123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583 |
- /*
- * Copyright 2006-2007 Universiteit Leiden
- * Copyright 2008-2009 Katholieke Universiteit Leuven
- * Copyright 2010 INRIA Saclay
- *
- * Use of this software is governed by the MIT license
- *
- * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
- * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
- * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
- * B-3001 Leuven, Belgium
- * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
- * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
- */
- #include <isl_ctx_private.h>
- #include <isl_map_private.h>
- #include <isl/set.h>
- #include <isl_seq.h>
- #include <isl_morph.h>
- #include <isl_factorization.h>
- #include <isl_vertices_private.h>
- #include <isl_polynomial_private.h>
- #include <isl_options_private.h>
- #include <isl_vec_private.h>
- #include <isl_bernstein.h>
- struct bernstein_data {
- enum isl_fold type;
- isl_qpolynomial *poly;
- int check_tight;
- isl_cell *cell;
- isl_qpolynomial_fold *fold;
- isl_qpolynomial_fold *fold_tight;
- isl_pw_qpolynomial_fold *pwf;
- isl_pw_qpolynomial_fold *pwf_tight;
- };
- static isl_bool vertex_is_integral(__isl_keep isl_basic_set *vertex)
- {
- isl_size nvar;
- isl_size nparam;
- int i;
- nvar = isl_basic_set_dim(vertex, isl_dim_set);
- nparam = isl_basic_set_dim(vertex, isl_dim_param);
- if (nvar < 0 || nparam < 0)
- return isl_bool_error;
- for (i = 0; i < nvar; ++i) {
- int r = nvar - 1 - i;
- if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
- !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
- return isl_bool_false;
- }
- return isl_bool_true;
- }
- static __isl_give isl_qpolynomial *vertex_coordinate(
- __isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *space)
- {
- isl_size nvar;
- isl_size nparam;
- isl_size total;
- int r;
- isl_int denom;
- isl_qpolynomial *v;
- isl_int_init(denom);
- nvar = isl_basic_set_dim(vertex, isl_dim_set);
- nparam = isl_basic_set_dim(vertex, isl_dim_param);
- total = isl_basic_set_dim(vertex, isl_dim_all);
- if (nvar < 0 || nparam < 0 || total < 0)
- goto error;
- r = nvar - 1 - i;
- isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
- isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
- if (isl_int_is_pos(denom))
- isl_seq_neg(vertex->eq[r], vertex->eq[r], 1 + total);
- else
- isl_int_neg(denom, denom);
- v = isl_qpolynomial_from_affine(space, vertex->eq[r], denom);
- isl_int_clear(denom);
- return v;
- error:
- isl_space_free(space);
- isl_int_clear(denom);
- return NULL;
- }
- /* Check whether the bound associated to the selection "k" is tight,
- * which is the case if we select exactly one vertex (i.e., one of the
- * exponents in "k" is exactly "d") and if that vertex
- * is integral for all values of the parameters.
- *
- * If the degree "d" is zero, then there are no exponents.
- * Since the polynomial is a constant expression in this case,
- * the bound is necessarily tight.
- */
- static isl_bool is_tight(int *k, int n, int d, isl_cell *cell)
- {
- int i;
- if (d == 0)
- return isl_bool_true;
- for (i = 0; i < n; ++i) {
- int v;
- if (!k[i])
- continue;
- if (k[i] != d)
- return isl_bool_false;
- v = cell->ids[n - 1 - i];
- return vertex_is_integral(cell->vertices->v[v].vertex);
- }
- return isl_bool_false;
- }
- static isl_stat add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
- int *k, int n, int d, struct bernstein_data *data)
- {
- isl_qpolynomial_fold *fold;
- isl_bool tight;
- fold = isl_qpolynomial_fold_alloc(data->type, b);
- tight = isl_bool_false;
- if (data->check_tight)
- tight = is_tight(k, n, d, data->cell);
- if (tight < 0)
- return isl_stat_error;
- if (tight)
- data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
- data->fold_tight, fold);
- else
- data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
- data->fold, fold);
- return isl_stat_ok;
- }
- /* Extract the coefficients of the Bernstein base polynomials and store
- * them in data->fold and data->fold_tight.
