_hermite(T, 0, NULL, NULL);
- if (!T)
- goto error;
- isl_mat_sub_copy(T->ctx, T->row + 1, cst->row, cst->n_row, 0, 0, 1);
- isl_mat_free(cst);
- isl_mat_free(B);
- isl_vec_free(d);
- return T;
- error2:
- isl_int_clear(D);
- error:
- isl_mat_free(cst);
- isl_mat_free(B);
- isl_vec_free(d);
- return NULL;
- }
- /* Given a set of equalities
- *
- * B(y) + A x = 0 (*)
- *
- * compute and return an affine transformation T,
- *
- * y = T y'
- *
- * that bijectively maps the integer vectors y' to integer
- * vectors y that satisfy the modulo constraints for some value of x.
- *
- * Let [H 0] be the Hermite Normal Form of A, i.e.,
- *
- * A = [H 0] Q
- *
- * Then y is a solution of (*) iff
- *
- * H^-1 B(y) (= - [I 0] Q x)
- *
- * is an integer vector. Let d be the common denominator of H^-1.
- * We impose
- *
- * d H^-1 B(y) = 0 mod d
- *
- * and compute the solution using isl_mat_parameter_compression.
- */
- __isl_give isl_mat *isl_mat_parameter_compression_ext(__isl_take isl_mat *B,
- __isl_take isl_mat *A)
- {
- isl_ctx *ctx;
- isl_vec *d;
- int n_row, n_col;
- if (!A)
- return isl_mat_free(B);
- ctx = isl_mat_get_ctx(A);
- n_row = A->n_row;
- n_col = A->n_col;
- A = isl_mat_left_hermite(A, 0, NULL, NULL);
- A = isl_mat_drop_cols(A, n_row, n_col - n_row);
- A = isl_mat_lin_to_aff(A);
- A = isl_mat_right_inverse(A);
- d = isl_vec_alloc(ctx, n_row);
- if (A)
- d = isl_vec_set(d, A->row[0][0]);
- A = isl_mat_drop_rows(A, 0, 1);
- A = isl_mat_drop_cols(A, 0, 1);
- B = isl_mat_product(A, B);
- return isl_mat_parameter_compression(B, d);
- }
- /* Return a compression matrix that indicates that there are no solutions
- * to the original constraints. In particular, return a zero-column
- * matrix with 1 + dim rows. If "T2" is not NULL, then assign *T2
- * the inverse of this matrix. *T2 may already have been assigned
- * matrix, so free it first.
- * "free1", "free2" and "free3" are temporary matrices that are
- * not useful when an empty compression is returned. They are
- * simply freed.
- */
- static __isl_give isl_mat *empty_compression(isl_ctx *ctx, unsigned dim,
- __isl_give isl_mat **T2, __isl_take isl_mat *free1,
- __isl_take isl_mat *free2, __isl_take isl_mat *free3)
- {
- isl_mat_free(free1);
- isl_mat_free(free2);
- isl_mat_free(free3);
- if (T2) {
- isl_mat_free(*T2);
- *T2 = isl_mat_alloc(ctx, 0, 1 + dim);
- }
- return isl_mat_alloc(ctx, 1 + dim, 0);
- }
- /* Given a matrix that maps a (possibly) parametric domain to
- * a parametric domain, add in rows that map the "nparam" parameters onto
- * themselves.
- */
- static __isl_give isl_mat *insert_parameter_rows(__isl_take isl_mat *mat,
- unsigned nparam)
- {
- int i;
- if (nparam == 0)
- return mat;
- if (!mat)
- return NULL;
- mat = isl_mat_insert_rows(mat, 1, nparam);
- if (!mat)
- return NULL;
- for (i = 0; i < nparam; ++i) {
- isl_seq_clr(mat->row[1 + i], mat->n_col);
- isl_int_set(mat->row[1 + i][1 + i], mat->row[0][0]);
- }
- return mat;
- }
- /* Given a set of equalities
- *
- * -C(y) + M x = 0
- *
- * this function computes a unimodular transformation from a lower-dimensional
- * space to the original space that bijectively maps the integer points x'
- * in the lower-dimensional space to the integer points x in the original
- * space that satisfy the equalities.
- *
- * The input is given as a matrix B = [ -C M ] and the output is a
- * matrix that maps [1 x'] to [1 x].
- * The number of equality constraints in B is assumed to be smaller than
- * or equal to the number of variables x.
- * "first" is the position of the first x variable.
- * The preceding variables are considered to be y-variables.
- * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
- *
- * First compute the (left) Hermite normal form of M,
- *
- * M [U1 U2] = M U = H = [H1 0]
- * or
- * M = H Q = [H1 0] [Q1]
- * [Q2]
- *
- * with U, Q unimodular, Q = U^{-1} (and H lower triangular).
- * Define the transformed variables as
- *
- * x = [U1 U2] [ x1' ] = [U1 U2] [Q1] x
- * [ x2' ] [Q2]
- *
- * The equalities then become
- *
- * -C(y) + H1 x1' = 0 or x1' = H1^{-1} C(y) = C'(y)
- *
- * If the denominator of the constant term does not divide the
- * the common denominator of the coefficients of y, then every
- * integer point is mapped to a non-integer point and then the original set
- * has no integer solutions (since the x' are a unimodular transformation
- * of the x). In this case, a zero-column matrix is returned.
- * Otherwise, the transformation is given by
- *
- * x = U1 H1^{-1} C(y) + U2 x2'
- *
- * The inverse transformation is simply
- *
- * x2' = Q2 x
- */
- __isl_give isl_mat *isl_mat_final_variable_compression(__isl_take isl_mat *B,
- int first, __isl_give isl_mat **T2)
- {
- int i, n;
- isl_ctx *ctx;
- isl_mat *H = NULL, *C, *H1, *U = NULL, *U1, *U2;
- unsigned dim;
- if (T2)
- *T2 = NULL;
- if (!B)
- goto error;
- ctx = isl_mat_get_ctx(B);
- dim = B->n_col - 1;
- n = dim - first;
- if (n < B->n_row)
- isl_die(ctx, isl_error_invalid, "too many equality constraints",
- goto error);
- H = isl_mat_sub_alloc(B, 0, B->n_row, 1 + first, n);
- H = isl_mat_left_hermite(H, 0, &U, T2);
- if (!H || !U || (T2 && !*T2))
- goto error;
- if (T2) {
- *T2 = isl_mat_drop_rows(*T2, 0, B->n_row);
- *T2 = isl_mat_diagonal(isl_mat_identity(ctx, 1 + first), *T2);
- if (!*T2)
- goto error;
- }
- C = isl_mat_alloc(ctx, 1 + B->n_row, 1 + first);
- if (!C)
- goto error;
- isl_int_set_si(C->row[0][0], 1);
- isl_seq_clr(C->row[0] + 1, first);
- isl_mat_sub_neg(ctx, C->row + 1, B->row, B->n_row, 0, 0, 1 + first);
- H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
- H1 = isl_mat_lin_to_aff(H1);
- C = isl_mat_inverse_product(H1, C);
- if (!C)
- goto error;
- isl_mat_free(H);
- if (!isl_int_is_one(C->row[0][0])) {
- isl_int g;
- isl_int_init(g);
- for (i = 0; i < B->n_row; ++i) {
- isl_seq_gcd(C->row[1 + i] + 1, first, &g);
- isl_int_gcd(g, g, C->row[0][0]);
- if (!isl_int_is_divisible_by(C->row[1 + i][0], g))
- break;
- }
- isl_int_clear(g);
- if (i < B->n_row)
- return empty_compression(ctx, dim, T2, B, C, U);
- C = isl_mat_normalize(C);
- }
- U1 = isl_mat_sub_alloc(U, 0, U->n_row, 0, B->n_row);
- U1 = isl_mat_lin_to_aff(U1);
- U2 = isl_mat_sub_alloc(U, 0, U->n_row, B->n_row, U->n_row - B->n_row);
- U2 = isl_mat_lin_to_aff(U2);
- isl_mat_free(U);
- C = isl_mat_product(U1, C);
- C = isl_mat_aff_direct_sum(C, U2);
- C = insert_parameter_rows(C, first);
- isl_mat_free(B);
- return C;
- error:
- isl_mat_free(B);
- isl_mat_free(H);
- isl_mat_free(U);
- if (T2) {
- isl_mat_free(*T2);
- *T2 = NULL;
- }
- return NULL;
- }
- /* Given a set of equalities
- *
- * M x - c = 0
- *
- * this function computes a unimodular transformation from a lower-dimensional
- * space to the original space that bijectively maps the integer points x'
- * in the lower-dimensional space to the integer points x in the original
- * space that satisfy the equalities.
- *
- * The input is given as a matrix B = [ -c M ] and the output is a
- * matrix that maps [1 x'] to [1 x].
- * The number of equality constraints in B is assumed to be smaller than
- * or equal to the number of variables x.
- * If T2 is not NULL, then *T2 is set to a matrix mapping [1 x] to [1 x'].
- */
- __isl_give isl_mat *isl_mat_variable_compression(__isl_take isl_mat *B,
- __isl_give isl_mat **T2)
- {
- return isl_mat_final_variable_compression(B, 0, T2);
- }
- /* Return "bset" and set *T and *T2 to the identity transformation
- * on "bset" (provided T and T2 are not NULL).