- *
- * In particular, the coefficient of each monomial
- * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
- * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
- *
- * c[i] contains the coefficient of the selected powers of the first i+1 vars.
- * multinom[i] contains the partial multinomial coefficient.
- */
- static isl_stat extract_coefficients(isl_qpolynomial *poly,
- __isl_keep isl_set *dom, struct bernstein_data *data)
- {
- int i;
- int d;
- isl_size n;
- isl_ctx *ctx;
- isl_qpolynomial **c = NULL;
- int *k = NULL;
- int *left = NULL;
- isl_vec *multinom = NULL;
- n = isl_qpolynomial_dim(poly, isl_dim_in);
- if (n < 0)
- return isl_stat_error;
- ctx = isl_qpolynomial_get_ctx(poly);
- d = isl_qpolynomial_degree(poly);
- isl_assert(ctx, n >= 2, return isl_stat_error);
- c = isl_calloc_array(ctx, isl_qpolynomial *, n);
- k = isl_alloc_array(ctx, int, n);
- left = isl_alloc_array(ctx, int, n);
- multinom = isl_vec_alloc(ctx, n);
- if (!c || !k || !left || !multinom)
- goto error;
- isl_int_set_si(multinom->el[0], 1);
- for (k[0] = d; k[0] >= 0; --k[0]) {
- int i = 1;
- isl_qpolynomial_free(c[0]);
- c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
- left[0] = d - k[0];
- k[1] = -1;
- isl_int_set(multinom->el[1], multinom->el[0]);
- while (i > 0) {
- if (i == n - 1) {
- int j;
- isl_space *space;
- isl_qpolynomial *b;
- isl_qpolynomial *f;
- for (j = 2; j <= left[i - 1]; ++j)
- isl_int_divexact_ui(multinom->el[i],
- multinom->el[i], j);
- b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
- n - 1 - i, left[i - 1]);
- b = isl_qpolynomial_project_domain_on_params(b);
- space = isl_qpolynomial_get_domain_space(b);
- f = isl_qpolynomial_rat_cst_on_domain(space,
- ctx->one, multinom->el[i]);
- b = isl_qpolynomial_mul(b, f);
- k[n - 1] = left[n - 2];
- if (add_fold(b, dom, k, n, d, data) < 0)
- goto error;
- --i;
- continue;
- }
- if (k[i] >= left[i - 1]) {
- --i;
- continue;
- }
- ++k[i];
- if (k[i])
- isl_int_divexact_ui(multinom->el[i],
- multinom->el[i], k[i]);
- isl_qpolynomial_free(c[i]);
- c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
- n - 1 - i, k[i]);
- left[i] = left[i - 1] - k[i];
- k[i + 1] = -1;
- isl_int_set(multinom->el[i + 1], multinom->el[i]);
- ++i;
- }
- isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
- }
- for (i = 0; i < n; ++i)
- isl_qpolynomial_free(c[i]);
- isl_vec_free(multinom);
- free(left);
- free(k);
- free(c);
- return isl_stat_ok;
- error:
- isl_vec_free(multinom);
- free(left);
- free(k);
- if (c)
- for (i = 0; i < n; ++i)
- isl_qpolynomial_free(c[i]);
- free(c);
- return isl_stat_error;
- }
- /* Perform bernstein expansion on the parametric vertices that are active
- * on "cell".
- *
- * data->poly has been homogenized in the calling function.
- *
- * We plug in the barycentric coordinates for the set variables
- *
- * \vec x = \sum_i \alpha_i v_i(\vec p)
- *
- * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
- * Next, we extract the coefficients of the Bernstein base polynomials.