- */
- static __isl_give isl_basic_set *return_with_identity(
- __isl_take isl_basic_set *bset, __isl_give isl_mat **T,
- __isl_give isl_mat **T2)
- {
- isl_size dim;
- isl_mat *id;
- dim = isl_basic_set_dim(bset, isl_dim_set);
- if (dim < 0)
- return isl_basic_set_free(bset);
- if (!T && !T2)
- return bset;
- id = isl_mat_identity(isl_basic_map_get_ctx(bset), 1 + dim);
- if (T)
- *T = isl_mat_copy(id);
- if (T2)
- *T2 = isl_mat_copy(id);
- isl_mat_free(id);
- return bset;
- }
- /* Use the n equalities of bset to unimodularly transform the
- * variables x such that n transformed variables x1' have a constant value
- * and rewrite the constraints of bset in terms of the remaining
- * transformed variables x2'. The matrix pointed to by T maps
- * the new variables x2' back to the original variables x, while T2
- * maps the original variables to the new variables.
- */
- static __isl_give isl_basic_set *compress_variables(
- __isl_take isl_basic_set *bset,
- __isl_give isl_mat **T, __isl_give isl_mat **T2)
- {
- struct isl_mat *B, *TC;
- isl_size dim;
- if (T)
- *T = NULL;
- if (T2)
- *T2 = NULL;
- if (isl_basic_set_check_no_params(bset) < 0 ||
- isl_basic_set_check_no_locals(bset) < 0)
- return isl_basic_set_free(bset);
- dim = isl_basic_set_dim(bset, isl_dim_set);
- if (dim < 0)
- return isl_basic_set_free(bset);
- isl_assert(bset->ctx, bset->n_eq <= dim, goto error);
- if (bset->n_eq == 0)
- return return_with_identity(bset, T, T2);
- B = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq, 0, 1 + dim);
- TC = isl_mat_variable_compression(B, T2);
- if (!TC)
- goto error;
- if (TC->n_col == 0) {
- isl_mat_free(TC);
- if (T2) {
- isl_mat_free(*T2);
- *T2 = NULL;
- }
- bset = isl_basic_set_set_to_empty(bset);
- return return_with_identity(bset, T, T2);
- }
- bset = isl_basic_set_preimage(bset, T ? isl_mat_copy(TC) : TC);
- if (T)
- *T = TC;
- return bset;
- error:
- isl_basic_set_free(bset);
- return NULL;
- }
- __isl_give isl_basic_set *isl_basic_set_remove_equalities(
- __isl_take isl_basic_set *bset, __isl_give isl_mat **T,
- __isl_give isl_mat **T2)
- {
- if (T)
- *T = NULL;
- if (T2)
- *T2 = NULL;
- if (isl_basic_set_check_no_params(bset) < 0)
- return isl_basic_set_free(bset);
- bset = isl_basic_set_gauss(bset, NULL);
- if (ISL_F_ISSET(bset, ISL_BASIC_SET_EMPTY))
- return return_with_identity(bset, T, T2);
- bset = compress_variables(bset, T, T2);
- return bset;
- }
- /* Check if dimension dim belongs to a residue class
- * i_dim \equiv r mod m
- * with m != 1 and if so return m in *modulo and r in *residue.
- * As a special case, when i_dim has a fixed value v, then
- * *modulo is set to 0 and *residue to v.
- *
- * If i_dim does not belong to such a residue class, then *modulo
- * is set to 1 and *residue is set to 0.