- */
- static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell,
- void *user)
- {
- int i, j;
- struct bernstein_data *data = (struct bernstein_data *)user;
- isl_space *space_param;
- isl_space *space_dst;
- isl_qpolynomial *poly = data->poly;
- isl_size n_in;
- unsigned nvar;
- int n_vertices;
- isl_qpolynomial **subs;
- isl_pw_qpolynomial_fold *pwf;
- isl_set *dom;
- isl_ctx *ctx;
- n_in = isl_qpolynomial_dim(poly, isl_dim_in);
- if (n_in < 0)
- goto error;
- nvar = n_in - 1;
- n_vertices = cell->n_vertices;
- ctx = isl_qpolynomial_get_ctx(poly);
- if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
- return isl_cell_foreach_simplex(cell,
- &bernstein_coefficients_cell, user);
- subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
- if (!subs)
- goto error;
- space_param = isl_basic_set_get_space(cell->dom);
- space_dst = isl_qpolynomial_get_domain_space(poly);
- space_dst = isl_space_add_dims(space_dst, isl_dim_set, n_vertices);
- for (i = 0; i < 1 + nvar; ++i)
- subs[i] =
- isl_qpolynomial_zero_on_domain(isl_space_copy(space_dst));
- for (i = 0; i < n_vertices; ++i) {
- isl_qpolynomial *c;
- c = isl_qpolynomial_var_on_domain(isl_space_copy(space_dst),
- isl_dim_set, 1 + nvar + i);
- for (j = 0; j < nvar; ++j) {
- int k = cell->ids[i];
- isl_qpolynomial *v;
- v = vertex_coordinate(cell->vertices->v[k].vertex, j,
- isl_space_copy(space_param));
- v = isl_qpolynomial_add_dims(v, isl_dim_in,
- 1 + nvar + n_vertices);
- v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
- subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
- }
- subs[0] = isl_qpolynomial_add(subs[0], c);
- }
- isl_space_free(space_dst);
- poly = isl_qpolynomial_copy(poly);
- poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
- poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
- poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
- data->cell = cell;
- dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
- data->fold = isl_qpolynomial_fold_empty(data->type,
- isl_space_copy(space_param));
- data->fold_tight = isl_qpolynomial_fold_empty(data->type, space_param);
- if (extract_coefficients(poly, dom, data) < 0) {
- data->fold = isl_qpolynomial_fold_free(data->fold);
- data->fold_tight = isl_qpolynomial_fold_free(data->fold_tight);
- }
- pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
- data->fold);
- data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
- pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
- data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
- isl_qpolynomial_free(poly);
- isl_cell_free(cell);
- for (i = 0; i < 1 + nvar; ++i)
- isl_qpolynomial_free(subs[i]);
- free(subs);
- return isl_stat_ok;
- error:
- isl_cell_free(cell);
- return isl_stat_error;
- }
- /* Base case of applying bernstein expansion.
- *
- * We compute the chamber decomposition of the parametric polytope "bset"
- * and then perform bernstein expansion on the parametric vertices
- * that are active on each chamber.
- *
- * If the polynomial does not depend on the set variables
- * (and in particular if the number of set variables is zero)
- * then the bound is equal to the polynomial and
- * no actual bernstein expansion needs to be performed.
- */
- static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
- __isl_take isl_basic_set *bset,
- __isl_take isl_qpolynomial *poly, struct bernstein_data *data,
- isl_bool *tight)
- {
- int degree;
- isl_size nvar;
- isl_space *space;
- isl_vertices *vertices;
- isl_bool covers;
- nvar = isl_basic_set_dim(bset, isl_dim_set);
- if (nvar < 0)
- bset = isl_basic_set_free(bset);
- if (nvar == 0)
- return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
- degree = isl_qpolynomial_degree(poly);
- if (degree < -1)
- bset = isl_basic_set_free(bset);
- if (degree <= 0)
- return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
- space = isl_basic_set_get_space(bset);
- space = isl_space_params(space);
- space = isl_space_from_domain(space);
- space = isl_space_add_dims(space, isl_dim_set, 1);
- data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
- data->type);
- data->pwf_tight = isl_pw_qpolynomial_fold_zero(space, data->type);
- data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
- vertices = isl_basic_set_compute_vertices(bset);
- if (isl_vertices_foreach_disjoint_cell(vertices,
- &bernstein_coefficients_cell, data) < 0)
- data->pwf = isl_pw_qpolynomial_fold_free(data->pwf);
- isl_vertices_free(vertices);
- isl_qpolynomial_free(data->poly);
- isl_basic_set_free(bset);
- isl_qpolynomial_free(poly);
- covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
- if (covers < 0)
- goto error;
- if (tight)
- *tight = covers;
- if (covers) {
- isl_pw_qpolynomial_fold_free(data->pwf);
- return data->pwf_tight;
- }
- data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
- return data->pwf;
- error:
- isl_pw_qpolynomial_fold_free(data->pwf_tight);
- isl_pw_qpolynomial_fold_free(data->pwf);
- return NULL;
- }
- /* Apply bernstein expansion recursively by working in on len[i]
- * set variables at a time, with i ranging from n_group - 1 to 0.