- */
- isl_stat isl_basic_set_dim_residue_class(__isl_keep isl_basic_set *bset,
- int pos, isl_int *modulo, isl_int *residue)
- {
- isl_bool fixed;
- struct isl_ctx *ctx;
- struct isl_mat *H = NULL, *U = NULL, *C, *H1, *U1;
- isl_size total;
- isl_size nparam;
- if (!bset || !modulo || !residue)
- return isl_stat_error;
- fixed = isl_basic_set_plain_dim_is_fixed(bset, pos, residue);
- if (fixed < 0)
- return isl_stat_error;
- if (fixed) {
- isl_int_set_si(*modulo, 0);
- return isl_stat_ok;
- }
- ctx = isl_basic_set_get_ctx(bset);
- total = isl_basic_set_dim(bset, isl_dim_all);
- nparam = isl_basic_set_dim(bset, isl_dim_param);
- if (total < 0 || nparam < 0)
- return isl_stat_error;
- H = isl_mat_sub_alloc6(ctx, bset->eq, 0, bset->n_eq, 1, total);
- H = isl_mat_left_hermite(H, 0, &U, NULL);
- if (!H)
- return isl_stat_error;
- isl_seq_gcd(U->row[nparam + pos]+bset->n_eq,
- total-bset->n_eq, modulo);
- if (isl_int_is_zero(*modulo))
- isl_int_set_si(*modulo, 1);
- if (isl_int_is_one(*modulo)) {
- isl_int_set_si(*residue, 0);
- isl_mat_free(H);
- isl_mat_free(U);
- return isl_stat_ok;
- }
- C = isl_mat_alloc(ctx, 1 + bset->n_eq, 1);
- if (!C)
- goto error;
- isl_int_set_si(C->row[0][0], 1);
- isl_mat_sub_neg(ctx, C->row + 1, bset->eq, bset->n_eq, 0, 0, 1);
- H1 = isl_mat_sub_alloc(H, 0, H->n_row, 0, H->n_row);
- H1 = isl_mat_lin_to_aff(H1);
- C = isl_mat_inverse_product(H1, C);
- isl_mat_free(H);
- U1 = isl_mat_sub_alloc(U, nparam+pos, 1, 0, bset->n_eq);
- U1 = isl_mat_lin_to_aff(U1);
- isl_mat_free(U);
- C = isl_mat_product(U1, C);
- if (!C)
- return isl_stat_error;
- if (!isl_int_is_divisible_by(C->row[1][0], C->row[0][0])) {
- bset = isl_basic_set_copy(bset);
- bset = isl_basic_set_set_to_empty(bset);
- isl_basic_set_free(bset);
- isl_int_set_si(*modulo, 1);
- isl_int_set_si(*residue, 0);
- return isl_stat_ok;
- }
- isl_int_divexact(*residue, C->row[1][0], C->row[0][0]);
- isl_int_fdiv_r(*residue, *residue, *modulo);
- isl_mat_free(C);
- return isl_stat_ok;
- error:
- isl_mat_free(H);
- isl_mat_free(U);
- return isl_stat_error;
- }
- /* Check if dimension dim belongs to a residue class
- * i_dim \equiv r mod m
- * with m != 1 and if so return m in *modulo and r in *residue.
- * As a special case, when i_dim has a fixed value v, then
- * *modulo is set to 0 and *residue to v.
- *
- * If i_dim does not belong to such a residue class, then *modulo
- * is set to 1 and *residue is set to 0.
- */
- isl_stat isl_set_dim_residue_class(__isl_keep isl_set *set,
- int pos, isl_int *modulo, isl_int *residue)
- {
- isl_int m;
- isl_int r;
- int i;
- if (!set || !modulo || !residue)
- return isl_stat_error;
- if (set->n == 0) {
- isl_int_set_si(*modulo, 0);
- isl_int_set_si(*residue, 0);
- return isl_stat_ok;
- }
- if (isl_basic_set_dim_residue_class(set->p[0], pos, modulo, residue)<0)
- return isl_stat_error;
- if (set->n == 1)
- return isl_stat_ok;
- if (isl_int_is_one(*modulo))
- return isl_stat_ok;
- isl_int_init(m);
- isl_int_init(r);
- for (i = 1; i < set->n; ++i) {
- if (isl_basic_set_dim_residue_class(set->p[i], pos, &m, &r) < 0)
- goto error;
- isl_int_gcd(*modulo, *modulo, m);
- isl_int_sub(m, *residue, r);
- isl_int_gcd(*modulo, *modulo, m);
- if (!isl_int_is_zero(*modulo))
- isl_int_fdiv_r(*residue, *residue, *modulo);
- if (isl_int_is_one(*modulo))
- break;
- }
- isl_int_clear(m);
- isl_int_clear(r);
- return isl_stat_ok;
- error:
- isl_int_clear(m);
- isl_int_clear(r);
- return isl_stat_error;
- }
- /* Check if dimension "dim" belongs to a residue class
- * i_dim \equiv r mod m
- * with m != 1 and if so return m in *modulo and r in *residue.
- * As a special case, when i_dim has a fixed value v, then
- * *modulo is set to 0 and *residue to v.
- *
- * If i_dim does not belong to such a residue class, then *modulo
- * is set to 1 and *residue is set to 0.
- */
- isl_stat isl_set_dim_residue_class_val(__isl_keep isl_set *set,
- int pos, __isl_give isl_val **modulo, __isl_give isl_val **residue)
- {
- *modulo = NULL;
- *residue = NULL;
- if (!set)
- return isl_stat_error;
- *modulo = isl_val_alloc(isl_set_get_ctx(set));
- *residue = isl_val_alloc(isl_set_get_ctx(set));
- if (!*modulo || !*residue)
- goto error;
- if (isl_set_dim_residue_class(set, pos,
- &(*modulo)->n, &(*residue)->n) < 0)
- goto error;
- isl_int_set_si((*modulo)->d, 1);
- isl_int_set_si((*residue)->d, 1);
- return isl_stat_ok;
- error:
- isl_val_free(*modulo);
- isl_val_free(*residue);
- return isl_stat_error;
- }
|