- */
- static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
- __isl_take isl_pw_qpolynomial *pwqp,
- int n_group, int *len, struct bernstein_data *data, isl_bool *tight)
- {
- int i;
- isl_size nparam;
- isl_size nvar;
- isl_pw_qpolynomial_fold *pwf;
- nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
- nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
- if (nparam < 0 || nvar < 0)
- goto error;
- pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
- isl_dim_in, 0, nvar - len[n_group - 1]);
- pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
- for (i = n_group - 2; i >= 0; --i) {
- nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
- if (nparam < 0)
- return isl_pw_qpolynomial_fold_free(pwf);
- pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
- isl_dim_param, nparam - len[i], len[i]);
- if (tight && !*tight)
- tight = NULL;
- pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
- }
- return pwf;
- error:
- isl_pw_qpolynomial_free(pwqp);
- return NULL;
- }
- static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
- __isl_take isl_basic_set *bset,
- __isl_take isl_qpolynomial *poly, struct bernstein_data *data,
- isl_bool *tight)
- {
- isl_factorizer *f;
- isl_set *set;
- isl_pw_qpolynomial *pwqp;
- isl_pw_qpolynomial_fold *pwf;
- f = isl_basic_set_factorizer(bset);
- if (!f)
- goto error;
- if (f->n_group == 0) {
- isl_factorizer_free(f);
- return bernstein_coefficients_base(bset, poly, data, tight);
- }
- set = isl_set_from_basic_set(bset);
- pwqp = isl_pw_qpolynomial_alloc(set, poly);
- pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
- pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
- tight);
- isl_factorizer_free(f);
- return pwf;
- error:
- isl_basic_set_free(bset);
- isl_qpolynomial_free(poly);
- return NULL;
- }
- static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
- __isl_take isl_basic_set *bset,
- __isl_take isl_qpolynomial *poly, struct bernstein_data *data,
- isl_bool *tight)
- {
- int i;
- int *len;
- isl_size nvar;
- isl_pw_qpolynomial_fold *pwf;
- isl_set *set;
- isl_pw_qpolynomial *pwqp;
- nvar = isl_basic_set_dim(bset, isl_dim_set);
- if (nvar < 0 || !poly)
- goto error;
-
- len = isl_alloc_array(bset->ctx, int, nvar);
- if (nvar && !len)
- goto error;
- for (i = 0; i < nvar; ++i)
- len[i] = 1;
- set = isl_set_from_basic_set(bset);
- pwqp = isl_pw_qpolynomial_alloc(set, poly);
- pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
- free(len);
- return pwf;
- error:
- isl_basic_set_free(bset);
- isl_qpolynomial_free(poly);
- return NULL;
- }
- /* Compute a bound on the polynomial defined over the parametric polytope
- * using bernstein expansion and store the result
- * in bound->pwf and bound->pwf_tight.
- *
- * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
- * the polytope can be factorized and apply bernstein expansion recursively
- * on the factors.
- * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
- * bernstein expansion recursively on each dimension.
- * Otherwise, we apply bernstein expansion on the entire polytope.
- */
- isl_stat isl_qpolynomial_bound_on_domain_bernstein(
- __isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
- struct isl_bound *bound)
- {
- struct bernstein_data data;
- isl_pw_qpolynomial_fold *pwf;
- isl_size nvar;
- isl_bool tight = isl_bool_false;
- isl_bool *tp = bound->check_tight ? &tight : NULL;
- nvar = isl_basic_set_dim(bset, isl_dim_set);
- if (nvar < 0 || !poly)
- goto error;
- data.type = bound->type;
- data.check_tight = bound->check_tight;
- if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
- pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
- else if (nvar > 1 &&
- (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
- pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
- else
- pwf = bernstein_coefficients_base(bset, poly, &data, tp);
- if (tight)
- return isl_bound_add_tight(bound, pwf);
- else
- return isl_bound_add(bound, pwf);
- error:
- isl_basic_set_free(bset);
- isl_qpolynomial_free(poly);
- return isl_stat_error;
- }
|